
Chapter 4:

Making DecisionsMaking Decisions
4.1

Relational Operators

4.1

Simple Program Scheme

• So far our programs follow a simple scheme
– Gather input from the user
– Perform one or more calculations
– Display the results on the screen

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

– Display the results on the screen

int numPtr;

double totPrice, unitPrice=135.29;

cout << "Enter # of printers purchased: ";

cin >> numPtr;

totPrice = numPtr*unitPrice;

cout << "Total price = " << totPrice << endl;

4-3

Simple Program Scheme

• Simple program scheme follows a predefined
path – one sequence of actions

• Most programs can follow different paths by
comparing values and making decisions

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

comparing values and making decisions

If the # of printer (numPtr) < 5
totPrice = numPtr * 135.29 (regular price)

If numPtr ≥ 5
totPrice = numPtr * 125.29 (discounted price)

– Need to use relational operators (<, ≥, …)
– Need to use if statement

4-4

Relational Operators

• Used to compare numbers to determine
relative order

• Operators:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-5

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
!= Not equal to

Relational Expressions

• Used to test conditions (true or false)
– Format: exp1 rop exp2

– Value: true / false

• Examples:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-6

• Examples:
12 > 5 is true

7 <= 5 is false

if x is 10, then
x == 10 is true ,
x+1 != 8 is true , and
x/2 == 8 is false

Relational Expressions

• Can be assigned to a variable or displayed on
the screen:

result = x <= y;

• Relational expressions have higher precedence

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-7

• Relational expressions have higher precedence
than the assignment operator

• Assigns 0 for false , 1 for true

• Do not confuse = with ==

• It helps to use parentheses
cout << (x <= y);

value = (x == y);

4.2
The if Statement

4.2

The if Statement

• Allow programs to make decisions
• Allows statements to be conditionally

executed or skipped over

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-9

• Models the way we mentally evaluate
situations:
– "If it is raining, take an umbrella."

– "If it is cold outside, wear a coat."

Flowchart for Evaluating a
Decision

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-10

Flowchart for Evaluating a
Decision

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-11

The if Statement

• General Format:

if (boolean expression)

statement;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-12

statement;

• Example:
if (age >= 18)

cout << "You can vote" << endl;

if statement – what happens

To evaluate:
if (boolean expression)

statement;

• If the is ,

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-13

• If the boolean expression is true ,
then statement is executed.

• If the boolean expression is false ,
then statement is skipped.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-14

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-15

Flowchart for Lines 21 and 22

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-16

if statement notes

• Do not place ; after (boolean expression)

• Place statement; on a separate line after
(boolean expression) , indented:

if (score > 90)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-17

grade = 'A';

• Be careful about testing float s and double s
for equality (not recommended)

• Don’t confuse == with =
if (average = 100) // wrong

cout << "Congratulations!";

• 0 is false ; any other value is true

// This program calculates the total price
// of the printers purchased.
#include <iostream>
using namespace std;
void main()
{

int numPtr;
double totPrice, uPrice1=135.29, uPrice2=125.29;

cout << "Enter # of printers purchased: ";

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-18

cout << "Enter # of printers purchased: ";
cin >> numPtr;

if (numPtr < 5)
totPrice = numPtr*uPrice1;

if (numPtr >= 5)
totPrice = numPtr*uPrice2;

cout << "Total price = " << totPrice << endl;
}

4.3
Flags

4.3

Flags

• A variable that signals a condition (vs. expression)
• Usually implemented as a bool variable

• As with other variables in functions, must be
assigned an initial value before it is used

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-20

assigned an initial value before it is used
bool highScore = false;

…

if (average > 95)

highScore = true;

…

if (highScore)

cout << "Congratulation! That is a high score!";

4.4
Expanding the if Statement

4.4

Expanding the if Statement

• To execute more than one statement as part of
an if statement, enclose them in { }

if (score > 90)

{

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-22

grade = 'A';

cout << "Good Job!\n";

}

• { } creates a block of code (Can’t be omitted)

• If the condition is false, the whole block will be
skipped

4.5
The if/else Statement

4.5

The if/else Statement

• Provides two possible paths of execution
• Performs one statement or block if the
expression is true, otherwise performs
another statement or block.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-24

another statement or block.
– "If it rains, I will stay home. If not I will go to a

movie."

– "If you divide a number by 2 and the remainder
is 0, it is an even number. Otherwise it is an odd
number."

The if/else Statement

if (expression)
{
statement1;
statement2;

General Format:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if (expression)
statement1;

else or
statement2;

statement2;
…

}
else
{
statement1;
statement2;
…

}
4-25

A
 b

lo
ck

 o
f

st
at

em
en

ts

if/else – what happens

To evaluate:

if (expression)
statement1;

else
statement2;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-26

statement2;

• If the expression is true , then statement1
is executed and statement2 is skipped.

• If the expression is false, then statement1
is skipped and statement2 is executed.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-27

Flowchart for Lines 14 through 18

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-28

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-29

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-30

block

4.6
Nested if Statements

4.6

Nested if Statements

• An if statement can be nested inside
another if statement

• Nested if statements can be used to test
more than one condition

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-32

more than one condition
• Example:

– A banking program determines if a customer
qualifies for a special low interest loan based
on two conditions:

1) Currently employed?
2) Recently graduated from college?

Flowchart for a Nested if
Statement

employed
== ‘Y’

TrueFalse

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-33

recentGrad
== ‘Y’

False True
Display “You must be
employed to qualify.”

Display “You qualify
for the special
interest rate.”

Display “You must
have graduated from

college in the past
two years to qualify.”

Nested if Statements – 1

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-34

If the customer does not qualify for the loan, the program
does not print out a message to notify the user.

Nested if Statements – 2

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-35

Use Proper Indentation!

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-36

4.7
The if/else if Statement

4.7

The if/else if Statement

• A special nested if statement where the else
part is another if/else statement

• Tests a series of conditions until one is found to
be true

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-38

• Often simpler than using nested if/else
statements

• Can be used to model thought processes such
as:

“If it is raining, take an umbrella,
else, if it is windy, take a hat,
else, take sunglasses”

if/else if format

if (expression_1)

stmt_1; // or block_1

else if (expression_2)

stmt_2; // or block_2

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-39

…… // other else if s

else if (expression_n)

stmt_n; // or block_n

else

stmt_def; // or block_def

How does if/else if work?

Program Example

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-40

Using a Trailing else to Catch Errors

The trailing else clause is optional, but is best
used to catch errors

15 // Determine the letter grade.
16 if (testScore < 60)
17 cout << "Your grade is F. \ n";

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-41

17 cout << "Your grade is F. \ n";
18 else if (testScore < 70)
19 cout << "Your grade is D.\n";
20 else if (testScore < 80)
21 cout << "Your grade is C.\n";
22 else if (testScore < 90)
23 cout << "Your grade is B.\n";
24 else if (testScore <= 100)
25 cout << "Your grade is A.\n";
26 else
27 cout << "We do not give scores higher than 100.\n";

This trailing else
catches invalid test
scores

Bookstore Coupon Example

• A bookstore gives a customer discount coupons
based on how many books the customer buys. If
the customer does not buy any book, he/she
doesn’t get any coupon. If he/she buys 1 to 2
books, he/she gets 1 coupon. If he/she buys 3 to

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

books, he/she gets 1 coupon. If he/she buys 3 to
5 books, he/she gets 2 coupons. If he/she buys 6
to 9 books, he/she gets 3 coupons. If the
customer buys 10 or more books, he/she gets 4
coupons. Write a program to determine the
number of coupons a customer gets.

4-42

Bookstore Coupon Example

book # < 1?

Start

Input book #

book # < 3?

True False

True
False

False

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-43

book # < 10?

Coupon = 3 Coupon = 4

End

Coupon = 0

book # < 3?

Coupon = 1

book # < 6?

Coupon = 2

Disp. coupon #

True

True

True

False

False

#include <iostream>
using namespace std;
void main()
{

int numBooks, numCoupons;
cout << "How many books are sold? ";
cin >> numBooks;
if (numBooks < 1)

numCoupons = 0;
else if (numBooks < 3)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-44

else if (numBooks < 3)
numCoupons = 1;

else if (numBooks < 5)
numCoupons = 2;

else if (numBooks < 10)
numCoupons = 3;

else
numCoupons = 4;

cout << "# of coupons = " << numCoupons << endl;
}

4.8
Menus

4.8

Menus

• Menu-driven program: program execution
controlled by user selecting from a list of
actions

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-46

actions
• Menu: list of choices on the screen
• Menus can be implemented using

if/else if statements

Menu-driven program
organization

• Display a list of numbered or lettered
choices for actions

• Prompt user to make selection

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-47

•
• Test user selection in expression using

if / else if

– if a match, then execute code for action
– if not, then go on to next expression

• Program 4-15

4.9
Logical Operators

4.9

Logical Operators

• Used to connect two or more relational
expressions into one (for testing compound
conditions), or reverse the logic of an expression

• Operators, meaning, and explanation:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-49

• Operators, meaning, and explanation:

&& AND New relational expression is true if both
expressions are true

|| OR New relational expression is true if either
expression is true

! NOT
Reverses the value of an expression – true
expression becomes false, and false
becomes true

Logical Operators - examples

int x = 12, y = 5, z = -4;

(x > y) && (y > z)

(x > y) && (z > y)

true

false

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-50

(x > y) && (z > y)

(x <= z) || (y == z)

(x <= z) || (y != z)

!(x >= z)

false

false

false

true

The && Operator in Program 4-16

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-51

The || Operator in Program 4-17

The customer qualifies for the loan if his/her income is
more than or equal to $35,000 or he/she has worked
more than five years.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-52

The ! Operator in Program 4-18

If it is not true that the customer’s income is more than
or equal to $35,000 or has worked more than five years,
he/she does not qualify for the loan.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-53

}

Logical Operators - notes

• ! has highest priority, followed by &&, then ||
• &&and || rank lower than relational operators

• Use parentheses to avoid errors

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-54

int x=5, y=10, z=15;

x > 10 || y == 12 && !(z < 5)

• Must provide complete expression
temp < 0 || > 100 (wrong)

temp < 0 || temp > 100 (correct)

F

Logical Operators - notes

• If the value of an expression can be determined
by evaluating just the sub-expression on left side
of a logical operator, then the sub-expression on
the right side will not be evaluated (short circuit
evaluation)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-55

evaluation)
int x=10, y=5;

if (x > 100 && y < 20)

cout << "You win!";

if (x < 100 || y > 20)

cout << "You lose!";

4.10
Checking Numeric Ranges with

Logical Operators

4.10

Checking Numeric Ranges with
Logical Operators

• Used to test if a value falls inside a range:
if (grade >= 0 && grade <= 100)

cout << "Valid grade";

if (grade <= 100 && grade >= 90)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-57

cout << "Your grade is A";

• Can also test if value falls outside of range:
if (grade < 0 || grade > 100)

cout << "Invalid grade";

• Cannot use mathematical notation:
if (0 <= grade <= 100) //doesn ’t work!

4.11
Validating User Input with

Logical Operators

4.11

Validating User Input

• Input validation: inspecting input data to
determine whether it is acceptable

• Bad output will be produced from bad input
• A good program should always check the

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-59

• A good program should always check the
validity of the input data

• Can perform various tests:
– Range
– Reasonableness
– Valid menu choice
– Divide by zero

Program with Input Validation

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-60

4.12
More About Variable Definitions and Scope

4.12

More About
Variable Definitions and Scope

• Scope of a variable is the block in which it
is defined, from the point of definition to the
end of the block
A block is defined by

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-62

• A block is defined by { }

• Usually defined at beginning of function
• May be defined close to its first use to

make its purpose evident (especially in a
long program)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-63// This program has three layers of blocks

Still More About
Variable Definitions and Scope

• Variables defined inside { } have local
or block scope

• When inside a block within another block,
can define variables with the same name

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-64

can define variables with the same name
as in the outer block
– When in inner block, outer definition is not

available
– Not a good idea

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-65

4.15
The switch Statement

4.15

The switch Statement

• Used to make decisions like if/else if
statements

• Uses the value of a variable or expression
to determine where the program will

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-67

to determine where the program will
branch

• In some cases, preferred to if/else if
statements (e.g. menu system)

switch statement format

switch (IntExpr)
{

case ConstExpr-1:
// place one or more statements here

case ConstExpr-2:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-68

case ConstExpr-2:
// place one or more statements here

...
case ConstExpr-n:

// place one or more statements here
default:

// place one or more statements here
}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-69

switch statement requirements

1) IntExpr must be an integer variable or
an expression that evaluates to an
integer value

2) ConstExpr-1 through ConstExpr-n

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-70

2) ConstExpr-1 through ConstExpr-n
must be constant integer expressions or
literals, and must be unique in the
switch statement

3) default is optional but recommended

switch statement – how it works

1) IntExpr is evaluated

2) The value of IntExpr is compared against
ConstExpr-1 through ConstExpr-n.

3) If IntExpr matches value ConstExpr-i, the

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-71

3) If IntExpr matches value ConstExpr-i, the
program branches to the statement following
ConstExpr-i and continues to the break
statement or end of the switch statement

4) If no matching value is found, the program
branches to the statement after default:

break statement

• Used to exit a switch statement

• If it is left out, the program "falls through"
the remaining statements in the switch

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-72

statement until a break statement is
encountered or the end of switch
statement is reached

• Sometimes the break statement is left out
on purpose

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-73 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-74

Using switch with a menu

• switch statement is a natural choice for
menu-driven program:
– display the menu
– then, get the user's menu selection

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 4-75

– then, get the user's menu selection
– use user input as IntExpr in switch

statement
– use menu choices as ConstExpr in case

statements

• View program 4-32

