
Chapter 3:

Methods of 
InferenceInference

Expert Systems: Principles and 
Programming, Fourth Edition

Objectives

• Learn the definitions of trees, lattices, and 
graphs

• Learn about state and problem spaces
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• Learn about AND-OR trees and goals

• Explore different methods and rules of 
inference

• Learn the characteristics of first-order 
predicate logic and logic systems

Objectives

• Discuss the resolution rule of inference, 
resolution systems, and deduction

• Compare shallow and causal reasoning
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• How to apply resolution to first-order 
predicate logic

• Learn the meaning of forward and 
backward chaining

Objectives

• Explore additional methods of inference

• Learn the meaning of Metaknowledge
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• Learn the meaning of Metaknowledge

• Explore the Markov decision process



Trees

• A tree is a hierarchical data structure consisting 
of:
– Nodes – store information or knowledge

– Branches – connect the nodes
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– Branches – connect the nodes

• The top node is the root, occupying the highest 
hierarchy.

• The leaves are at the bottom, occupying the 
lowest hierarchy.

Trees

• Every node, except the root, has exactly one 
parent. (Otherwise it becomes a graph.)

• Every node may give rise to zero or more child 
nodes.
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nodes.

• A binary tree restricts the number of children per 
node to a maximum of two.

• A degenerate tree is a tree where each parent has 
only one child (behaving like a linked list having 
only a single pathway from root to its one leaf).

Figure 3.1 Binary Tree
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Graphs

• Trees are a special case of a graph.

• Graphs are sometimes called a network or net.

• A graph can have zero or more links between any 
pair of nodes – there is no distinction between 
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pair of nodes – there is no distinction between 
parent and child.

• A map is an example of a graph, where the cities 
are nodes and the roads are links.

• Sometimes links have weights –weighted 
graph; or, arrows –directed graph. 
– E.g.   weight: distance    &    arrow :  direction



Graphs

• Simple graphs are unweighted, undirected 
graphs containing no loops, or links that come 
back onto the node itself.

• A circuit (cycle) is a path through the graph 
beginning and ending with the same node.
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beginning and ending with the same node.

• Acyclic graphshave no cycles.

• Connected graphshave a path from any node to 
any other node in the graph.

• Digraph is a short for directed graph.

• Lattice is a directed acyclic graph.

Figure 3.2 Typical Graphs
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Making Decisions

• Trees / lattices are useful for classifying objects 
in a hierarchical nature.
– E.g.  family trees show the relationships.
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• Trees / lattices are useful for making decisions  
and simple reasoning.

• We refer to trees / lattices as structures.

• Decision trees are structures useful for 
representing and reasoning about knowledge.

Binary Decision Trees

• It is easy to construct and is very efficient.
• Allows binary decisions (two responses).
• A binary decision tree having N nodes:

– All internal nodes are questions. 
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– All internal nodes are questions. 
– The two branches are “yes” or “no” responses. 
– All leaves will be final answers.
– N questions can lead to an answer out of  

maximally 2N possible answers. 
– E.g. ten questions can classify one of 1024 

animals (refer to Fig. 3.3).



Binary Decision Trees

• Decision trees can be self learning.
– If a guess is wrong, the user can be queried to add new 

and correct question and answers.

– New node, branches and leaves can be created and added 
to the tree dynamically.

13

to the tree dynamically.

– E.g.  Add hamster to Fig. 3.3.

• Decision trees can be translated into production 
rules by breadth-first search of the tree and 
generating IF-THEN rule at each node.
– If question=“Is it very big?” and answer=“No” then 

question:=“Does it squeak?”

Decision Tree Example
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Searching the Decision Tree
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State and Problem Spaces

• An application of the graph technique.

• A state space can be used to define the 
behavior of an object (system).
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• Each node corresponds to a state – a 
collection of characteristics that define the 
status of the object.

• The links show the transitions the object 
can make from one state to another.



Figure 3.5 State Diagram for a Soft Drink Vending 
Machine Accepting Quarters (Q) and Nickels (N)

Note: The price for the drink is 55 cents.
For simplicity other coins are not included.
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Finite State Machine

• A FSM is a kind of state space describing the 
finite number of states of a machine (system).

• At any one time, the machine is in one particular 
state.
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state.

• The machine accepts input and progresses to the 
next state. A good design should consider invalid 
inputs and provide for transition to error states.

• FSMs are often used in compilers and validity 
checking programs.

Fig. 3.6 Part of a Finite State Machine for 
Determining Valid Strings WHILE, WRITE and 

BEIGIN
Note: Only some of the error links are shown

19

Using FSM to Solve Problems

• A state diagram (FSM) showing how to 
solve a problem is also called a problem 
space.
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– Nodes: intermediate stages in problem solving

– Links:  intermediate steps in the solution

– Valid path(s) from the start state to the success 
state(s) is (are) the solution(s). 



Problem Space Example

• A car must traverse a town while obeying 
all traffic laws, and making no U-turns. 
Initially, the car is at position 4, travelling 
east, and has a choice of moving to 
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east, and has a choice of moving to 
position 1, travelling east, or position 5, 
travelling east. The state diagram 
corresponding to the maze is illustrated in 
the right figure (See next page). 

Problem Space Example
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AND-OR Trees and Goals

• Many expert systems use backward chaining to find 
solutions to problems, e.g. PROLOG.

• PROLOG uses backward chaining to divide a 
problem into smaller problems and then solves them.
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problem into smaller problems and then solves them.

• AND-OR trees / lattices are useful for solving 
backward chaining problems (Fig. 3.9).

• AND-OR trees / lattices can use logic gates to 
describe problems making hardware implementation 
for fast processing speed possible (Figs. 12 & 13)
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Types of Inference

Logic can be used to represent knowledge as well 
as making references about the it.

• Deduction– reasoning where conclusions must 
follow from premises

• Induction– inference is from the specific case to 
the general
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the general
• Intuition – no proven theory and unconscious 

(expert system does not implement this)
• Heuristics– rules of thumb based on experience
• Generate and test– trial and error

• Default– assume common knowledge in absence 
of specific one

Types of Inference

• Abduction– reasoning back from a true 
condition to the premises that may have caused 
the condition (making a best guess)

• Autoepistemic– rely on self-knowledge and any 
unknown fact is assumed to be false
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unknown fact is assumed to be false

• Nonmonotonic– allowing new knowledge that 
contradicts the previous ones to be added

• Analogy– inferring conclusions based on 
similarities with other situations (heuristic)  

• Commonsense –reasoning that people use in 
everyday life; a combination of all above (very 
difficult for computers)

Figure 3.14 Types of Inference
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Deductive Logic

• Most often used method of reasoning
• Based on a chain of reasoning in some form

– Conclusions reached by following true premises 
and the forms must themselves be true
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and the forms must themselves be true

• Argument – logical  reasoning with group of 
statements where the last is justified on the 
basis of the previous ones

• Syllogism – one type of deductive argument 
which has two premises and one conclusion

Syllogisms vs. Rules

• Syllogism:
– All basketball players are tall.

– Jason is a basketball player.

– ∴ Jason is tall.
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– ∴ Jason is tall.

• Syllogism can be expressed as IF-THEN rule:
IF All basketball players are tall and

Jason is a basketball player

THEN Jason is tall.

Categorical Syllogism

In classic syllogism, premises and 
conclusions are defined using categorical 
statements of the following four forms:
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Categorical Syllogisms

Some terms in the syllogism: 
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Categorical Syllogisms
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The validity of syllogistic arguments
can be proved by Venn diagram.

Proving the Validity of Syllogistic 
Arguments Using Venn Diagrams

All M is P

No S is M

∴ No S is P
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(False)

Proving the Validity of Syllogistic 
Arguments Using Venn Diagrams

No M is P

All S is M

∴ No S is P
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(True)

General Rules for Drawing Venn 
Diagrams

Rules to follow when “some” quantifiers are used:  

1. If a class is empty, it is shaded.

2. Universal statements, A and E are always drawn 
before particular ones.
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before particular ones.

3. If a class has at least one member, mark it with 
an *.

4. If a statement does not specify in which of two 
adjacent classes an object exists, place an * on 
the line between the classes.

5. If an area has been shaded, no * can be put in it.



Proving the Validity of Syllogistic 
Arguments Using Venn Diagrams

Some P are M

All M are S

∴ Some S are P

37
(True)

Rules of Inference –
Propositional Logic

• Venn diagrams are inconvenient for 
validity check for complex arguments.

• Syllogisms address only a small portion of 
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• Syllogisms address only a small portion of 
the possible logical statements – only four 
possible forms (A, E, I , O).

• Propositional logic offers a more powerful 
way of describing arguments by allowing 
more complex types of statements.

Direct Reasoning 
Modus Ponens
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Truth Table Modus Ponens

The validity of propositional logic can be 
proved by constructing a truth table and 
examine it for the tautology.

p → q
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p → q
p        .
q



Truth Table Modus Ponens

A shorter method for determining the validity 
of the argument is to consider only rows in
which the premises are all true. If the 
conclusions are also true, the argument is valid.
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conclusions are also true, the argument is valid.

Truth Table Fallacy of Converse

If there are no bugs, then the program compiles
The program compiles
∴There are no bugs

p → q p: there are no bugs
q       . q: the program compiles
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q       . q: the program compiles
∴ p

Truth Table Fallacy of Converse

Short-form Truth Table for:

p → q p: there are no bugs
q       . q: the program compiles
∴ p
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Some Rules of Inference
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Some Rules of Inference
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Using Rules of Inference

Chip prices rise only if the yen rises.

The yen rises only if the dollars falls and 

if the dollar falls then the yen rises.

Since chip prices have risen, then dollar must

46

have fallen.

( Note:  X only if Y   ≡≡≡≡ if X then Y )
Let: 

C = chip prices rise

Y = yen rises

D = dollar falls

Using Rules of Inference

Then:
1) C → Y

2) (Y → D) ∧ (D → Y)

3) C                              .

∴ D
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∴ D

Note: (p → q) ∧ (q → p) means p ↔ q.   If p ↔ q, then p ≡ q, 
which means p and q take the same truth value in all cases.

Proof:
4) Y ≡ D (2: equivalence)

5) C → D (1: substitution)

6) D (5, 3: Modus Ponens) 

Using Rules of Inference

1) A ∨ B

2) C ∧ D

3) A → ~D

4) B → X                       .

∴ X
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∴ X

Proof:
5) D (2: simplification)

6) ~A (3, 5: modus tollens)

7) B (1, 6: law of disjunctive inf.) 

8) X (4, 7: modus ponens)



Limitations of Propositional 
Logic

• Propositional logic can not prove the validity of 
syllogistic arguments containing quantifiers (all, 
none, some, etc.), because it does not examine 
the internal structure of propositions.
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the internal structure of propositions.

• For example:
All men are mortal p

Socrates is a man q      .

Therefore, Socrates is mortal ∴ r

Limitations of Propositional 
Logic

• A simple way to make propositional logic work 
is to remove all quantifiers:

• For example:
All men are mortal
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All men are mortal
Socrates is a man
Therefore, Socrates is mortal

• ⇓

If Socrates is a man, then Socrates is mortal
Socrates is a man
Therefore, Socrates is mortal

Limitations of Propositional 
Logic

• In some cases, we may be lucky to prove the 
validity of the argument. 

If all the committee members vote for the bill, 
then the bill will pass.
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then the bill will pass.
It is not the case that some members will not
vote for the bill.                                               
So, the bill will pass.

A → P
~ ( ~A )     
P

First-Order Predicate Logic

• The limitation of propositional logic can be 
overcome by using predicate logic, which 
is a superset of propositional logic.
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• Syllogistic logic can be completely 
described by predicate logic.

• The Rule of Universal Instantiation states 
that an individual may be substituted for a 
universe.



First-Order Predicate Logic
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First-Order Predicate Logic

All men are mortal

Socrates is a man

Therefore, Socrates is mortal
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Let H(x) ≡ x is a man, M(x) ≡ x is mortal, and s ≡ Socrates

1. (∀ x) ( H(x) → M(x) )

2. H(s) 

3. H(s) → M(s) (1: Universal Instantiation)

4. M(s) (2, 3: Modus, Ponens)

Logic Systems

• A logic system (e.g. expert system) is a 
collection of objects such as rules, axioms, 
statements, and so forth in a consistent 
manner.

• Each logic system relies on formal 
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• Each logic system relies on formal 
definitions of its axioms (postulates) which 
are fundamental definitions of the system.

• An axiom is simply a fact or assertion that 
cannot be proven from within the system.

• From axioms, it can be determined what 
can be proven.

Goals of a Logic System

• Be able to specify the forms of statements – well 
formulated formulas (wffs).
– E.g.    All S is P p → q

• Indicate the rules of inference that are valid.
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• Indicate the rules of inference that are valid.
– E.g.    p → q

p         .
q

• Extend itself by discovering new wffs (theorems) 
and new rules of inference that are valid and 
thereby extend the range of arguments that can be 
proven.  



Requirements of a Formal System

1. An alphabet of symbols (e.g. propositions).

2. A set of finite strings of these symbols, the wffs 
(e.g. a statement: if P1 then P2).

3. Axioms, the definitions of the system (e.g. 
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3. Axioms, the definitions of the system (e.g. 
propositions that are known facts).

4. Rules of inference, which enable a wff to be 
deduced as the conclusion of a finite set of 
other wffs – axioms or other theorems of the 
logic system.

Requirements of a Formal System

5. Completeness – every wff can either be proved or 
refuted.

6. The system must be sound – every theorem is a 
logically valid wff.
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logically valid wff.

Simple example (a unary system of odd numbers):

Alphabet: “1” (only one symbol)

Axiom: “1” (happen to be the same as the symbol 1)

Rule of Inference: If string $ is a theorem, then so is the 
string $11, or  $ → $11

wffs = {1, 111, 11111, 1111111, …}

Resolution

• Commonly used in theorem-proving (not 
deriving a new theorem)
– Production rules and resolution systems are two 

popular paradigms for proving theorems
– Using rules of inference (modus ponens, modus 
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– Using rules of inference (modus ponens, modus 
tollens, chaining, etc.) may take a lot of trial-and-
errors

• A simple, practical, yet powerful technique
– Making it easier to build a mechanical system such as 

PROLOG which uses one general-purpose inference 
rule of resolution rather than systems that attempt to 
implement many different rules of inference

Resolution

• Resolution is based on representing rules in 
normal forms (consisting of ∨, ∧ and ~ only).

• Full clausal form → normal form:
– Because :   p → q ≡ ~p ∨ q ~( p ∧ q ) ≡ ~p ∨ ~q
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– ∴ A1 ∧ A2 ∧ … An → B1 ∨ B2 ∨ … Bm

≡ ~(A1 ∧ A2 ∧ … An ) ∨ (B1 ∨ B2 ∨ … Bm )

≡ ~A1 ∨ ~A2 ∨ … ~An ∨ B1 ∨ B2 ∨ … Bm

• PROLOG uses Horn clause, a restricted type of 
clausal form:
– A1 ∧ A2 ∧ … An → B

– B :- A1, A2, … An



Resolution
• The resolution method is applied to the normal 

forms, which operates on pairs of disjuncts to 
produce a new disjuncts and  simplifies the 
normal forms. 
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Resolution

• Proof by resolution:
A → B ~A ∨ B

B → C ≡ ~B ∨ C

A        . A         .

62

C C

Finding the resolvent: 

(~A ∨ B) ∧ (~B ∨ C) ∧ A ≡ (~A ∨ C) ∧ A ≡ C

• In practice – proof by resolution contradiction:
If (~A ∨ B) ∧ (~B ∨ C) ∧ A ≡ C

then (~A ∨ B) ∧ (~B ∨ C) ∧ A ∧ ~C ≡ C ∧ ~C ≡ nil

Resolution

• Proof by resolution:
A → B ~A ∨ B

B → C ≡ ~B ∨ C

C → D ~C ∨ D

A → D ~A ∨ D
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A → D ~A ∨ D

Finding the resolvent: 

(~A ∨ B) ∧ (~B ∨ C) ∧ (~C ∨ D) ∧ ~ (~A ∨ D) ≡
(~A ∨ B) ∧ (~B ∨ C) ∧ (~C ∨ D) ∧ A ∧ ~D ≡
(~A ∨ C) ∧ (~C ∨ D) ∧ A ∧ ~D ≡
(~A ∨ D) ∧ A ∧ ~D ≡ D ∧ ~D ≡ nil  

∴ A → D is valid

Shallow and Causal Reasoning

• In shallow reasoning, there is little/no causal chain 
of cause and effect from one rule to another
– longer chain represents more causal or deep knowledge.

– E.g.   A → B, B → C, C → D   ∴ A → D
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– E.g.   A → B, B → C, C → D   ∴ A → D

• Another major factor for shallow reasoning is due 
to the quality of knowledge

• Experiential knowledge is another term for 
shallow knowledge which is based on experience

• Advantage of shallow reasoning is ease of 
programming (smaller, faster, cheaper programs)



Shallow and Causal Reasoning

• Causal reasoning can be used to construct a model 
that behaves like the real system – can be used to 
answer “what if questions”
– E.g. an expert system in medicine
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– E.g. an expert system in medicine

• Causal models are not always necessary or 
desirable due to practical situation
– E.g. MUD expert system serving as a consultant to 

drilling fluid or mud engineers

• Frames are used for causal / deep reasoning.

Shallow and Causal Reasoning

• Shallow reasoning example:

IF a car has 

a good battery,
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a good battery,

good sparkplugs, 

gas, 

good tires

THEN the car can move

Shallow and Causal Reasoning

• Deep reasoning example:
IF the battery is good
THEN there is electricity
IF there is electricity and sparkplugs are good
THEN the sparkplugs will fire
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THEN the sparkplugs will fire
IF the sparkplugs fire and there is gas
THEN the engine will run
IF the engine runs and there are good tires
THEN the car will move

• Causal reasoning implies deep understanding of 
the subject – easier to determine what effect a 
bad component will have.

Resolution and First-Order 
Predicate Logic

Some programmers hate failures
No programmer hates any success
∴ No failure is a success

Let:
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P(x) = x is a programmer    S(x) = x is a success
F(x) = x is a failure H(x, y) = x hates y 

Then premises and negated conclusion are:

1) (∃x) [P(x) ∧ (∀y) (F(y) → H(x, y))]

2) (∀x) [P(x) → (∀y) (S(y) → ~H(x, y))]

3) ~ (∀y) (F(y) → ~S(y))



Conversion to the Normal Form

Nine steps for the conversion:

1. Eliminate conditionals.
1)  ⇒ (∃x) [P(x) ∧ (∀y) (~F(y) ∨ H(x, y))]

2)  ⇒ (∀x) [~P(x) ∨ (∀y) (~S(y) ∨ ~H(x, y))]

⇒ ∀ ∨
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3)  ⇒ ~ (∀y) (~F(y) ∨ ~S(y))

2. When possible, eliminate negations or reduce 
their scope.
3)  ⇒ (∃y) (F(y) ∧ S(y))

3. Standardize variables (each quantifier has 
unique variable name).
e.g.  (∃x) ~P(x) ∨ (∀x) P(x) ⇒ (∃x) ~P(x) ∨ (∀y) P(y) 

Conversion to the Normal Form

4. Eliminate existential quantifiers using 
Skolem functions.
1)  ⇒ P(a) ∧ (∀y) (~F(y) ∨ H(a, y))

2)  (∀x) [~P(x) ∨ (∀y) (~S(y) ∨ ~H(x, y))]
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2)  (∀x) [~P(x) ∨ (∀y) (~S(y) ∨ ~H(x, y))]

3)  ⇒ F(b) ∧ S(b)

5. Convert wff to prenex form (move ∀ to 
front).
1)  ⇒ (∀y) [P(a) ∧ (~F(y) ∨ H(a, y))]

2)  ⇒ (∀x) (∀y) [~P(x) ∨ ~S(y) ∨ ~H(x, y)]

Conversion to the Normal Form

6. Convert the matrix to conjunctive normal 
form using: p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) 
� Our example is already in conjunctive 

normal form.
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normal form.

7. Drop the universal quantifiers as 
unnecessary.
1)  ⇒ P(a) ∧ (~F(y) ∨ H(a, y))
2)  ⇒ ~P(x) ∨ ~S(y) ∨ ~H(x, y)

3)   F(b) ∧ S(b)

Conversion to the Normal Form

8. Eliminate ∧ signs by writing the wff as a set of 
clauses.

1) ⇒ { P(a), ~F(y) ∨ H(a, y) }

2) ⇒ { ~P(x) ∨ ~S(y) ∨ ~H(x, y) }
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2) ⇒ { ~P(x) ∨ ~S(y) ∨ ~H(x, y) }
3) ⇒ { F(b), S(b) }

Or: 1a) P(a)

1b) ~F(y) ∨ H(a, y)

2a) ~P(x) ∨ ~S(y) ∨ ~H(x, y)

3a) F(b)

3b) S(b)



Conversion to the Normal Form

9. Rename variables in clauses so that each 
clause has unique variable name.

1a) P(a)
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1a) P(a)

1b) ~F(y) ∨ H(a, y)

2a) ~P(x) ∨ ~S(z) ∨ ~H(x, z)

3a) F(b)

3b) S(b)

Unification

• The process of finding substitutions for 
variables to make arguments match is 
called unification.
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• Without unification it is impossible to 
resolve clauses such as:

~F(y) ∨ H(a, y) 

F(b)

• For (1a) – (3b):  {x/a, y/b, z/b}

Proof by Resolution Refutation
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∴ P(a) ∧ ( ~F(b) ∨ H(a, b) ) ∧
( ~P(a) ∨ ~S(b) ∨ ~H(a, b) ) ∧ F(b) ∧ S(b) = nil

• Since the root is nil, the conclusion is valid.

Chaining

• Chain – a group of multiple inferences that 
connect a problem with its solution

• A chain that is searched / traversed from a 
problem to its solution is called a forward chain.
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problem to its solution is called a forward chain.

• A chain traversed from a hypothesis back to the 
facts that support the hypothesis is a backward 
chain.

• Problem with backward chaining is to find a 
chain linking the evidence to the hypothesis.



Figure 3.21 Causal Forward Chaining
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Table 3.14 Some Characteristics of 
Forward and Backward Chaining
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Fig. 3.25: Forward and Backward Chaining
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Other Inference Methods

• Analogy – relating old situations (as a guide) to 
new ones.
– Not a formal proof but a heuristic reasoning
– May or may not work
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– May or may not work
– Primary used in medical diagnosis and legal arguments 

• Generate-and-Test – generation of a likely 
solution then test to see if proposed meets all 
requirements.

• Abduction – Fallacy of the Converse
– Used by some diagnostic systems to guess the disorder 

from the symptoms and then test it (generate-and-test) 

Other Inference Methods

• Deductive logic is monotonic system
– Addition of new axioms may increase new theorems.

– New axioms can not contradict the old ones.

• Nonmonotonic Reasoning – theorems may not 
increase as the number of axioms increase.
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increase as the number of axioms increase.
– New axioms can contradict the old ones.

– If new axioms contradict old ones, the theorems proved 
from the old ones will be removed. 

• In practice truth maintenance of the rules is 
difficult and the nonmonotonicity is accomplished 
by adding special operators to avoid contradiction. 

Other Inference Methods
• The following example prevents the incorrect rule 

from firing, instead of retracting the invalid 
conclusion:
IF X is a bird THEN X can fly.

Tweety is a bird.
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∴ Tweety can fly.   (What if Tweety is a penguin ?)

⇓⇓⇓⇓

IF x is a bird AND x is typical THEN x can fly.

IF x is a bird AND x is not typical THEN x cannot fly.

Tweety is a bird. ⇒ If Tweety is a penguin, just add:

Tweety is nontypical.

∴ Tweety cannot fly.

Metaknowledge

• Knowledge about a pre-selected knowledge.
– E.g. Path planning for robot 

• The Markov decision process (MDP) is a good 
application to path planning for a robot.
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application to path planning for a robot.

• In the real world, there is always uncertainty, and 
pure logic is not a good guide when there is 
uncertainty.

• A MDP is more realistic in the cases where there 
is partial or hidden information about the state 
and parameters, and the need for planning.



Metaknowledge

• MDF can be defined as a tuple:
– MDF ≡ {states, actions, transitions, rewards}

• State: a set of states of the environment
• Action: valid operations
• Transition: determines what the next state will be for a 
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• Transition: determines what the next state will be for a 
particular action 

• The goal is to maximize the sum of rewards in 
the search for the optimum path to the goal.

• Can determine the hidden parameters from the 
observable parameters.
– Robot is not sure of its location – an unknown state, or 

which path to take – an unknown action

Summary

• We have discussed the commonly used methods for 
inference for expert systems.

• Expert systems use inference to solve problems.

• We discussed applications of trees, graphs, and 
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• We discussed applications of trees, graphs, and 
lattices for representing knowledge.

• Deductive logic including syllogistic, propositional, 
and first-order predicate logic were discussed.

• Venn diagrams and truth tables were discussed as  
means of proving theorems and statements.

Summary

• Characteristics of logic systems were discussed.

• Resolution as a means of proving theorems in 
propositional and first-order predicate logic.

• The nine steps to convert a wff to clausal form 
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• The nine steps to convert a wff to clausal form 
were covered.


