

Decision Analysis

Introduction

- The success of a personal career or business operation is largely dependent on the decisions the person or the business makes
- Decision theory is an analytic and systematic approach to the study of decision making – use mathematical models
- A good decision is one that is based on logic, considers all available data and possible alternatives, and uses the quantitative approach (mathematical models) described here

Introduction

- Occasionally, a good decision may result in an unexpected or unfavorable outcome.
- A bad decision is one that is not based on logic, does not use all available. information, does not consider all alternatives, and does not employ appropriate quantitative techniques.
- A bad decision can sometimes result in a favorable outcome out of luck.
- In a long run, using decision theory will result in successful outcomes.

The Six Steps in Decision Making

- Clearly define the problem at hand
- 2. List the possible alternatives
- 3. Identify the possible outcomes or states of nature
- 4. List the payoff or profit of each combination of alternatives and outcomes
- Select one of the mathematical decision theory models
- 6. Apply the model and make your decision

Thompson Lumber Company

- Step 1 Define the problem
 - Identify whether to expand product line by manufacturing and marketing a new product, backyard storage sheds
- Step 2 List ALL possible alternatives
 - Construct a large new plant
 - A small plant
 - No plant at all
- **Step 3 Identify ALL possible outcomes (states of nature)**
 - The market could be favorable or unfavorable
 - States of nature = outcomes over which decision makers have little or no control

Thompson Lumber Company

Step 4 – List the payoffs
Identify *conditional values* (payoffs / profits) for large, small, and no plants for the two possible market conditions (Table 3.1)
Money may not be the only value to look at, other means of measuring benefit is also acceptable
Step 5 – Select the decision model
Depends on the environment and the amount of risk and uncertainty involved
Step 6 – Apply the model to the data
Solution and analysis used to help the decision making

Thompson Lumber Company

	STATE O	F NATURE
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)
Construct a large plant	200,000	-180,000
Construct a small plant	100,000	-20,000
Do nothing	0	0

Table 3.1: Decision Table with Conditional Values for Thompson Lumber

Decision Table and Decision Tree are two ways for decision analysis.

Types of Decision-Making Environments

T	ур	е	1:	De	eci	si	on	m	nał	kir	g	ur	nde	ər	се	rta	ain	ty								
				D)ec	cis	io	n ı	ma	Ike	ər	kn	ov	vs	w	ith	C	eri	tai	nt	v t	he				
																lte								sio	n	
																									in	
																									un	
													y l					3			-3	-				-
т	ур		2.	-				_	T				-			-	rt	air	\ f \/	,						
•	УP		~ .		-01	131			lar		'Y	ui	iut	71	un		71 L	an	ιιy							
				Т	'nε	d e	ec	is	ioi	n r	na	ke	er (do	es	n	ot	kr	101	<i>N</i> t	he					
				С	or	ise	a	ue	nc	es	5 ((ev	en	th	ne	рі	ol	bal	bil	iti	es) 0	f t	he		
																									ar	
_													•											-	ŕ	'
ł	ур	e	3:	De	SC	SI	on	m	nał	kir	g	ur	de	⊋r	rıs	K										-
	[т	ha	4	~~	ia		. r		100		-	~	10	46	~ .	~ ~ ~	-	~ h	::::	lia	_		
				T																						
				t	he	Va	ari	ou	IS (ou	tc	on	he	s (e .	g.	ro	Hir	nq	а	4 (on	а	di	e)	-
																			3						1	

Decision Making Under Uncertainty

Most managers are not fortunate enough to make decisions under certainty. There are several criteria for making decisions under uncertainty:

- 1. Maximax (optimistic)
- 2. Maximin (pessimistic)
- 3. Criterion of realism (Hurwicz)
- 4. Equally likely (Laplace)
- 5. Minimax regret

Maximax

Used to find the alternative that maximizes the maximum payoff – optimistic approach

- Locate the maximum payoff for each alternative
- Select the alternative with the maximum number

		OF NATURE	•
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	MAXIMUM IN A ROW (\$)
Construct a large plant	200,000	-180,000	200,000
Construct a small plant	100,000	-20,000	Maximax — 100,000
Do nothing	0	0	0

Maximin

3 – 9

Used to find the alternative that maximizes the minimum payoff – pessimistic approach

- Locate the minimum payoff for each alternative
- Select the alternative with the maximum number

	STATE C	OF NATURE	
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	MINIMUM IN A ROW (\$)
Construct a large plant	200,000	-180,000	-180,000
Construct a small plant	100,000	-20,000	-20,000
Do nothing	0	0	0-
Table 3.3			Maximin —
			3-1

Criterion of Realism (Hurwicz)

Maximax and maximin consider only one extreme payoff

A *weighted average* compromises between optimistic and pessimistic approaches

- Select a coefficient of realism a to measure the degree of optimism
- Coefficient is between 0 and 1: a value of 1 is 100% optimistic and 0 is 100% pessimistic
- Compute the weighted averages for each alternative
- Select the alternative with the highest value
- Weighted average = α (maximum in row)

+ $(1 - \alpha)$ (minimum in row)

Criterion of Realism (Hurwicz)

- For the large plant alternative using α = 0.8
 (0.8)(200,000) + (1 0.8)(-180,000) = 124,000
- For the small plant alternative using α = 0.8 (0.8)(100,000) + (1 0.8)(-20,000) = 76,000

	FAVORABLE	UNFAVORABLE	CRITERION
ALTERNATIVE	MARKET (\$)	MARKET (\$)	OF REALISM $(\alpha = 0.8)$ \$
Construct a large plant	200,000	-180,000	124,000
Construct a small plant	100,000	-20,000	Realism – 76,000
Do nothing	0	0	0

Minimax Regret

Based on opportunity loss or regret, the difference between the optimal profit and actual payoff for a decision – the amount lost by not picking the best alternative

- Create an opportunity loss table by determining the opportunity loss for not choosing the best alternative
- Opportunity loss is calculated by subtracting each payoff in the column from the best payoff in the column
- Find the maximum opportunity loss for each alternative and pick the alternative with the minimum number

Equally Likely (Laplace)

Hurwicz criterion considers the best and worst payoffs only. Laplace criterion considers all the payoffs for each alternative

- Find the average payoff for each alternative
- Select the alternative with the highest average

	STATE C	OF NATURE	
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	ROW AVERAGE (\$)
Construct a large plant	200,000	-180,000	10,000
Construct a small plant	100,000	-20,000	40,000 qually likely
Do nothing	0	0	
Table 3.5			3-14

Minimax Regret

	STATE O	FNATURE
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)
Construct a large plant	200,000	-180,000
Construct a small plant	100,000	-20,000
Do nothing	0	0
Opportunity	STATE C	OF NATURE
Loss Tables	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)
	200,000 - 200,000	0 – (–180,000)
	200,000 - 100,000	0 – (–20,000)

Minimax Regret

	STATE C	OF NATURE	Table 3.7
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	
Construct a large plant	0	180,000	
Construct a small plant	100,000	20,000	
Do nothing	200,000	0	Table 3.8
	STATE O	F NATURE	
LTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	MAXIMUM IN A ROW (\$)
Construct a large plant	0	180,000	180,000
Construct a small plant	100,000	20,000	(100,000) -
vonstrugt a sman plant			

In-Class Example 1

Let's practice what we've learned. Use the decision table below to compute a choice using all the models

	S	State of Natu	re
Alternative	Good	Average	Poor
Alternative	Market	Market	Market
	(\$)	(\$)	(\$)
Construct a small plant	75,000	25,000	-40,000
Construct a large plant	100,000	35,000	-60,000
Do nothing	0	0	0

In-Class Example 1: Maximax

In-Class Example 1: Maximin

_						
		St	ate of Natu	ure		
	Altorpotivo	Good	Average	Poor	Maximum	
	Alternative	Market	Market	Market	in a Row (\$)	
		(\$)	(\$)	(\$)	(Ψ)	
	Construct a small plant	75,000	25,000	-40,000	75,000	
	Construct a large plant	100,000	35,000	-60,000	100,000	
	Do nothing	0	0	0	0	

		St	ate of Nati	ure	
Alto	rnativo	Good	Average	Poor	Minimum in a Row
AILE	Alternative	Market	Market	Market	(\$)
		(\$)	(\$)	(\$)	(+)
	struct a Il plant	75,000	25,000	-40,000	-40,000
	struct a e plant	100,000	35,000	-60,000	-60,000
Do	nothing	0	0	0	

In-Class Example 1: Criterion of Realism

In-Class Example 1: Equally Likely

a = 0.6

	Sta	ate of Natu	ire	Critarian of	
Alternative	Good	Average	Poor		
Alternative	Market	Market	Market		
	(\$)	(\$)	(\$)		
Construct a small plant	75,000	-	-40,000	29,000	
Construct a large plant	100,000	-	-60,000	36,000	
Do nothing	0	-	0	0	
	small plant Construct a large plant	Alternative Good Market (\$) Construct a small plant 75,000 Construct a large plant 100,000	AlternativeGood Market (\$)Average Market (\$)Construct a small plant75,000 100,000-Construct a large plant100,000 e-	AlternativeMarketMarketMarketMarketMarketMarket(\$)Construct a small plant75,00040,000Construct a large plant100,00060,000	AlternativeGood MarketAverage MarketPoor MarketCriterion of Realism a=0.6 (\$)Construct a small plant75,00040,00029,000Construct a large plant100,00060,00036,000

	Sta	ate of Natu	ire	D	1
Alternative	Good	Average	Poor	Row Average	1
Alternative	Market	Market	Market	(\$)	1
	(\$)	(\$)	(\$)	(+)	
Construct a small plant	75,000	25,000	-40,000	20,000	
Construct a large plant	100,000	35,000	-60,000	25,000	
Do nothing	0	0	0	0	1
					- 22

In-Class Example 1: Minimax Regret Opportunity Loss Table

	Sta	Maximum			
Alternative	Good	Average	Poor	Opp. Loss	
Alternative	Market	Market	Market	in a Row	
	(\$)	(\$)	(\$)	(\$)	
Construct a small plant	25,000	10,000	40,000	40,000	
Construct a large plant	0	0	60,000	60,000	
Do nothing	100,000	35,000	0	100,000	

Decision Making Under Risk

- Decision making when there are several possible states of nature and we know the probabilities associated with each possible state
- Most popular method is to choose the alternative with the highest expected monetary value (EMV)
- EMV is the weighted sum of all possible payoffs for an alternative and is the long run average value for that decision

EMV (alternative *i*) = (payoff of first state of nature) x (probability of first state of nature) + (payoff of second state of nature) x (probability of second state of nature) + ... + (payoff of last state of nature)

x (probability of last state of nature)

EMV for Thompson Lumber

Each market has a probability of 0.50Which alternative would give the highest EMV?

	STATE C			
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	EMV (\$)	_
Construct a large plant	200,000	-180,000	?	
Construct a small plant	100,000	-20,000	?	
Do nothing	0	0	?	
Probabilities	0.50	0.50		

EMV for Thompson Lumber

The calculations are

EMV	(larg	je p	lant)	= ((0.5	50)(\$2	00,	,00	0) ·	+ ((0.5	0)(-	-\$1	80),00)0)	
				= \$	\$10	,00	00			-	-						-	
EMV	(sm	all p	lant)	= ((0.5	50)(\$1	00,	,00	0) ·	+ ((0.5	0)(-	-\$2	20,	000))	
				= \$	\$40	,00	0											
EMV	(do	notł	ning)	= ((0.5	50)(\$0)+	(0.	50)(\$	0)						
				= \$	\$0													

The decision is to build a small plant, because it yields the maximum EMV

EMV for Thompson Lumber

FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	
		EMV (\$)
200,000	-180,000	10,000
100,000	-20,000	40,000
0	0	0
0.50	0.50	
	Large	/ st EMV
	100,000	100,000 -20,000 0 0 0.50 0.50

In-Class Example 2: Computing EMV

Using the table below to compute EMV

	<i>C</i> ,	State of Nat	ure
Alternative	Good	Average	Poor
Allemative	Market	Market	Market
	(\$)	(\$)	(\$)
Construct a	75,000	25,000	-40,000
small plant	75,000	23,000	-40,000
Construct	100,000	35,000	-60,000
alarge plant	100,000	33,000	-00,000
Do nothing	0	0	0
Probability	0.25	0.50	0.25

3 - 27

In-Class Example 2: Computing EMV

In-Class Example 2: Computing EMV

The calculations are:					
		Sta	ate of Nati	ure	
EMV (small plant)	Alternative	Good	Average	Poor	EMV(t)
= (0.25)(\$75,000) + (0.50)(\$25,000) + (0.25)(-\$40,000)	Alternative	Market	Market	Market	EMV (\$)
= \$21,250	_	(\$)	(\$)	(\$)	
EMV (large plant)	Construct a	75 000	25.000	40.000	21.250
= (0.25)(\$100,000) + (0.50)(35,000) + (0.25)(-\$60,000)	small plant	75,000	25,000	-40,000	21,250
= \$27,500	Construct a	100,000	35,000	-60,000	27,500
EMV (do nothing)	large plant	100,000	35,000	-00,000	27,500
= (0.25)(\$0) + (0.50)(\$0) + (0.25)(\$0)	Do nothing	0	0	0	0
= \$0	Probability	0.25	0.50	0.25	
Max. EMV = \$27,500					
3-29					3 -

Expected Value of Perfect Information (EVPI)

- Marketing research company can find out what the exact outcome will be perfect information decision under risk → decision under certainty with fee
- EVPI places an upper bound on what you should pay for additional information

EVPI = EVwPI – Maximum EMV

- EVwPI is the long run average return if we have perfect information before a decision is made (we need to compute it because we do not know it until after we pay)
 - EVwPI = (best payoff for first state of nature) x (probability of first state of nature) + (best payoff for second state of nature) x (probability of second state of nature) + ... + (best payoff for last state of nature) x (probability of last state of nature)

Expected Value of Perfect Information (EVPI)

- Scientific Marketing, Inc. offers analysis for Thompson Lumber Company that will provide certainty about market conditions (favorable or not)
- Additional information will cost \$65,000
- Is it worth purchasing the information?

Expected Value of Perfect Information (EVPI)

Best alternative for favorable state	of nature is to
build a large plant with a payoff of \$	200,000
Best alternative for unfavorable sta	te of nature is
to do nothing with a payoff of \$0 (se	

EVwPI = (\$200,000)(0.50) + (\$0)(0.50) = \$100,000

We compute the best payoff for each outcome since we don't know what the research will tell us

2. The maximum EMV without additional information is \$40,000

EVPI = EVwPI - Maximum EMV

- = \$100,000 \$40,000
- = \$60,000

Expected Value of Perfect Information (EVPI)

1.	Be bu Be to EV	ilc st dc	l a al o n	la te O			sh	οι	ıld	pa	ay	imu for is	th	e a	Idd				5	
2.	Th inf										the	out	ad	dit	ior	nal				
		E	VF	PI	= I	EV	wF	۲ı	- N	/la	xir	nur	n E	M	V					
		=	\$1	00),O	00	- 1	\$4	0,	00	0									
		=	\$6	50 ,	00	0														

In-Class Example 3: Computing EMV, EVwPI & EVPI

3 – 33

Using the table below to compute EMV, EVwPI and EVPI.

	State of Nature								
Alternative	Good Market (\$)	Average Market (\$)	Poor Market (\$)						
Construct a small plant	75,000	25,000	-40,000						
Construct a large plant	100,000	35,000	-60,000						
Do nothing	0	0	0						
Probability	0.25	0.50	0.25						
				•					

In-Class Example 3: Computing EMV, EVwPI & EVPI

	St	ate of Nati	ure		
Alternative	Good	Average	Poor	EMV	
	Market	Market	Market		
	(\$)	(\$)	(\$)		
Construct a small plant	75,000	25,000	-40,000	21,250	
Construct a large plant	100,000	35,000	-60,000	27,500	
Do nothing	0	0	0	0	
Probability	0.25	0.50	0.25		

In-Class Example 3: Computing EMV, EVwPI & EVPI

EMV(sm	all) = \$75,0	00*0.25 +	\$25,000*0.5 +
	(-40,0	00*0.25) =	= \$21,250
EMV(lar	ye) = \$100,	000*0.25 -	F \$35,000*0.5 +
	(-60,0	00*0.25) =	= \$27,500
EVwPI	= \$100,000	0*0.25 + \$	35,000*0.50
	+ 0*0.25	= \$42,500	
Max. EM	V = \$27,50	0	
EVPI = E	VwPI – ma	x(EMV)	
= \$	42,500 – \$2	27,500 = \$	15,000

Expected Opportunity Loss

- Expected opportunity loss (EOL) is the cost of not picking the best solution
- An alternative approach to maximizing EMV is to minimize EOL
- First construct an opportunity loss table
- For each alternative, multiply the opportunity loss by the probability of that loss for each possible outcome and add these together
- Minimum EOL will always result in the same decision as maximum EMV
- Minimum EOL will always equal EVPI

Expected Opportunity Loss

Payoff

Table

Loss

able

	STATE O	F NATURE
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABI MARKET (\$)
Construct a large plant	200,000	-180,000
Construct a small plant	100,000	-20,000
Do nothing	0	0
Probabilities	0.50	0.50
	STATE O	F NATURE
ALTERNATIVE	FAVORABLE MARKET (\$)	
		UNFAVORAB MARKET (\$ 0 - (-180,000)
Construct a large plant	MARKET (\$)	MARKET (\$
Construct a large plant Construct a small plant	MARKET (\$) 200,000 – 200,000	MARKET (\$ 0 - (-180,000)

Expected Opportunity Loss

	STATE OF		
	FAVORABLE	UNFAVORABLE	
ALTERNATIVE	MARKET (\$)	MARKET (\$)	EOL
Construct a large plant	0	180,000	90,000
Construct a small plant	100,000	20,000	60,000+
Do nothing	200,000	0	100,000
Probabilities	0.50	0.50	
Table 3.10: Opportunity Loss	Table	Mii	nimum EOL -
EOL (large plant) = (0.50)(\$0) + (0.50) \$90,000	(\$180,000)	 EVPI
EOL (small plant) = ((0.50)(\$20,000)	
EOL (do nothing) = ((0.50)(\$0)	
			:

Sensitivity Analysis

In the previous analyses (with the known payoffs and probabilities), we concluded that the best decision was to build a small plant

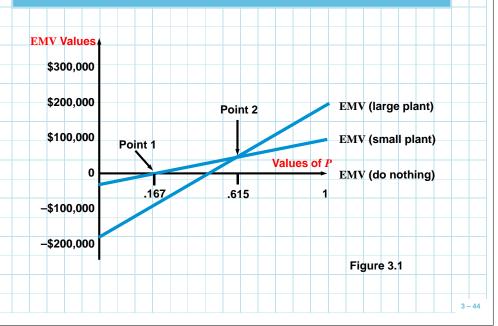
- What would happen if the values of payoff and probability changed
- Sensitivity analysis examines how our decision might change with different input data
- We investigate the impact of change in probability values

Sensitivity Analysis

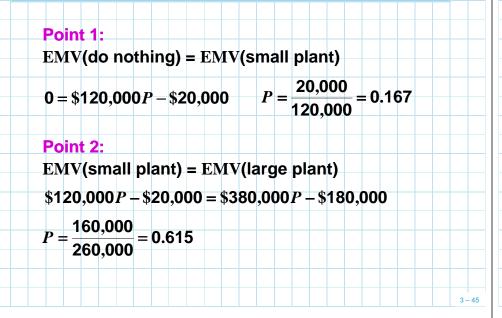
For the Thompson Lumber example

P = probability of a favorable market

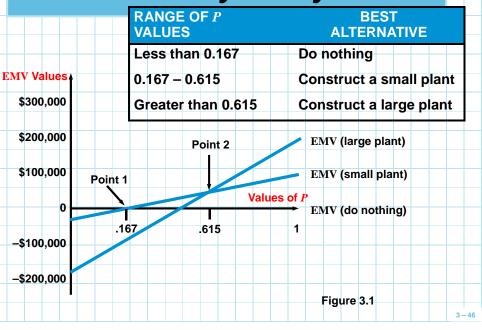
(1 - P) = probability of an unfavorable market


ALTERNATIVEFAVORABLE MARKET (\$)UNFAVORABLE MARKET (\$)EMV (\$)Construct a large plant200,000-180,000?Construct a small plant100,000-20,000?Do nothing00?Probabilitiesp1-p-				
Construct a large plant 200,000 -180,000 ? Construct a small plant 100,000 -20,000 ? Do nothing 0 0 ?		FAVORABLE	UNFAVORABLE	
plant 200,000 -180,000 ? Construct a small plant 100,000 -20,000 ? Do nothing 0 0 ?	ALTERNATIVE	MARKET (\$)	MARKET (\$)	EMV (\$)
plant 100,000 -20,000 ? Do nothing 0 0 ?		200,000	-180,000	?
		100,000	-20,000	?
Probabilities p 1-p	Do nothing	0	0	?
	Probabilities	р	1- <i>p</i>	

Sensitivity Analysis


3 – 41

EMV(Large Plant) = $200,000P - 180,000^{*}(1-P)$ = 200,000P - 180,000 + 180,000P= 380,000P - 180,000EMV(Small Plant) = $100,000P - 20,000^{*}(1-P)$ = 100,000P - 20,000 + 20,000P= 120,000P - 20,000EMV(Do Nothing) = $0P + 0^{*}(1-P)$ = $0P + 0^{*}(1-P)$ = $0P + 0^{*}(1-P)$ = $0P + 0^{*}(1-P)$


Sensitivity Analysis

Sensitivity Analysis

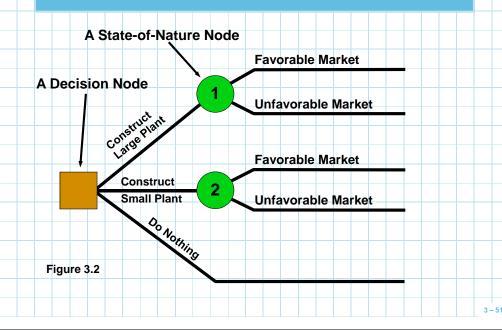
Sensitivity Analysis

Using Excel QM to Solve Decision Theory Problems

Image: Section Tables Image: Section Tables the best case using the MAX function. Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Tables Image: Section Tables Image: Section Tables Image: Section Tables Image: Section Tables<			1	A	B Son Lum	c ber		E		F	worst case	SUMPRODUCT function, the using the MIN function, and
3 Decision Tables 4 Enter the compute the expected value. 5 base 6 Data 7 Profit Meter data table. Enter probabilities in the tirst row if you want 8 Prodit Meter 9 Large Plant. 9 Large Plant. 9 Large Plant. 9 Self Produbility 9 Large Plant. 100000 -SEMPRODUCT(BBACS8.85.0) 9 Large Plant. 100000 -SEMPRODUCT(BBACS8.85.0) 11 Dorothin. 12 -MAX[B3C10] 13 Expected Value of Perfect Information 14 Expected Value of Perfect Information 15 Calumbest -MAX[B3C11] -MAX[B3C38.15C19] 14 Expected Value of Perfect Information 15 Calumbest -MAX[B3C13] -MAX[C3C11-SUMPRDUCT[BBC38.812C21] 14 Expected Value of C15 -C10 15 Regret 16 <td< th=""><th></th><th></th><th>2</th><th></th><th>1</th><th>1</th><th></th><th></th><th></th><th>1</th><th>the best ca</th><th>ase using the MAX function.</th></td<>			2		1	1				1	the best ca	ase using the MAX function.
5 bits compute the expected value. 7 Prob Market Mexic 8 Prob Market Mexic Mexic 9 Large Flark Oto 05 05 9 Large Flark 20000 -SUMPPODUCT (BSCS8.89.59) +NNBR02.10 -MARED2 9 Large Flark 20000 -SUMPPODUCT (BSCS8.89.59) +NNBR02.10 -MARED2.11 10 Smail plant 100000 -SUMPPODUCT (BSCS8.89.59) +NNBR02.10 -MARED2.11 11 Dorwhing 0 0 -SUMPPODUCT (BSCS8.811.01) -MARED3.11.11 -MARED3.11.11 12 PMARED3.11.11 -MARED3.11.11 -MARED3.11.11 -MARED3.11.11 13 Expected Value of Perfect Information 15 Calum best -MARED3.11.91 -MARED3.11.11 14 Expected Value of CT -ESPERID4.14.91.75.11 -MARED3.11.11 -MARED3.11.11 13 Expected Value of Perfect Information 15 Calum best -MARED3.11.91.14.14.14.14.14.14.14.14.14.14.14.14.14				Decision T	ables	-						
5 Is compute the expected value. 7 Profit Mexica Maket 7 Profit Mexica Maket 8 Productive Mexica Maket Mexica Maket 9 Large Plant 20000 10 Dendorma 0 11 Dendorma 0 12 -MAX[E32E11) -MAX[E32E11] 13 Expected Value of Perfect Information 15 Columbet -MAX[E32E11] -MAX[E32E12] 14 Expected Value of Perfect Information 1			4	Enter th	he profits or	costs in t	he m	ain body of the data	table. Ente	r probabilities in	the first row if	vou want
Production Difference Difference <thdifference< th=""> Difference Differen</thdifference<>			5	to comp	pute the exp	ected valu	ie.					
7 Profit Meket Meket Def Maintain Harman			6	Data				Results				
8 Productity 0.5 0.5 3 Large Piart 200000 -58000 -58000 -580000 -580000 -580000 -580000 -5800000 -5800000 -5800000 -5800000 -5800000 -58000000 -58000000 -58000000 -580000000 -580000000 -580000000 -5800000000 -58000000000 -58000000000 -580000000000 -580000000000 -5800000000000 -58000000000000 -580000000000 -5800000000000000 -58000000000000000 -5800000000000000000 -580000000000000000000000000000 -58000000000000000000000000000000000000							sble					
3 Large Park 20000 180000 180000 180000								EMV		Minimun	Maximum	Hurwicz
ID Small piret 100000 200001 -SUMPRODUCT[BSS:CB8.010:01 -MAX[B10:01) -MAX[B10:01) -MAX[B10:01]										1		
To calculate the III Donothing 0 0 =SUMPRODUCT[BSS:CB_01:CIII =MAX[B3:II:CIII] =MAX[B3:II:CIII]												
EVPI, find the best outcome for each scenario. III F-MAX[ESE11] MAX[ESE11] MAX[ESE11] MAX[ESE11] MAX[ESE11] 14 Expected Value of Perfect Information 15 Columber - MAX[ESE11]					1000	00 -20						= \$I\$8*G10+(1-\$I\$8)*F10
13 Expected Value of Perfect Information for each scenario. 14 Expected Value of Perfect Information is Column best -MAX[EXEII] -EISEII2 - CExpected value inder cetainty 16 17 -EI2 -CExpected value of perfect Information 18 -EISEI2 -CExpected value of perfect Information 19 Regret -EISEI2 -CExpected value of perfect Information 19 Regret -EISEI2 -CExpected value of perfect Information 20 -EIX -EISEI2 -CExpected Value of perfect Information 18 -EISEI2 -EISEI2 -Expected Value of perfect Information 21 -A8 -EIS -EISEI2 -Expected Value of perfect Information 22 -A10 -EISE -CIS -SUMPRODUCT(1980:CB822C23) MAX(E222) using the MAX 22 -A10 -EISE -CIS -SUMPRODUCT(1980:CB824C24) -MAX(E224) function. 23 Value Yelding the EVPL Value Yelding the EVPL -MAX[E2227] using the MAX 23 V				Do nothing		0			C\$8,B11:C11)			
Dest outcome 114 Expected Value of Perfect Information for each scenario. 115 Calumn bet: -MAX[E9:E11] - MAX[C3:C11]-SUMPRODUCT[B98:C38,E15:C15]. < Expected value of perfect Information	EVPI, find t	he					- 1	-MAX[E9:E11]		=MAX[F9:F11]	-MAX[69:611]	=MAX(19:111)
14 Expected Value of Perfect Information 16 Column best in MAX[BSBII] 17 -E12 18 -E15E12 19 Regret 21 -88 22 -A9 23 -A10 24 -E15-E12 25 -SUMPRODUCT[BSRC\$8,815C18] 21 -88 22 -A9 23 -A10 24 -E15-E12 25 -SUMPRODUCT[BSRC\$8,822C2] 24 -A9 25 -SUMPRODUCT[BSRC\$8,822C2] 26 -A10 27 Uses SUMPRODUCT[BSRC\$8,822C2] 28 Use SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value will will will will will will will wil	best outcor	ne 🔤										
16 -E12 -Bast supseted value 17 -E12 -C-Supseted value 18 -ED-E12 -C-Supseted value 19 -ED-E12 -C-Supseted value 10 -ED-E12 -C-Supseted value 10 -ED-E12 -C-Supseted value 11 -AB -EB-E12 -C-Supseted value 12 -AB -EB-E12 -C-Supseted value 11 -AB -EB-E12 -C-Supseted value 12 -AB -EB-E12 -C-Supseted value 13 -AB -EB-E12 -C-Supseted value 14 -AB -EB -CB -CB 16 AB -EB-E12 -C-Supseted Value -CB 12 AB -EB -CB -CB -CB 23 A10 CB-C10 -SUMPRODUCT(BSRCSB.22C21 -MAX(E22-C21) using the MAX 24 A10 CB-C10 -SUMPRODUCT(BSRCSB.22C21 -MAX(E22-C21) using the MAX 25 A10 B1-S-B10 -C15-C11 -SUMPRODUCT (BSRCSB.2C22) MAX(E22-C21) us			14									
I7 -E15E12 C-Expected value of perfect information 18 -E7 Expected Maximum 19 Pegret -C7 Expected Maximum 21 -A8 +E8 -C8 outcome for 22 -A9 -E15-E9 -C16-C3 -SUMPRODUCT(BSSC98.022C2) -MAX(B22C2) each measure 24 -A10 +E15-E90 -C16-C10 -SUMPRODUCT(BSSC98.024C2) -MAX(B22C2) using the MAX 24 -A11 -B15-E91 -C16-C11 -SUMPRODUCT(BSSC98.024C2) -MAX(B24C2) using the MAX 26 ////////////////////////////////////	tor each sce	enano.	15	Column best	-MAX[B9:B1	1) -MAX(C	9:C11		C\$8,B15:C15j			
18 Hegret -07 Espected Maximum Find the best outcome for each measure using the MAX function, 21 -48 -88 -08 -5.5.00 -5.0MPRODUCT(B88:058:02:22) -MAX(B22:22) each measure using the MAX function, 22 -4.0 -815-80 -015-01 -5.0MPRODUCT(B88:058:02:22) -MAX(B22:22) using the MAX function, 24 -4.0 -815-80 -015-01 -5.0MPRODUCT(B88:058:02:22) -MAX(B22:22) using the MAX function, 24 -4.0 -815-80 -015-01 -5.0MPRODUCT(B80:058:02:22) -MAX(B22:22) using the MAX function, 25 -MIN(F22:E24) -MAX(B22:C2) -MAX(B22:C2) function, 26 Value SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI. value yielding the EVPI.						_						
19 Regret -E7 Expected Maximum Find the best outcome for each measure 21 =A8 =E8 -C8 -SUMPRODUCT(B80C58.022C2) -MAX(022C2) each measure 22 =A9 =B15-09 -C15-C3 -SUMPRODUCT(B80C58.022C2) -MAX(022C2) each measure 24 =A11 -B15-01 -SUMPRODUCT(B80C58.022C2) -MAX(022C2) using the MAX 24 =A11 -B15-01 -C15-C11 -SUMPRODUCT(020C58.022C2) -MAX(020C2) using the MAX 25 -MIN(022-024) =MIN(022-024) using the MAX 26 -MIN(022-024) -MIN(022-024) 27 Use SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI.				-				=E15-E12		<-Expected value	of perfect informa	tion
20 -B7 =07 Expected Maximum Find the best outcome for each measure using the MAX function, 21 -A9 -B15-E8 -C15-C3 -SUMPRODUCT(BS8C\$8.822C2) -MAX(B22C2) each measure using the MAX function, 23 -A10 -B15-E10 -C15-C1 -SUMPRODUCT(BS8C\$8.822C2) -MAX(B22C2) using the MAX function, 24 -A11 -B15-E10 -C15-C1 -SUMPRODUCT(BS8C\$8.822C2) -MAX(B22C2) using the MAX function, 25 -B1 -C15-C1 -SUMPRODUCT(BS8C\$8.822C2) -MAX(B22C2) function, 26 -MIN(F22-F24) -MIN(F22-F24) -MIN(F22-F24) function, 28 Use SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI. value yielding the EVPI.				Deserved								
21 +A8 +E8 +C8 outcome for 22 +A9 +E15-E9 -C15-C9 +SUMPPODUCT[B80C98.B22-C21] -MAX[B22-C22] each measure 23 +A10 +B15-B10 -C15-C10 +SUMPPODUCT[B80C98.B22-C23] -MAX[B22-C23] using the MAX 24 +A11 +B15-B11 -C15-C10 +SUMPPODUCT[B80C98.B22-C23] -MAX[B22-C24] using the MAX 25 Vse VMN[F22-F24] -MIN[F22-F24] function. 26 Vse SUMPRODUCT to compute the product of -MIN[F22-F24] -MIN[F22-F24] 28 the best outcomes by the probabilities and find - 29 the difference between this and the best expected - 29 value yielding the EVPI. - -				negret	-07	-02	-	Eveneted		Manian an	(Find the best
22 -A9 -B15-E9 -C15-C9 =SUMPRODUCT[B8SCB82222] each measure 23 -A10 -B15-B10 -C15-C10 -SUMPRODUCT[B8SCB82223] MAX[B2223] using the MAX 24 -A11 -B15-B10 -C15-C10 -SUMPRODUCT[B8SCB822423] MAX[B2223] using the MAX 24 -A11 -B15-B11 -C15-C10 -SUMPRODUCT[B8SCB82423] MAX[B2223] using the MAX 26 -MIN[E22E24] -MIN[E22E24] -MIN[E22F24] function, 26 -MIN[E22E24] -MIN[E22F24] function, 28 Use SUMPRODUCT to compute the product of				- 49			-	Lypecieu		MAINGIN		outcome for
23 -A10 -B15-B10 -C15-C10 -SUMPRODUCT[B82C98B23C23] -MAX[B23C23] using the MAX 24 -A11 -B15-B11 -C15-C11 -SUMPRODUCT[B82C98B24C23] -MAX[B23C23] using the MAX 25 -C15-C11 -SUMPRODUCT[B82C98B24C23] -MAX[B23C23] function, 25 -C15-C11 -SUMPRODUCT[B82C98B24C23] -MAX[B22C23] function, 26									Ceo D33-C33	-MAV(D00C00)		each measure
24 -A11 -B15-B11 -C15-C11 -SUMPRODUCTIBIN CREEZE2(2) -MAN(B22C2) Gamma Comparison 25 M-MIN(E22E24) -MIN(F22E24) function. 26 Value SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI. Image Comparison												
25 F-MIN[E22E24) -MIN[F22F24] Tunction. 26 Use SUMPRODUCT to compute the product of												
26 27 27 Use SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI.												function.
27 Use SUMPRODUCT to compute the product of 28 the best outcomes by the probabilities and find 28 the difference between this and the best expected value yielding the EVPI.												
Use SUMPRODUCT to compute the product of the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI.					-		<u></u>					
the best outcomes by the probabilities and find the difference between this and the best expected value yielding the EVPI.												
the difference between this and the best expected value yielding the EVP1.						the l	bes	t outcomes by [.]	the prob:	abilities and	find	
value yielding the EVPI.			-	1	-							
			_									
Program 5.1A						Valu	e yi	erang the EVF	•			
	Ducaura											
	Progra	m 3.1	T	_								

Using Excel QM to Solve Decision Theory Problems

	A	В	С	D	E	F	G	Н		J	K.
1		on Lumi	_								
2	momps	on Eann	501								
3	Decision Ta	ables									
4			r costs in th	e main bo	dy of the	data table	Enter pro	babilities	in the		
5			nt to comput				. miles pro				
6	Data				Results						
		Favorable	Unfavorable								
7	Profit	Market	Market		EMV	Minimum	Maximum		Hurwicz		
8	Probability	0.5						coefficient	0.8		
9	Large Plant	200000			10000				124000		
10	Small plant	100000	-20000		40000	-20000	100000		76000		
11	Do nothing	0	0		0	0	-				
12				Maximum	40000	0	200000		124000		
13											
14			fect Informa	tion	400000	. Curata					
15 16	Column best	200000	0				d value und bected valu		У		
10							d value of p		rmation		
18					00000	<-Lyberre	u value ol j	Jenecumo	mation		
19	Regret										
20		Favorable N	Unfavorable	Market	Expected	Maximum					
21	Probability	0.5		1							
22	Large Plant	0			90000	180000					
23	Small plant	100000			60000	100000					
24	Do nothing	200000	0		100000	200000				_	
25				Minimum	60000	100000				Progr	ram 3.1E


Decision Trees

- Any problem that can be presented in a decision table can also be graphically represented in a decision tree
- Decision trees are most beneficial when a sequence of decisions must be made
- All decision trees contain decision points or decision nodes and state-of-nature points or state-of-nature nodes
 - A decision node from which one of several alternatives may be chosen
 - A state-of-nature node out of which one state of nature will occur

Structure of Decision Trees

- Trees start from left to right
- Represent decisions and outcomes in sequential order
- Squares represent decision nodes
- Circles represent state of nature nodes
- Lines or branches connect the decision and the state of nature nodes

Thompson's Decision Tree

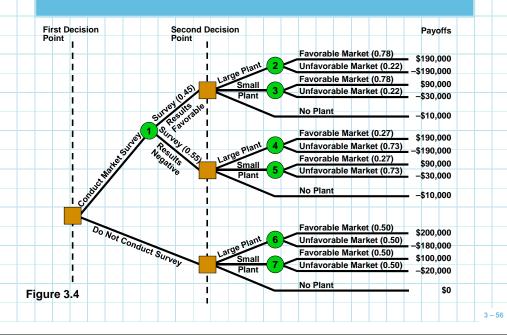


Five Steps to Decision Tree Analysis

1. Define the problem

- 2. Structure or draw the decision tree
- 3. Assign probabilities to the states of nature
- Estimate payoffs for each possible combination of alternatives and states of nature
- 5. Solve the problem by computing expected monetary values (EMVs) for each state of nature node by working backward (from right to left) and select the best EMV at each decision node

Thompson's Decision Tree


Thompson's Complex Decision Tree

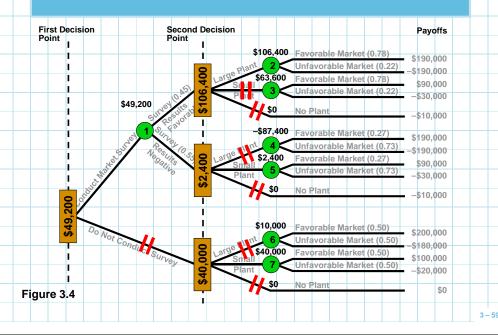
- Decision trees are much more powerful tools than decision tables when a sequence of decisions need to be made
- Suppose Thompson Lumber has to make two decisions, with the second decision dependent upon the outcome of the first
 -) Whether or not to conduct a market survey at the cost of \$10,000
 -) Whether to build a large, small or no plant

Thompson's Complex Decision Tree

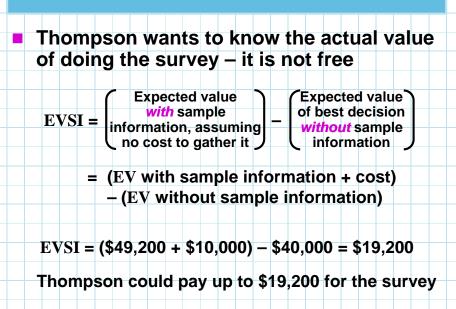
- The first decision will help Thompson Lumber to make the second decision – which alternative to pursue (large, small or no plant)
- The survey does not provide perfect information, but it will help
- The cost of survey must be deducted from the original payoffs in decision tree analysis

Thompson's Complex Decision Tree

Thompson's Complex Decision Tree


1.	G	iv	en	fa	vc	ora	bl	e	su	rv	ey	re	รเ	ılts	s,									
	E	МV	/(n	od	e 2)=	EN	1 V	(la	rge	e p	lan	t	ро	siti	ve	su	rve	y)	_				
						=	(0.	78)(\$	19	0,0	00))+	(0.	22)	(–\$	19	0,0	00)	= \$	5106	5,40	0	
	E	M۱	⁄(n	od	e 3	-			•		-						su			_				
							•		f •			-	+ (I	0.2	2)(-	-\$3	0,0	00)) = 1	\$63	60,60	0		
										0,0														
2.	G	iv	en	n	eg	ati	ve	S	ur	ve	y I	res	su	lts	,	-			-					
	E	M۱	/(n	od	e 4)=	EN	1V	(la	rge	эp	lan	t	ne	gat	ive	su	rve	ey)	-				
							•		1 • •					•	-	• [= -	-\$87	7,40	0	
	E	M۱	/(n	od	e 5	-			•		-				-		ะ รเ							
							•		1 • •			· ·	+ ((0.7	3)(-	-\$3	0,0	00)) = !	\$2, [,]	400			
	E	M١	/ fc	or r	10	pla	nt	= -	-\$1	0,0	000)												

Thompson's Complex Decision Tree


3.	С	or	np	ut	e t	the	e e	xp	ec	cte	d	va	lu	e (of '	th	e r	na	rk	et	รบ	irv	ey,
	EI	M	/(n	od	e 1)=	EN	٨v	(cc	ono	dud	ct s	ur	ve	v)								
			`			-			•						11)(\$	2,4	00					
												,32											
4.	lf	th	е	ma	arl													d.					
						5)=				T								,					
	1.51	VI 1	(1)	u		-			-	-	-		-	/0	50	v_	¢10	20 1	000	<u>ار ار ا</u>	¢,	10	000
	F	л	7/n	od	. 7	= ()=	•						1	(0.	50	η-	φια	JU,	000	- (י	φ	10,	000
	1.21	VI 1	(1)	u	C 1				•				· ·	(0	50	¥_	\$20	1 0	00)	_	\$4(n n	00
	E	м	7 fa	or r	10	– pla	•			10	0,0		, т	(0.	50	Λ	ΨZ\	,0	,	_	ΨΤ	,0	
5	В					1				00		ma	rb	of	in		nf) nr	na		h		
J.																1							
						lar	-	-					-										
	С	on	str	uc	t a	sm	hal	l pl	an	t if	รเ	irv	ey	res	sul	ts	are	ne	ega	ativ	е		

Thompson's Complex Decision Tree

3 – 57

Expected Value of Sample Information

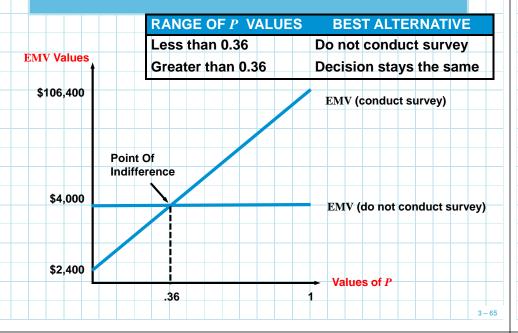
Using Excel QM to Using Excel QM to **Draw Decision Trees Draw Decision Trees** - • × QM for Windows Thompson's Decision Tree Selected node File Edit View Module Fo<u>r</u>mat <u>T</u>ools <u>W</u>indow <u>H</u>elp favorable market (.5) 5 \$ 200000 Node 10 New 1 **1** Decision Tables 🔲 🎹 🔺 📎 💦 🕐 🕨 Solve Large Plant Den Open Ctrl+0 ≡ 00 + 5× 0.0 , @ 111 A -2 Decision Trees Actions 6 Close unfavorable market (..5) - 6 \$-180000 n: 2 🔺 already existing file 4 One Period Inventory Add 2 branches 5 Factor rating Save as Evcel file favorable market (..5) - 7 \$ 100000 Save as HTMI Change to event node Small Plani 1 Remove branch 🗃 Print Screen unfavorable market (..5) - 8\$-20000 Exit favorable market (.5) 9\$0 Data for branch 4-10 Name favorablemarket unfavorablemarket (..5) 10\$0 Probability 0.5 Empty Module Screen Decision Analysis Render/Stair/Hanna's Quant 🍄 Module 🔗 Print Screen 🐁 Previous file 🏔 Next file 🔣 Save as Excel file 🧉 Save as HTML 3 - 61

Sensitivity Analysis

- As with decision tables, sensitivity analysis can be applied to decision trees as well
- How sensitive are the decisions to changes in the problem parameters ?
 - Consider how sensitive our decision is to the probability of a favorable survey result?
 - That is, if the probability of a favorable result (p = .45) were to change, would we make the same decision?
 - How much could it change before we would make a different decision?

Sensitivity Analysis

p = probability of a favorable survey result (1 - p) = probability of a negative survey result


EMV(node 1) = (\$106,400)p + (\$2,400)(1 - p)= \$104,000p + \$2,400

We are indifferent when the EMV of node 1 is the same as the EMV of not conducting the survey, \$40,000

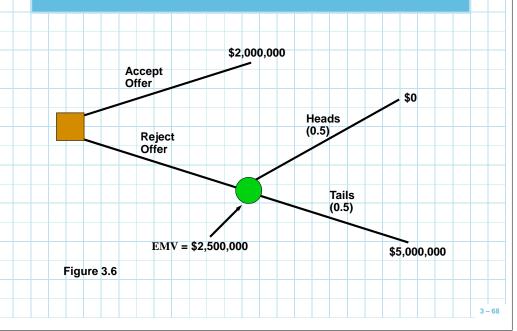
\$104,000*p* + \$2,400 = \$40,000 \$104,000*p* = \$37,600 *p* = \$37,600/\$104,000 = 0.36 So, if p < 0.36, do not conduct the survey

if p > 0.36, the decision will stay the same

Sensitivity Analysis

Utility Theory

- Monetary value (EMV) is not always a true indicator of the overall value of the result of a decision
 - A person may settle a lawsuit out of court even though they may get more by going to trial and winning
 - A businessperson may rule out a potential decision because it could bankrupt the company if things go bad even though the expected return is better than that of all the other alternatives


3 - 66

- The overall value of a decision is called utility
- Rational people make decisions to maximize their utility

Utility Theory

Suppose you bought a winning lottery ticket of \$2 million. To make the game more exciting, a fair coin would be flipped. If it is tail, you would win \$5 million. If it is head, you would loss \$2 million. A wealthy businessman offered you \$2 million for the ticket. What would you do, sell it or hold on to it ? Why ?

Utility Theory

Utility Theory

- The EMV of rejecting the offer and continue with the game is higher than accepting the offer and go with \$2,000,000.
- However many people would take \$2,000,000 (or even less) rather than flip the coin even though the EMV says otherwise.
- People have different feelings about seeking or avoiding risk

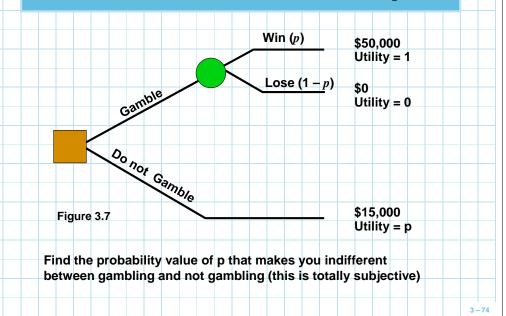
Utility Theory

- When an extremely large payoff or loss is involved, EMV may not always be the only criterion for making decisions
- One way to incorporate your own attitude toward risk is through utility theory
- We first show how to measure utility and then show how to use utility to make decision

Utility Theory

- The first step is to assign utility values to each monetary value in a given situation
 - Utility assessment usually assigns the worst outcome a utility of 0, and the best outcome, a utility of 1
 - All other outcomes have a value between 0 and 1
- A standard gamble is used to determine utility values (Fig. 3.7)
 - *p* is the probability of obtaining the best outcome and (1-*p*) the worst outcome

Utility Theory


- Assessing the utility of any other outcome involves determining the probability (p) which makes you indifferent between alternative 1 (gamble between the best and worst outcome) and alternative 2 (obtaining the other outcome for sure)
- When you are *indifferent* between alternatives 1 and 2, the expected utilities for these two alternatives must be equal

Expected utility of alternative 2 = Expected utility of alternative 1 Utility of other outcome = (p)(utility of best outcome, which is 1) + (1 - p)(utility of the worst outcome, which is 0) = (p)(1) + (1 - p)(0) = p

Standard Gamble

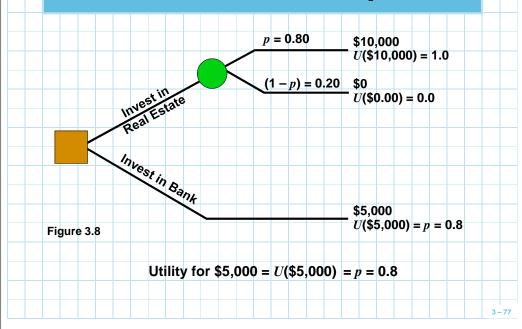
Standard Gamble Example

Standard Gamble Example

- Suppose you are willing to give up the guaranteed payoff of \$15,000 and gamble for the \$50,000, if the probability of winning is 50%.
- You are indifferent between gambling and not gambling when p = 50%

U(\$15,000) = ρ = 0.5

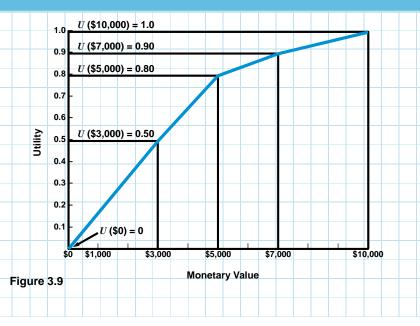
■ *EMV*(gamble) = 0.5×\$50,000 + (1-0.5) × \$0


= \$25,000

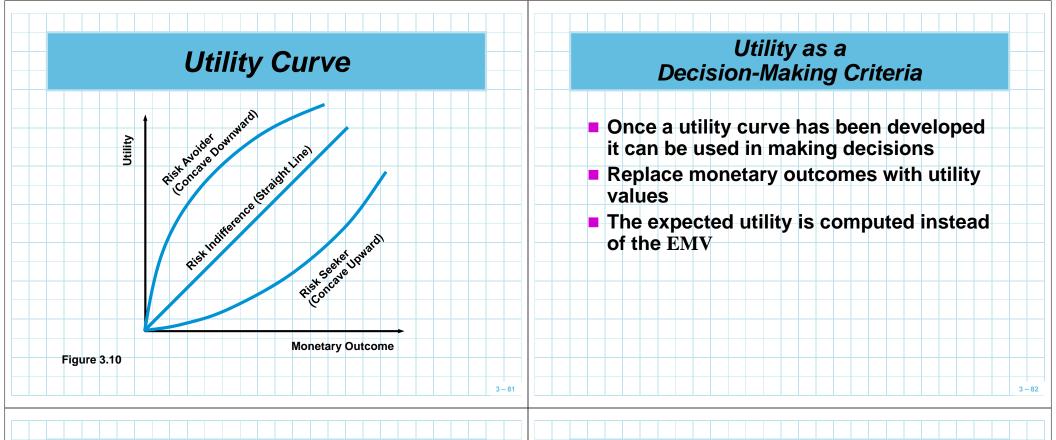
From the utility perspective, the expected value of gambling is only \$15,000

Investment Example

- Jane Dickson is considering a real estate investment. It will pay \$10,000 in a good market or \$0 in a bad market.
- Jane could also leave her money in the bank and earn a \$5,000 return.
- Unless there is an 80% chance of getting \$10,000 from the real estate deal, Jane would prefer to put the money in the bank.
- So if p = 0.80, Jane is indifferent between the bank or the real estate investment
- Thus, Jane's utility for \$5,000 is 80% which is the same as the value of p.

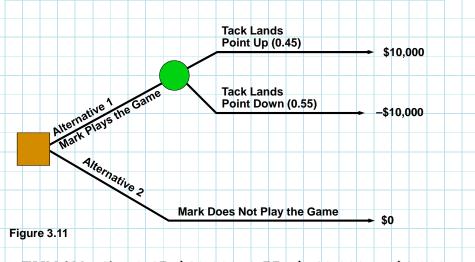

Investment Example

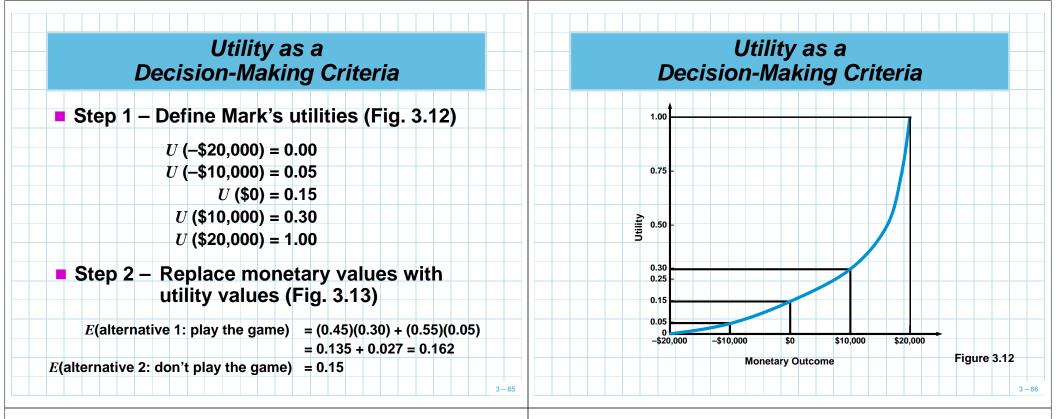
Investment Example


			_										
We	can	ass	ess	s oth	er u	ıtilif	ty va	alues	s in '	the	sam	e way	1
For													
			U	tility	for	\$7,	000	= 0.	90				
			U	tility	for	\$3,	000	= 0.	50				
Jan	e Di	cks	on	wan	ts to	o co	nst	ruct	a ut	ility	cur	ve	
rev	ealir	ng h	er p	orefe	eren	ce f	ior r	none	ey b	etw	een	\$0 an	d
\$10	,000	unc	der	the	risk								
	tility neta				s the	e ut	ility	valı	le v	ersı	us th	e	
Usi	ng t	he tl	hree	e uti								nount: sing	s,
				towa				шту о	urv	'e a	sses	Sing	
													3 - 1

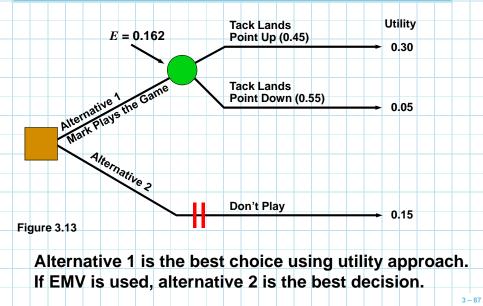
Utility Curve

Utility Curve


- Jane's utility curve is typical of a risk avoider
 A risk avoider gets less utility from greater risk
 Avoids situations where high losses might
 - Avoids situations where high losses mightoccur
 - As monetary value increases, the utility curve increases at a slower rate
 - A risk seeker gets more utility from greater risk
 - As monetary value increases, the utility curve increases at a faster rate
 - Someone who is indifferent will have a linear utility curve – so he/she can use EMV to make decisions


Utility as a Decision-Making Criteria

- Mark Simkin loves to gamble
- He plays a game tossing thumbtacks in the air
- If the thumbtack lands point up, Mark wins \$10,000
- If the thumbtack lands point down, Mark loses \$10,000
- Should Mark play the game (alternative 1) or should he not play the game (alternative 2) ?
- Mark has \$20,000 to gamble


Utility as a Decision-Making Criteria

EMV (Alt. 1) = 0.45×\$10,000+0.55 ×\$-10,000 = -\$1,000

Utility as a Decision-Making Criteria

Homework Assignment

http://www.sci.brooklyn.cuny.edu/~dzhu/busn3430/