
Chapter 3:

Methods of
InferenceInference

Expert Systems: Principles and
Programming, Fourth Edition

Objectives

• Learn the definitions of trees, lattices, and
graphs

• Learn about state and problem spaces

2

• Learn about AND-OR trees and goals

• Explore different methods and rules of
inference

• Learn the characteristics of first-order
predicate logic and logic systems

Objectives

• Discuss the resolution rule of inference,
resolution systems, and deduction

• Compare shallow and causal reasoning

3

• How to apply resolution to first-order
predicate logic

• Learn the meaning of forward and
backward chaining

Objectives

• Explore additional methods of inference

• Learn the meaning of Metaknowledge

4

• Learn the meaning of Metaknowledge

• Explore the Markov decision process

Trees

• A tree is a hierarchical data structure consisting
of:
– Nodes – store information or knowledge

– Branches – connect the nodes

5

– Branches – connect the nodes

• The top node is the root, occupying the highest
hierarchy.

• The leaves are at the bottom, occupying the
lowest hierarchy.

Trees

• Every node, except the root, has exactly one
parent. (Otherwise it becomes a graph.)

• Every node may give rise to zero or more child
nodes.

6

nodes.

• A binary tree restricts the number of children per
node to a maximum of two.

• A degenerate tree is a tree where each parent has
only one child (behaving like a linked list having
only a single pathway from root to its one leaf).

Figure 3.1 Binary Tree

7

Graphs

• Trees are a special case of a graph.

• Graphs are sometimes called a network or net.

• A graph can have zero or more links between any
pair of nodes – there is no distinction between

8

pair of nodes – there is no distinction between
parent and child.

• A map is an example of a graph, where the cities
are nodes and the roads are links.

• Sometimes links have weights –weighted
graph; or, arrows –directed graph.
– E.g. weight: distance & arrow : direction

Graphs

• Simple graphs are unweighted, undirected
graphs containing no loops, or links that come
back onto the node itself.

• A circuit (cycle) is a path through the graph
beginning and ending with the same node.

9

beginning and ending with the same node.

• Acyclic graphshave no cycles.

• Connected graphshave a path from any node to
any other node in the graph.

• Digraph is a short for directed graph.

• Lattice is a directed acyclic graph.

Figure 3.2 Typical Graphs

10

Making Decisions

• Trees / lattices are useful for classifying objects
in a hierarchical nature.
– E.g. family trees show the relationships.

11

• Trees / lattices are useful for making decisions
and simple reasoning.

• We refer to trees / lattices as structures.

• Decision trees are structures useful for
representing and reasoning about knowledge.

Binary Decision Trees

• It is easy to construct and is very efficient.
• Allows binary decisions (two responses).
• A binary decision tree having N nodes:

– All internal nodes are questions.

12

– All internal nodes are questions.
– The two branches are “yes” or “no” responses.
– All leaves will be final answers.
– N questions can lead to an answer out of

maximally 2N possible answers.
– E.g. ten questions can classify one of 1024

animals (refer to Fig. 3.3).

Binary Decision Trees

• Decision trees can be self learning.
– If a guess is wrong, the user can be queried to add new

and correct question and answers.

– New node, branches and leaves can be created and added
to the tree dynamically.

13

to the tree dynamically.

– E.g. Add hamster to Fig. 3.3.

• Decision trees can be translated into production
rules by breadth-first search of the tree and
generating IF-THEN rule at each node.
– If question=“Is it very big?” and answer=“No” then

question:=“Does it squeak?”

Decision Tree Example

14

Searching the Decision Tree

15

State and Problem Spaces

• An application of the graph technique.

• A state space can be used to define the
behavior of an object (system).

16

• Each node corresponds to a state – a
collection of characteristics that define the
status of the object.

• The links show the transitions the object
can make from one state to another.

Figure 3.5 State Diagram for a Soft Drink Vending
Machine Accepting Quarters (Q) and Nickels (N)

Note: The price for the drink is 55 cents.
For simplicity other coins are not included.

17

Finite State Machine

• A FSM is a kind of state space describing the
finite number of states of a machine (system).

• At any one time, the machine is in one particular
state.

18

state.

• The machine accepts input and progresses to the
next state. A good design should consider invalid
inputs and provide for transition to error states.

• FSMs are often used in compilers and validity
checking programs.

Fig. 3.6 Part of a Finite State Machine for
Determining Valid Strings WHILE, WRITE and

BEIGIN
Note: Only some of the error links are shown

19

Using FSM to Solve Problems

• A state diagram (FSM) showing how to
solve a problem is also called a problem
space.

20

– Nodes: intermediate stages in problem solving

– Links: intermediate steps in the solution

– Valid path(s) from the start state to the success
state(s) is (are) the solution(s).

Problem Space Example

• A car must traverse a town while obeying
all traffic laws, and making no U-turns.
Initially, the car is at position 4, travelling
east, and has a choice of moving to

21

east, and has a choice of moving to
position 1, travelling east, or position 5,
travelling east. The state diagram
corresponding to the maze is illustrated in
the right figure (See next page).

Problem Space Example

22

AND-OR Trees and Goals

• Many expert systems use backward chaining to find
solutions to problems, e.g. PROLOG.

• PROLOG uses backward chaining to divide a
problem into smaller problems and then solves them.

23

problem into smaller problems and then solves them.

• AND-OR trees / lattices are useful for solving
backward chaining problems (Fig. 3.9).

• AND-OR trees / lattices can use logic gates to
describe problems making hardware implementation
for fast processing speed possible (Figs. 12 & 13)

24

25

Types of Inference

Logic can be used to represent knowledge as well
as making references about the it.

• Deduction– reasoning where conclusions must
follow from premises

• Induction– inference is from the specific case to
the general

26

the general
• Intuition – no proven theory and unconscious

(expert system does not implement this)
• Heuristics– rules of thumb based on experience
• Generate and test– trial and error

• Default– assume common knowledge in absence
of specific one

Types of Inference

• Abduction– reasoning back from a true
condition to the premises that may have caused
the condition (making a best guess)

• Autoepistemic– rely on self-knowledge and any
unknown fact is assumed to be false

27

unknown fact is assumed to be false

• Nonmonotonic– allowing new knowledge that
contradicts the previous ones to be added

• Analogy– inferring conclusions based on
similarities with other situations (heuristic)

• Commonsense –reasoning that people use in
everyday life; a combination of all above (very
difficult for computers)

Figure 3.14 Types of Inference

28

Deductive Logic

• Most often used method of reasoning
• Based on a chain of reasoning in some form

– Conclusions reached by following true premises
and the forms must themselves be true

29

and the forms must themselves be true

• Argument – logical reasoning with group of
statements where the last is justified on the
basis of the previous ones

• Syllogism – one type of deductive argument
which has two premises and one conclusion

Syllogisms vs. Rules

• Syllogism:
– All basketball players are tall.

– Jason is a basketball player.

– ∴ Jason is tall.

30

– ∴ Jason is tall.

• Syllogism can be expressed as IF-THEN rule:
IF All basketball players are tall and

Jason is a basketball player

THEN Jason is tall.

Categorical Syllogism

In classic syllogism, premises and
conclusions are defined using categorical
statements of the following four forms:

31

Categorical Syllogisms

Some terms in the syllogism:

32

Categorical Syllogisms

33

The validity of syllogistic arguments
can be proved by Venn diagram.

Proving the Validity of Syllogistic
Arguments Using Venn Diagrams

All M is P

No S is M

∴ No S is P

34
(False)

Proving the Validity of Syllogistic
Arguments Using Venn Diagrams

No M is P

All S is M

∴ No S is P

35
(True)

General Rules for Drawing Venn
Diagrams

Rules to follow when “some” quantifiers are used:

1. If a class is empty, it is shaded.

2. Universal statements, A and E are always drawn
before particular ones.

36

before particular ones.

3. If a class has at least one member, mark it with
an *.

4. If a statement does not specify in which of two
adjacent classes an object exists, place an * on
the line between the classes.

5. If an area has been shaded, no * can be put in it.

Proving the Validity of Syllogistic
Arguments Using Venn Diagrams

Some P are M

All M are S

∴ Some S are P

37
(True)

Rules of Inference –
Propositional Logic

• Venn diagrams are inconvenient for
validity check for complex arguments.

• Syllogisms address only a small portion of

38

• Syllogisms address only a small portion of
the possible logical statements – only four
possible forms (A, E, I , O).

• Propositional logic offers a more powerful
way of describing arguments by allowing
more complex types of statements.

Direct Reasoning
Modus Ponens

39

Truth Table Modus Ponens

The validity of propositional logic can be
proved by constructing a truth table and
examine it for the tautology.

p → q

40

p → q
p .
q

Truth Table Modus Ponens

A shorter method for determining the validity
of the argument is to consider only rows in
which the premises are all true. If the
conclusions are also true, the argument is valid.

41

conclusions are also true, the argument is valid.

Truth Table Fallacy of Converse

If there are no bugs, then the program compiles
The program compiles
∴There are no bugs

p → q p: there are no bugs
q . q: the program compiles

42

q . q: the program compiles
∴ p

Truth Table Fallacy of Converse

Short-form Truth Table for:

p → q p: there are no bugs
q . q: the program compiles
∴ p

43

Some Rules of Inference

44

Some Rules of Inference

45

Using Rules of Inference

Chip prices rise only if the yen rises.

The yen rises only if the dollars falls and

if the dollar falls then the yen rises.

Since chip prices have risen, then dollar must

46

have fallen.

(Note: X only if Y ≡≡≡≡ if X then Y)
Let:

C = chip prices rise

Y = yen rises

D = dollar falls

Using Rules of Inference

Then:
1) C → Y

2) (Y → D) ∧ (D → Y)

3) C .

∴ D

47

∴ D

Note: (p → q) ∧ (q → p) means p ↔ q. If p ↔ q, then p ≡ q,
which means p and q take the same truth value in all cases.

Proof:
4) Y ≡ D (2: equivalence)

5) C → D (1: substitution)

6) D (5, 3: Modus Ponens)

Using Rules of Inference

1) A ∨ B

2) C ∧ D

3) A → ~D

4) B → X .

∴ X

48

∴ X

Proof:
5) D (2: simplification)

6) ~A (3, 5: modus tollens)

7) B (1, 6: law of disjunctive inf.)

8) X (4, 7: modus ponens)

Limitations of Propositional
Logic

• Propositional logic can not prove the validity of
syllogistic arguments containing quantifiers (all,
none, some, etc.), because it does not examine
the internal structure of propositions.

49

the internal structure of propositions.

• For example:
All men are mortal p

Socrates is a man q .

Therefore, Socrates is mortal ∴ r

Limitations of Propositional
Logic

• A simple way to make propositional logic work
is to remove all quantifiers:

• For example:
All men are mortal

50

All men are mortal
Socrates is a man
Therefore, Socrates is mortal

• ⇓

If Socrates is a man, then Socrates is mortal
Socrates is a man
Therefore, Socrates is mortal

Limitations of Propositional
Logic

• In some cases, we may be lucky to prove the
validity of the argument.

If all the committee members vote for the bill,
then the bill will pass.

51

then the bill will pass.
It is not the case that some members will not
vote for the bill.
So, the bill will pass.

A → P
~ (~A)
P

First-Order Predicate Logic

• The limitation of propositional logic can be
overcome by using predicate logic, which
is a superset of propositional logic.

52

• Syllogistic logic can be completely
described by predicate logic.

• The Rule of Universal Instantiation states
that an individual may be substituted for a
universe.

First-Order Predicate Logic

53

First-Order Predicate Logic

All men are mortal

Socrates is a man

Therefore, Socrates is mortal

54

Let H(x) ≡ x is a man, M(x) ≡ x is mortal, and s ≡ Socrates

1. (∀ x) (H(x) → M(x))

2. H(s)

3. H(s) → M(s) (1: Universal Instantiation)

4. M(s) (2, 3: Modus, Ponens)

Logic Systems

• A logic system (e.g. expert system) is a
collection of objects such as rules, axioms,
statements, and so forth in a consistent
manner.

• Each logic system relies on formal

55

• Each logic system relies on formal
definitions of its axioms (postulates) which
are fundamental definitions of the system.

• An axiom is simply a fact or assertion that
cannot be proven from within the system.

• From axioms, it can be determined what
can be proven.

Goals of a Logic System

• Be able to specify the forms of statements – well
formulated formulas (wffs).
– E.g. All S is P p → q

• Indicate the rules of inference that are valid.

56

• Indicate the rules of inference that are valid.
– E.g. p → q

p .
q

• Extend itself by discovering new wffs (theorems)
and new rules of inference that are valid and
thereby extend the range of arguments that can be
proven.

Requirements of a Formal System

1. An alphabet of symbols (e.g. propositions).

2. A set of finite strings of these symbols, the wffs
(e.g. a statement: if P1 then P2).

3. Axioms, the definitions of the system (e.g.

57

3. Axioms, the definitions of the system (e.g.
propositions that are known facts).

4. Rules of inference, which enable a wff to be
deduced as the conclusion of a finite set of
other wffs – axioms or other theorems of the
logic system.

Requirements of a Formal System

5. Completeness – every wff can either be proved or
refuted.

6. The system must be sound – every theorem is a
logically valid wff.

58

logically valid wff.

Simple example (a unary system of odd numbers):

Alphabet: “1” (only one symbol)

Axiom: “1” (happen to be the same as the symbol 1)

Rule of Inference: If string $ is a theorem, then so is the
string $11, or $ → $11

wffs = {1, 111, 11111, 1111111, …}

Resolution

• Commonly used in theorem-proving (not
deriving a new theorem)
– Production rules and resolution systems are two

popular paradigms for proving theorems
– Using rules of inference (modus ponens, modus

59

– Using rules of inference (modus ponens, modus
tollens, chaining, etc.) may take a lot of trial-and-
errors

• A simple, practical, yet powerful technique
– Making it easier to build a mechanical system such as

PROLOG which uses one general-purpose inference
rule of resolution rather than systems that attempt to
implement many different rules of inference

Resolution

• Resolution is based on representing rules in
normal forms (consisting of ∨, ∧ and ~ only).

• Full clausal form → normal form:
– Because : p → q ≡ ~p ∨ q ~(p ∧ q) ≡ ~p ∨ ~q

60

– ∴ A1 ∧ A2 ∧ … An → B1 ∨ B2 ∨ … Bm

≡ ~(A1 ∧ A2 ∧ … An) ∨ (B1 ∨ B2 ∨ … Bm)

≡ ~A1 ∨ ~A2 ∨ … ~An ∨ B1 ∨ B2 ∨ … Bm

• PROLOG uses Horn clause, a restricted type of
clausal form:
– A1 ∧ A2 ∧ … An → B

– B :- A1, A2, … An

Resolution
• The resolution method is applied to the normal

forms, which operates on pairs of disjuncts to
produce a new disjuncts and simplifies the
normal forms.

61

Resolution

• Proof by resolution:
A → B ~A ∨ B

B → C ≡ ~B ∨ C

A . A .

62

C C

Finding the resolvent:

(~A ∨ B) ∧ (~B ∨ C) ∧ A ≡ (~A ∨ C) ∧ A ≡ C

• In practice – proof by resolution contradiction:
If (~A ∨ B) ∧ (~B ∨ C) ∧ A ≡ C

then (~A ∨ B) ∧ (~B ∨ C) ∧ A ∧ ~C ≡ C ∧ ~C ≡ nil

Resolution

• Proof by resolution:
A → B ~A ∨ B

B → C ≡ ~B ∨ C

C → D ~C ∨ D

A → D ~A ∨ D

63

A → D ~A ∨ D

Finding the resolvent:

(~A ∨ B) ∧ (~B ∨ C) ∧ (~C ∨ D) ∧ ~ (~A ∨ D) ≡
(~A ∨ B) ∧ (~B ∨ C) ∧ (~C ∨ D) ∧ A ∧ ~D ≡
(~A ∨ C) ∧ (~C ∨ D) ∧ A ∧ ~D ≡
(~A ∨ D) ∧ A ∧ ~D ≡ D ∧ ~D ≡ nil

∴ A → D is valid

Shallow and Causal Reasoning

• In shallow reasoning, there is little/no causal chain
of cause and effect from one rule to another
– longer chain represents more causal or deep knowledge.

– E.g. A → B, B → C, C → D ∴ A → D

64

– E.g. A → B, B → C, C → D ∴ A → D

• Another major factor for shallow reasoning is due
to the quality of knowledge

• Experiential knowledge is another term for
shallow knowledge which is based on experience

• Advantage of shallow reasoning is ease of
programming (smaller, faster, cheaper programs)

Shallow and Causal Reasoning

• Causal reasoning can be used to construct a model
that behaves like the real system – can be used to
answer “what if questions”
– E.g. an expert system in medicine

65

– E.g. an expert system in medicine

• Causal models are not always necessary or
desirable due to practical situation
– E.g. MUD expert system serving as a consultant to

drilling fluid or mud engineers

• Frames are used for causal / deep reasoning.

Shallow and Causal Reasoning

• Shallow reasoning example:

IF a car has

a good battery,

66

a good battery,

good sparkplugs,

gas,

good tires

THEN the car can move

Shallow and Causal Reasoning

• Deep reasoning example:
IF the battery is good
THEN there is electricity
IF there is electricity and sparkplugs are good
THEN the sparkplugs will fire

67

THEN the sparkplugs will fire
IF the sparkplugs fire and there is gas
THEN the engine will run
IF the engine runs and there are good tires
THEN the car will move

• Causal reasoning implies deep understanding of
the subject – easier to determine what effect a
bad component will have.

Resolution and First-Order
Predicate Logic

Some programmers hate failures
No programmer hates any success
∴ No failure is a success

Let:

68

P(x) = x is a programmer S(x) = x is a success
F(x) = x is a failure H(x, y) = x hates y

Then premises and negated conclusion are:

1) (∃x) [P(x) ∧ (∀y) (F(y) → H(x, y))]

2) (∀x) [P(x) → (∀y) (S(y) → ~H(x, y))]

3) ~ (∀y) (F(y) → ~S(y))

Conversion to the Normal Form

Nine steps for the conversion:

1. Eliminate conditionals.
1) ⇒ (∃x) [P(x) ∧ (∀y) (~F(y) ∨ H(x, y))]

2) ⇒ (∀x) [~P(x) ∨ (∀y) (~S(y) ∨ ~H(x, y))]

⇒ ∀ ∨

69

3) ⇒ ~ (∀y) (~F(y) ∨ ~S(y))

2. When possible, eliminate negations or reduce
their scope.
3) ⇒ (∃y) (F(y) ∧ S(y))

3. Standardize variables (each quantifier has
unique variable name).
e.g. (∃x) ~P(x) ∨ (∀x) P(x) ⇒ (∃x) ~P(x) ∨ (∀y) P(y)

Conversion to the Normal Form

4. Eliminate existential quantifiers using
Skolem functions.
1) ⇒ P(a) ∧ (∀y) (~F(y) ∨ H(a, y))

2) (∀x) [~P(x) ∨ (∀y) (~S(y) ∨ ~H(x, y))]

70

2) (∀x) [~P(x) ∨ (∀y) (~S(y) ∨ ~H(x, y))]

3) ⇒ F(b) ∧ S(b)

5. Convert wff to prenex form (move ∀ to
front).
1) ⇒ (∀y) [P(a) ∧ (~F(y) ∨ H(a, y))]

2) ⇒ (∀x) (∀y) [~P(x) ∨ ~S(y) ∨ ~H(x, y)]

Conversion to the Normal Form

6. Convert the matrix to conjunctive normal
form using: p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)
� Our example is already in conjunctive

normal form.

71

normal form.

7. Drop the universal quantifiers as
unnecessary.
1) ⇒ P(a) ∧ (~F(y) ∨ H(a, y))
2) ⇒ ~P(x) ∨ ~S(y) ∨ ~H(x, y)

3) F(b) ∧ S(b)

Conversion to the Normal Form

8. Eliminate ∧ signs by writing the wff as a set of
clauses.

1) ⇒ { P(a), ~F(y) ∨ H(a, y) }

2) ⇒ { ~P(x) ∨ ~S(y) ∨ ~H(x, y) }

72

2) ⇒ { ~P(x) ∨ ~S(y) ∨ ~H(x, y) }
3) ⇒ { F(b), S(b) }

Or: 1a) P(a)

1b) ~F(y) ∨ H(a, y)

2a) ~P(x) ∨ ~S(y) ∨ ~H(x, y)

3a) F(b)

3b) S(b)

Conversion to the Normal Form

9. Rename variables in clauses so that each
clause has unique variable name.

1a) P(a)

73

1a) P(a)

1b) ~F(y) ∨ H(a, y)

2a) ~P(x) ∨ ~S(z) ∨ ~H(x, z)

3a) F(b)

3b) S(b)

Unification

• The process of finding substitutions for
variables to make arguments match is
called unification.

74

• Without unification it is impossible to
resolve clauses such as:

~F(y) ∨ H(a, y)

F(b)

• For (1a) – (3b): {x/a, y/b, z/b}

Proof by Resolution Refutation

75

∴ P(a) ∧ (~F(b) ∨ H(a, b)) ∧
(~P(a) ∨ ~S(b) ∨ ~H(a, b)) ∧ F(b) ∧ S(b) = nil

• Since the root is nil, the conclusion is valid.

Chaining

• Chain – a group of multiple inferences that
connect a problem with its solution

• A chain that is searched / traversed from a
problem to its solution is called a forward chain.

76

problem to its solution is called a forward chain.

• A chain traversed from a hypothesis back to the
facts that support the hypothesis is a backward
chain.

• Problem with backward chaining is to find a
chain linking the evidence to the hypothesis.

Figure 3.21 Causal Forward Chaining

77

Table 3.14 Some Characteristics of
Forward and Backward Chaining

78

79

Fig. 3.25: Forward and Backward Chaining

80

Other Inference Methods

• Analogy – relating old situations (as a guide) to
new ones.
– Not a formal proof but a heuristic reasoning
– May or may not work

81

– May or may not work
– Primary used in medical diagnosis and legal arguments

• Generate-and-Test – generation of a likely
solution then test to see if proposed meets all
requirements.

• Abduction – Fallacy of the Converse
– Used by some diagnostic systems to guess the disorder

from the symptoms and then test it (generate-and-test)

Other Inference Methods

• Deductive logic is monotonic system
– Addition of new axioms may increase new theorems.

– New axioms can not contradict the old ones.

• Nonmonotonic Reasoning – theorems may not
increase as the number of axioms increase.

82

increase as the number of axioms increase.
– New axioms can contradict the old ones.

– If new axioms contradict old ones, the theorems proved
from the old ones will be removed.

• In practice truth maintenance of the rules is
difficult and the nonmonotonicity is accomplished
by adding special operators to avoid contradiction.

Other Inference Methods
• The following example prevents the incorrect rule

from firing, instead of retracting the invalid
conclusion:
IF X is a bird THEN X can fly.

Tweety is a bird.

83

∴ Tweety can fly. (What if Tweety is a penguin ?)

⇓⇓⇓⇓

IF x is a bird AND x is typical THEN x can fly.

IF x is a bird AND x is not typical THEN x cannot fly.

Tweety is a bird. ⇒ If Tweety is a penguin, just add:

Tweety is nontypical.

∴ Tweety cannot fly.

Metaknowledge

• Knowledge about a pre-selected knowledge.
– E.g. Path planning for robot

• The Markov decision process (MDP) is a good
application to path planning for a robot.

84

application to path planning for a robot.

• In the real world, there is always uncertainty, and
pure logic is not a good guide when there is
uncertainty.

• A MDP is more realistic in the cases where there
is partial or hidden information about the state
and parameters, and the need for planning.

Metaknowledge

• MDF can be defined as a tuple:
– MDF ≡ {states, actions, transitions, rewards}

• State: a set of states of the environment
• Action: valid operations
• Transition: determines what the next state will be for a

85

• Transition: determines what the next state will be for a
particular action

• The goal is to maximize the sum of rewards in
the search for the optimum path to the goal.

• Can determine the hidden parameters from the
observable parameters.
– Robot is not sure of its location – an unknown state, or

which path to take – an unknown action

Summary

• We have discussed the commonly used methods for
inference for expert systems.

• Expert systems use inference to solve problems.

• We discussed applications of trees, graphs, and

86

• We discussed applications of trees, graphs, and
lattices for representing knowledge.

• Deductive logic including syllogistic, propositional,
and first-order predicate logic were discussed.

• Venn diagrams and truth tables were discussed as
means of proving theorems and statements.

Summary

• Characteristics of logic systems were discussed.

• Resolution as a means of proving theorems in
propositional and first-order predicate logic.

• The nine steps to convert a wff to clausal form

87

• The nine steps to convert a wff to clausal form
were covered.

