STARTING OUT WITH

Chapter 4:

Making Decisions

o

From Control Structures
through Objects

sixth edition

TONY GADDIS

STARTING OUT WITH (+4

From Control Structures
through Objects

4.1

Relational Operators

TONY GADDIS

Simple Program Scheme

i

» So far our programs follow a simple scheme

— Gather input from the user
— Perform one or more calculations
— Display the results on the screen

int numPtr;
double totPrice, unitPrice=135.29;

cout << "Enter # of printers purchased: ";
cin >> numpPtr;

totPrice = numPtr*unitPrice;

cout << "Total price =" << totPrice << endl;

lesle

43

Simple Program Scheme

» Simple program scheme follows a predefined
path — one sequence of actions

* Most programs can follow different paths by
comparing values and making decisions

If the # of printer (numPtr) <5
totPrice = numPtr * 135.29 (regular price)
If numPtr =5
totPrice = numPtr * 125.29 (discounted price)

— Need to use relational operators (<, 2, ...)
— Need to use i f statement

lesle

i

4-4

Relational Operators Relational Expressions

i
i

* Used to compare numbers to determine « Used to test conditions (true or false)
relative order — Format: expl rop exp2
 Operators: — Value: true / false
* Examples:
> Greater than 12>5 is true
< Less than 7<=5 is false
>= Greater than or equal to _ _
<= Less than or equal to T x is 10, then _
—— Equal to x==10 Is true ,
I= Not equal to x+11=8 is true , and
X2 == is false
esle 4-5 esle 46
Relational Expressions .

i

« Can be assigned to a variable or displayed on
the screen:

result = x <= y; 4 2

* Relational expressions have higher precedence
than the assignment operator

- Assigns 0 for false , 1 for true The i f Statement
e Do not confuse = with ==

* It helps to use parentheses
cout << (X <=Yy);
value = (X ==y);

TONY GADDIS

lesle 4-7

The i f Statement Flowchart for Evaluating a
Decision

i
i

 Allow programs to make decisions l

» Allows statements to be conditionally
executed or skipped over

* Models the way we mentally evaluate
situations:

—"If it is raining, take an umbrella."
—"If it is cold outside, wear a coat."

Is it cold
outside?

Wear a coat.

lesle 4-9 lesle 4-10

Flowchart for Evaluating a The i f Statement
Decision

i
i

|

 General Format:

Is it cold Yes .)
outside?,] if (bool ean expressi on)
st at ement ;
Wear a coat.
No
: * Example:
Wear a hat. if (age >= 18)

!

Wear gloves.

cout << "You can vote" << endl;

Nesle 4-11 lesle 4-12

| f statement — what happens

i

To evaluate:
if (bool ean expression)
st at enent ;

 If the bool ean expressionistrue |,
then st at enent is executed.

 If the bool ean expression isfalse |,
then st at ement is skipped.

lesle

4-13

i

Program 4-2

// This program averages three test scores
tinclude <iostream>

tinclude <icmanips>

using namespace std;

int main()

{

// To hold three test scores
// To hold the average score

int scorel, score2, scorel;
double average;

(Program Continues)

lesle 4-14

Program 4-2 (continued)

// Get the three test scores.

cout << "Enter 3 test scores and I will awverage them: ";
cin »» scorel >> scorel? >> scorel;

// Calculate and display the average score.
average = (scorel + score? + score3) / 3.0;
cout << fixed << showpoint << setprecision(l);
cout << "Your average is " << average << endl;

// If the average is greater than 95, congratulate the user.
if (average > 95)

cout << "Congratulations! That's a high score!\n";
return 0;

+

Program Output with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

Program Output with Other Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0
Congratulations! That's a high score!

lesle

Flowchart for Lines 21 and 22

average True
> 95 $
Display "Congratulations!
That's a high score!”
|
Nesle 4-16

| f statement notes

_—
[

Do not place ; after (bool ean expressi on)
Place st at enent ; on a separate line after
(bool ean expressi on), indented:
if (score > 90)

grade ="A’;
Be careful about testing float s and double s
for equality (not recommended)
Don’t confuse == with =

if (average = 100)

cout << "Congratulations!”;

O is false ; any other value is true

lesle

Il wrong

4-17

/I This program calculates the total price
/I of the printers purchased.
#include <iostream>

i

using namespace std;
void main()

{

int numPtr;
double totPrice, uPrice1=135.29, uPrice2=125.29;

cout << "Enter # of printers purchased: ";
cin >> numpPtr;

if (numPtr <5)

totPrice = numPtr*uPricel;
if (numPtr >=5)

totPrice = numPtr*uPrice2;

cout << "Total price =" << totPrice << endl;

lesle 4-18

STARTING OUT WITH

Flags

TONY GADDIS

Flags

« A variable that signals a condition (vs. expression)
» Usually implemented as a bool variable

» As with other variables in functions, must be
assigned an initial value before it is used

bool highScore = false;

if (average > 95)
highScore = true;

if (highScore)
cout << "Congratulation! That is a high score!";

lesle

TONY GADDIS

4.4

Expanding the if Statement

Expanding the i f Statement

_—
[

» To execute more than one statement as part of
an if statement, enclose them in {}

if (score > 90)
{
grade ="A";
cout << "Good Job\n";
}
« {} creates a block of code (Can’t be omitted)

« If the condition is false, the whole block will be
skipped

lesle 4-22

TONY GADDIS

4.5

The i f/ el se Statement

The i f/ el se Statement

 Provides two possible paths of execution

* Performs one statement or block if the
expr essi on is true, otherwise performs

another statement or block.

—"If it rains, | will stay home. If not | will go t@
movie."

—"If you divide a number by 2 and the remainder
is 0, it is an even number. Otherwise it is an odc
number."

lesle 4-24

The i f/ el se Statement

| f/ el se —what happens

_ _ To evaluate:
General Format: if(expression) . .
{ if (expression)
st at ement 1: st at enent 1;
st at enent 2; else
if (expression) R 2 st at enent 2;
st at enent 1; } v S5 o
else or else ,)5 5 * Ifthe expressionistrue ,thenstatenentl
st at enent 2; { J/ 28 IS executed and st at enent 2 is skipped.
stat ement 1; * Ifthe expressionisfal se,thenstatenentl
stat enment 2; is skipped and st at enent 2 is executed.
}
Program 4.8 Flowchart for Lines 14 through 18

// This program uses the modulus coperator to determine

J/ 1f a number is odd or even. If the number is ewvenly divisible
// by 2, it is an even number. A remainder indicates it is odd.
tinclude <iostream>

using namespace std;

int maing)
{

int number;

cout << "HEnter an integer and I will tell you if it'n";
cout =< "is odd or even. ";
cin »> number;

if (number % 2 == 0)

cout =< number << " is even.\n";
else

cout << number << " is odd.\n";
return 03

I

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it
is odd or even. 17 [Enter]

17 is odd.

lesle 4-27

i

True False

number % 2
—_— 0

Indicate that the
number is odd.

|

Indicate that the
number is even.

Nesle

Program 4-9 (continued)

// Get the first number.

: cout << "Enter a number: "; :
cin => numl;
/{ Get the second number.
cout << "Enter another number: ";
Program 4-9 cin >> num2;
) J// If num2 is not zero, perform the division.
/¢ This program asks the user for two numbers, numl and num2. if (num2 == 0)
/4 numl is divided by num2 and the result is displayed. {
//{ Before the division operaticn, however, numZ is tested zgﬁ: e --gf;iiioiuﬁyt;ngréérgitagziilﬁig Qﬂtér\n,,_
// for the wvalue 0. If it contains 0, the division does not / cout << "a number other than zerc.\n"; !
// take place. }
¢include <iostream> block ?159
using namespace std; \ gquotient = numl / num2;
cout =< "The quotient of " << numl << " divided by ";
int main() cout<< mum2 << " is " << guotient << ".\n";
}
{ i return 03
double numl, num2, gquotient; }
Program Output with Example Input Shown in Bold
Enter a number: 10 [Enter]
Enter another number: O [Enter]
H Division by zero is not possible.
(Program COﬂtInUES) Please run the program again and enter
a number other than zero.
lesle 4-29 lesle 4-30
STARTING OUT WITH
Citoen Nested i f Statements
through Objects
_
[

TONY GADDIS

4.6

Nested i f Statements

« Anif statement can be nested inside
another if statement

 Nested if statements can be used to test
more than one condition

* Example:

— A banking program determines if a customer
gualifies for a special low interest loan based
on two conditions:

1) Currently employed?
2) Recently graduated from college?

lesle

4-32

Flowchart for a Nested

| f

Statement

i

employed

A

Display “You must be
employed to qualify.” v

True
recentGrad >—

==Y

Y

Display “You must
have graduated from for the special

college in the past interest rate.”
two years to qualify.”

Display “You qualify

| |

'

4-33

Nested | f Statements — 1

I

// Determine the user's loan qualifications.

if (employed == 'Y')

{
if (recentGrad == 'Y') //Nested if
{

cout << "You qualify for the special ";
cout << "interest rate.\n";

If the customer does not qualify for the loan, the program
does not print out a message to notify the user.

lesle 4-34
Nested i f Statements — 2 Use Proper Indentation!
_ _
// Determine the user's loan qualifications. > if (employed == 'Y')
if (employed == 'Y') {
{ — if (recentGrad == 'Y') // Nested if

if (recentGrad == 'Y') // Nested if {

{ This 1f and else cout << "You qualify for the special ";
cout << "You gualify for the special "; . go together. cout << "interest rate.\n";
cout << "interest rate.\n"; This if and else }

) go together. — L—— clse // Not a recent grad, but employed

else // Not a recent grad, but employed {

{ cout << "You must have graduated from ";
cout << "You must have graduated from "; Y . Y
cout << "college in the past twol\n"; cout << "college in the past twon';
cout << "years to qualify.\n"; cout << '"years to qualify.\n";

' }
}
} }
else // Not employed » else // Not employed
{ {
cout << "You must be employed to qualify.\n"; cout << "You must be employed to qualify.\n";
) 435 }

4-36

TONY GADDIS

4.7

Theif/else i f Statement

Theif/ el se if Statement

i

* A special nested if statement where the else
part is another if/else statement

» Tests a series of conditions until one is found to
be true

» Often simpler than using nested if/else
statements

» Can be used to model thought processes such
as:

“If it is raining, take an umbrella,
else, if it is windy, take a hat,
else, take sunglasses”

lesle

4-38

| f/else i f format

i

if(expression_1)

stnt _1; Il or bl ock 1
else if (expr essi on_2)

stm _2; /Il or bl ock_2

...... I/ other else if S
else if (expressi on_n)

stm _n; Il or bl ock_n
else

stnt _def; Il or bl ock def

Howdoes i f/ el se I f work?

lesle 4-39

Program Example

i

// Determine the letter grade.
if (testScore < 60)

cout << "Your grade is F.\n";
else if (testScore < 70)

cout << "Your grade is D.\n";
else if (testScore < 80)

cout << "Your grade is C.\n";
else if (testscore < 90)

cout << "Your grade is B.\n";
else

cout << "Your grade is A.\n";

Nesle

4-40

Using a Trailing el se to Catch Errors

i

The trailing else clause is optional, but is best
used to catch errors

15 // Determine the letter grade.

16 if (testScore < 60)

17 cout <<"Yourgrade is F. \n"
18 else if (testScore < 70)

19 cout << "Your grade is D.\n";

20 elseif (testScore < 80)

This trailing else

21 cout <<"Your grade is C.\n"; scores

22 else if (testScore < 90)

23 cout << "Your grade is B.\n";

24 else if (testScore <= 100)

25 cout << "Your grade is A\n";

26 el se

27 cout << "We do not give scores higher than 100.\n";

lesle

catches invalid test

4-41

Bookstore Coupon Example

_—
[

» A bookstore gives a customer discount coupons
based on how many books the customer buys. If
the customer does not buy any book, he/she
doesn’t get any coupon. If he/she buys 1 to 2
books, he/she gets 1 coupon. If he/she buys 3 to
5 books, he/she gets 2 coupons. If he/she buys 6
to 9 books, he/she gets 3 coupons. If the
customer buys 10 or more books, he/she gets 4
coupons. Write a program to determine the
number of coupons a customer gets.

lesle

4-42

Bookstore Coupon Example

1)

True

Coupon = 2

False
book # < 6?
book # < 107> /%€

‘ Coupon =3 ‘
v

‘ Disp. coupon #‘

End

lesle

‘ Coupon =4 ‘
¥

4-43

#include <iostream>
using namespace std;
void main()

{

i

int numBooks, numCoupons;
cout << "How many books are sold? ";
cin >> numBooks;
if (numBooks < 1)
numCoupons = 0;
else if (numBooks < 3)
numCoupons =1,
else if (numBooks < 5)
numCoupons = 2;
else if (numBooks < 10)
numCoupons = 3;
else
numCoupons = 4,
cout << "# of coupons =" << numCoupons << endl;

lesle

4-44

Menus

TONY GADDIS

Menus

i

e Menu-driven program: program execution

controlled by user selecting from a list of

actions

* Menu: list of choices on the screen
* Menus can be implemented using

if/else if

statements

lesle

4-46

Menu-driven program
organization

Display a list of numbered or lettered

choices for actions

Prompt user to make selection
Test user selection in expr essi on using

if / else if

— if a match, then execute code for action
—if not, then go on to next expr essi on

Program 4-15

lesle

i

4-47

S

4.9

Logical Operators

TARTING OUT WITH ‘ B
From Control Structures

through Objects

TONY GADDIS

Logical Operators

» Used to connect two or more relational
expressions into one (for testing compound

conditions), or reverse the logic of an expression

* Operators, meaning, and explanation:

i

&& | AND New relational expression is true if both
expressions are true

I OR New relational expression is true if either
expression is true
Reverses the value of an expression — true

! NOT expression becomes false, and false
becomes true

lesle

4-49

Logical Operators - examples

int x=12,y=5,z=-4;

i

(x>y) && (y > 2z) true
xX>y)&& (z>Yy) false
x<=2)||(y==2) false
x<=2)|[(y!=2) true
I(x >=2) false

lesle

4-50

The && Operator in Program 4-16

// Determine the user's loan qualifications.
if (employed == 'Y")

if (recentGrad == 'Y') //Nested if
{

cout << "You qualify for the special ";
cout << "interest rate.\n":

} ll
// Determine the user's loan gualifications.

if {employed == 'Y¥' && recentGrad == 'YT'")

cout << "You qualify for the special ";
cout << "interest rate.\n";

i

4-51

The || Operator in Program 4-17

The customer qualifies for the loan if his/her income is
more than or equal to $35,000 or he/she has worked
more than five years.

i

// Determine the user's loan gualifications.

if (income »= 35000 || years > 5)
cout << "You qualify.'\n";

Nesle

The ! Operator in Program 4-18

i

If it is not true that the customer’s income is more than
or equal to $35,000 or has worked more than five years,
he/she does not qualify for the loan.

4

f/ Determine the user's loan gualifications.
if (!({income »= 35000 || years > 5))

Logical Operators - notes

i

I has highest priority, followed by &&, then ||
&&and || rank lower than relational operators
Use parentheses to avoid errors

int x=5, y=10, z=15;
x>10||y==12 && (z < 5) F

Must provide complete expression

{
cout << "You must earn at least 535,000 or haveln"; temp <0 || > 100 (wrong)
cout << "been employed for more than 5 years.\n";
temp <0 || temp > 100 (correct)
Nesle 4-53 lesle 4-54
STARTING OUT WITH C++

Logical Operators - notes

[==
[

« If the value of an expression can be determined
by evaluating just the sub-expression on left side
of a logical operator, then the sub-expression on
the right side will not be evaluated (short circuit
evaluation)

int x=10, y=5;
if (x> 100 && y < 20)
cout << "You win!";

if (x<100||y>20)
cout << "You lose!";

lesle

4-55

4.10

Checking Numeric Ranges with
Logical Operators

through Objects

TONY GADDIS

Checking Numeric Ranges with
Logical Operators

STARTING OUT WITH ‘ e
From Control Structures

::::::

jh Objects

» Used to test if a value falls inside a range:
if (grade >= 0 && grade <= 100)
cout << "Valid grade"; 4 1 1
if (grade <= 100 && grade >= 90) B
cout << "Your grade is A";
» Can also test if value falls outside of range: Validating User Input with
if (grade < 0 || grade > 100) Logical Operators
cout <<'"Invalid grade";
« Cannot use mathematical notation:
if (0 <= grade <= 100) //doesn 't work!
lesle 4-57
Validating User Input Program with Input Validation
— cout << "Enter your numeric test score and I willln"; —

Input validation: inspecting input data to
determine whether it is acceptable

Bad output will be produced from bad input
A good program should always check the
validity of the input data

Can perform various tests:

— Range

— Reasonableness

— Valid menu choice

— Divide by zero

lesle

4-59

cout << "tell you the letter grade you earned: ";
cin »> testScore;

if (testScore < 0 || testScore > 100) //Input validation
{
// Bn invalid score was entered.
cout << testScore << " is an invalid score.\n";
cout << "Run the program again and enter a value‘n";
cout << "in the range of 0 to 100.%\n";
}
else
{
// Determine the letter grade.
if (testScore < 60)

grade = 'I'';

else if (testScore < 70)
grade = 'D';

else if (testScore < 80)
grade = 'C';

else if (testScore < 90)
grade = 'B';

else if (testScore <= 100)
grade = 'A';

// Display the letter grade.
cout << "Your grade is " << grade << endl;

STARTING OUT WITH

rrrrrrrrrrrrrrrrrrrr

4,12

More About Variable Definitions and Scope

TONY GADDIS

More About
Variable Definitions and Scope —

» Scope of a variable is the block in which it
is defined, from the point of definition to the
end of the block

e A block is defined by { }
* Usually defined at beginning of function

* May be defined close to its first use to
make its purpose evident (especially in a
long program)

lesle

4-62

int maing)

{

/7 Get the annual income.

cout << "What is your annual income? "
double income; /fvariable definition
cin »» income;

if (income ==

{

35000)

/{ Get the number of years at the current job.

cout << "How many years have you worked at "
<< "your current job? "

int years: /fvariable definition

cin »> years;

if (years = 5)
cout << "You gualify.h\n";
else

{

cout << "You must have been employed forin";
cout << "more than 5 vears to gqualify.\n";

}

/[This program has threg layers of blocks

i

4-63

Still More About
Variable Definitions and Scope -

* Variables defined inside {} have local
or block scope

* When inside a block within another block,
can define variables with the same name
as in the outer block

—When in inner block, outer definition is not
available

— Not a good idea

lesle

// This program uses two variables with the name number.
#include <iostream>
using namespace std;

)

int main()

{

// Define a variable named number.
int number;

cout << "Enter a number greater than 0: "
cin >> number;

if (number > 0)

{

int number; // Another variable named number.
cout << "Now enter another number: "

cin >> number;

cout << "The second number you entered was "
cout << number << endl;

}

cout << "Your first number was " << number << endl;
return 0;

}

Program Qutput with Example Input Shown in Bold
Enter a number greater than 0: 2 [Enter]

Mow enter another number: 7 [Enter]

The second number you entered was 7

Youy first number was 2

4-65

S

4.15

The swi t ch Statement

TARTING OUT WITH < +4

TONY GADDIS

From Control Structures
through Objects

The sw t ch Statement

i

* Used to make decisions like if/else if
statements

» Uses the value of a variable or expression
to determine where the program will
branch

* In some cases, preferred to if/else if
statements (e.g. menu system)

lesle

swW t ch statement format

switch (| nt Expr)

{

case Const Expr- 1:

Il place one or more statements here
case Const Expr - 2:

/Il place one or more statements here

case Const Expr-n:
// place one or more statements here
default:
Il place one or more statements here

lesle

i

Program 4-28

// The switch statement in this program tells the user something
// he or she already knows: what they just entered!

SW t ch statement requirements

" cnar enotce; 1) | nt Expr must be an integer variable or
S s enoten, T an expression that evaluates to an
switch (choice) .
! case "RA': cout =< "You entered A.\n"; Integer Value
2) Const Expr - 1 through Const Expr - n
et T et 8 ox e must be constant integer expressions or
} Leturn o; literals, and must be unique in the
Program Output with Example Input Shown in Bold SWItC h State m e nt
Enter A, B, or C: B [Enter] . .
You entered 5. 3) default is optional but recommended
Program Output with Example Input Shown in Bold
EnterlA, B, or C: F[Enter]
You did neot enter &, B, or C! . 4-69 esle 470
swW t ch statement — how it works br eak statement

1)
2)

3)

4)

| nt Expr is evaluated

The value of | nt Expr is compared against
Const Expr - 1 through Const Expr - n.

If I nt Expr matches value Const Expr -i , the
program branches to the statement following
Const Expr -1 and continues to the break
statement or end of the switch statement

If no matching value is found, the program
branches to the statement after default:

lesle 4-71

» Used to exit a switch statement

o If it is left out, the program "falls through"
the remaining statements in the switch
statement until a break statement is
encountered or the end of switch
statement is reached

* Sometimes the break statement is left out
on purpose

lesle

Program 4-30

// This program is carefully constructed to use the "fallthrough"”

Program Output with Example Input Shown in Bold
our TVs come in three models:

The 100, 200, and 300. Which do you want? 100 [Enter]

/f feature of the switch statement. [Th del h he followi ¥ .
finclude <iostreams at mode as the following features:
using namespace std; EiEmEEE EEmEEL,
int main() Program Output with Example Input Shown in Bold
I Our TVs come in three models:
int modelNum: // Model number The 100, 200, and 300. Which do you want? 200 [Enter]
That model has the following features:
// Get a model number from the user. Sterec sound.
cout << "Our TVs come in three models:\n"; Remote control.
cout << "The 100, 200, and 200. Which do you want? ";
cin >> modellum; Program Output with Example Input Shown in Bold
o Our TVs come in three models:
// Display the model's features. The 100, 200, and 300. Which do you want? 300 [Enter]
cout << "That model has the following features:\n"; .
) That model has the following features:
switch (modelNum) c c ;
{ Ficture-in-a-picture.
case 300: cout =< "“\tPicture-in-a-picture.\n"; SNEEEED EETmE.
case 200: cout << "“tStereo sound.\n"; Remote control.
case 100: cout << "“tRemote control.\n";
break; Program Output with anmple Input Shown in Bold
default: cout << "You can only choose the 100,"; Our TVs come in three models:
cout << "200, or 300.\n"; The 100, 200, and 300. Which do you want? 500 [Enter]
' That model has the following features:
return 0; You can only choose the 100, 200, or 300.
} 4-73 esle 4-74
|
-

e switch statement is a natural choice for

menu-driven program:

— display the menu

— then, get the user's menu selection

—use user input as | nt Expr in switch
statement

— use menu choices as Const Expr in case
statements

* View program 4-32

lesle

