
Chapter 5:

Looping

The Increment and Decrement

Operators

5.1

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-3

The Increment and

Decrement Operators

• ++ is the increment operator.

It adds one to a variable.

val++; is the same as val = val + 1;

• ++ can be used before (prefix) or after (postfix) a
variable:

++val; val++;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-4

The Increment and

Decrement Operators

• -- is the decrement operator.

It subtracts one from a variable.

val--; is the same as val = val - 1;

• -- can be also used before (prefix) or after
(postfix) a variable:

--val; val--;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-5(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-6

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-7

Prefix vs. Postfix

• ++ and -- operators can be used in
complex statements and expressions

• In prefix mode (++val, --val) the
operator increments or decrements, then
returns / uses the value of the variable

• In postfix mode (val++, val--) the
operator returns / uses the value of the
variable, then increments or decrements

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-8

Prefix vs. Postfix - Examples

int num, val = 12;

 cout << val++;

 cout << ++val;

 num = --val;

 num = val--;

// Displays 12, then
// sets val to 13.

// Sets val to 14,
// then displays it.

// Sets val to 13, then
// stores it in num.

// Stores 13 in num,
// then sets val to 12.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-9

Notes on Increment, Decrement

• Can be used in expressions:

 result = num1++ + --num2;

• Can only be applied to a variable, not to a

number or an expression. Cannot have:

 result = (num1 + num2)++;

• Can be used in relational expressions:

 if (++num > limit)

• pre- and post-operations will cause different

comparisons

num1=2, num2=5

result=6

num1=3, num2=4

Introduction to Loops:
The while Loop

5.2

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-11

Introduction to Loops:
The while Loop

• Loop: a control structure that causes a

statement or statements to repeat

• General format of the while loop:

 while (expression)

 statement;

• statement; can also be a block of

statements enclosed in { }

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-12

while Loop – How It Works

while (expression)

 statement;

• expression is a condition to be

evaluated

– if true, then statement is executed, and

expression is evaluated again

– if false, then the loop is finished and the

program statement immediately following
statement is executed

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-13

The Logic of a while Loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-14

A program that displays “Hello” 5 times

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-15

How the Loop in Lines

9 through 13 Works

1)

2)

3)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-16

Flowchart of the Loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-17

while is a Pretest Loop

• expression is evaluated before the
loop executes. The following loop will
never execute:

int number = 6;

while (number <= 5)

{

 cout << "Hello\n";

 number++;

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-18

Watch Out for Infinite Loops

• The loop must contain code to make
expression become false

• Otherwise, the loop will have no way of

stopping

• Such a loop is called an infinite loop,

because it will repeat an infinite number of

times

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-19

An Infinite Loop

int number = 1;

while (number <= 5)

{

 cout << "Hello\n";

}

The following program will never terminate:

Using the while Loop for Input

Validation

5.3

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-21

Using the while Loop for

Input Validation

• Input validation is the process of inspecting

data that is given to the program as input

and determining whether it is valid.

– Garbage in, garbage out

• The while loop can be used to create input

routines that reject invalid data, and repeat

until valid data is entered. (Our previous

programs display an error message and

then terminate after detecting invalid data.)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-22

Using the while Loop for

Input Validation

• Here's the general approach, in pseudo

code:

Read an item of input.

While the input is invalid

 Display an error message.

 Read the input again.

End While

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-23

Input Validation Example

cout << "Enter a number less than 10: ";

cin >> number;

while (number >= 10)

{

 cout << "Invalid Entry!" << endl

 << "Enter a number less than 10: ";

 cin >> number;

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-24

Flowchart

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-25

Input Validation Example from

Program 5-5

Counters

5.4

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-27

Counters

• Counter: a variable that is incremented or

decremented each time a loop repeats

(also known as the loop control variable)

• Can be used to control or keep track of the

number of iterations a loop performs

• Must be initialized before entering the loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Counters

5-28

// This program shows how to use a counter to repeatedly

// display the message “Nice to meet you!” 30 times.

#include <iostream>

#include <iomanip>

using namespace std;

void main()

{

 int count=0;

 while (count < 30)

 {

 cout<<setw(2)<<count+1<<". Nice to meet your!\n";

 count ++;

 }

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-29

The do-while Loop

5.5

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-31

The do-while Loop

• do-while: a posttest loop – execute the loop,
then test the expression

• General Format:

 do

 statement; // or block in { }

 while (expression);

• Note the do-while loop must be terminated
with a semicolon – it is not required at the end of
the while loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-32

The Logic of a do-while Loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-33

do-while Example

int x = 1;

do

{

 cout << x << endl;

} while(x < 0);

Compare the following two loops. Though the
condition is false to begin with, do-while loop

will execute once, because it is a posttest loop.

int x = 1;

while (x < 0)

 cout << x << endl;

(1)

(2)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-34

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-35

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-36

// This program repeatedly converts temperature

// from Fahrenheit to Celsius.

#include <iostream>

using namespace std;

int main()

{

 double fahr, cels;

 char ans;

 do

 {

 cout << "Enter temperature in Fahrenheit: ";

 cin >> fahr;

 cels = (fahr-32.0)*5.0/9.0;

 cout << "The temperature in Celsius is "

 << cels << endl;

 cout << "Do you want to continue? [Y/N]: ";

 cin >> ans;

 } while (ans == 'Y' || ans == 'y');

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-37

Program output:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-38

do-while Loop Notes

• Loop always executes at least once

• Execution continues as long as
expression is true, stops repetition

when expression becomes false

• Useful in menu-driven programs to bring

user back to menu to make another choice

(see Program 5-8 in the book)

Source Code/Chapter 05/Pr5-8.cpp

The for Loop

5.6

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-40

The for Loop

• There are two categories of loops

– Condition-controlled loops (e.g. input validation)

– Count-controlled loops (# of iteration is known)

• The for loop is ideal for count-controlled loop

• General Format:

 for(initialization; test; update)

 statement; // or block in { }

• No semicolon after 3rd expression or after the)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-41

for Loop - Mechanics

for(initialization; test; update)

 statement; // or block in { }

1) Perform initialization

2) Evaluate test expression (condition)

– If true, execute statement or block of statements

– If false, terminate loop execution

3) Execute update, then re-evaluate test

expression

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-42

for Loop - Example

int count;

for (count = 1; count <= 5; count++)

cout << "Hello" << endl;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-43

A Closer Look

at the Previous Example

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-44

Flowchart for the Previous

Example

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-45

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-46

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-47

A Closer Look at Lines 13

through 14 in Program 5-9

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-48

Flowchart for Lines 13 through 14

in Program 5-9

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-49

When to Use the for Loop

• Preferable to while or do-while loop

when number of iteration is know

• When number of iteration is not know
while or do-while loop is preferable

• for loop requires

– an initialization

– a false condition to stop the loop

– an update to occur at the end of each iteration

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-50

The for Loop is a Pretest Loop

• The for loop tests its test expression

before each iteration, so it is a pretest

loop.

– while loop: pretest

– do-while loop: posttest

• The following loop will never iterate:

for (count = 11; count <= 10; count++)

 cout << "Hello" << endl;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-51

for Loop - Modifications

• You can have multiple statements in the
initialization expression. Separate the
statements with a comma:

 int x, y;

 for (x=1, y=1; x <= 5; x++)

 {

 cout << x << " plus " << y

 << " equals " << (x+y)

 << endl;

 }

Initialization Expression

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-52

for Loop - Modifications

• You can also have multiple statements in the
update expression. Separate the statements with
a comma:

 int x, y;

 for (x=1, y=1; x <= 5; x++, y++)

 {

 cout << x << " plus " << y

 << " equals " << (x+y)

 << endl;

 }

Update Expression

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-53

for Loop - Modifications

• You can omit the initialization

expression if it has already been done:

 int sum = 0, num = 1;

 for (; num <= 10; num++)

 sum += num;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-54

for Loop - Modifications

• You can declare variables in the
initialization expression:

 int sum = 0;

 for (int num = 0; num <= 10; num++)

 sum += num;

The scope of the variable num is the for loop.

Keeping a Running Total

5.7

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-56

Keeping a Running Total

• running total: accumulated sum of numbers from
each repetition of loop

• accumulator: variable that holds running total

int sum=0; // sum is the accumulator

for (num=1; num<=10; num++)

{

 sum += num;

}

cout << "Sum of numbers 1 – 10 is"

 << sum << endl;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-57(Program Continues)

of iteration is specified by a variable

whose value is entered during run-time

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-58

Sentinels

5.8

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-60

Sentinels

• Sometimes the user may not know the
total number of values to input in advance

• sentinel: value in a list of values that
indicates end of data (also named trailer)

• Special value that cannot be confused with
a valid value, e.g., -999 for a test score

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-61(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-62

Deciding Which Loop to Use

5.10

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-64

Deciding Which Loop to Use

• Though most repetitive algorithms can be written
with any of the three loops, each is best for
certain situations

• while: pretest loop; loop body may not be
executed at all

• do-while: posttest loop; loop body will always
be executed at least once

• for: pretest loop with initialization and update
expression; useful with counters, or if precise
number of repetitions is needed

Nested Loops

5.11

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-66

Nested Loops

• A nested loop is a loop inside the body of

another loop

• Inner (inside), outer (outside) loops:

 for (i=1; i<=3; i++) //outer

 {

 …

 for (j=1; j<=5; j++) //inner

 {

 cout << "Hello!" << endl;

 }

 …

 }

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-67

Lines from Program 5-16

Program 5-16

of iteration for inner and outer loops

are determined during run-time

Source Code/Chapter 05/Pr5-16.cpp

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-68

Nested Loops - Notes

• Inner loop goes through all repetitions for
each repetition of outer loop

• Inner loop repetitions complete sooner
than outer loop

• Total number of repetitions for inner loop is
product of number of repetitions of the two
loops.

Breaking Out of a Loop

5.12

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-70

Breaking Out of a Loop

• Can use break to terminate execution of a

loop (while, do-while or for loop)

before the loop condition become false

• Use sparingly if at all – makes code harder

to understand and debug

• When used in an inner loop, terminates

that loop only and goes back to outer loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Breaking Out of a Loop

5-71

int count=0;

double score, total_score=0, avg_score;

while (true)

{

 cout << "Enter a test score, -1 to stop: ";

 cin >> score;

 if (score == -1)

 break;

 total_score += score;

 count++;

}

avg_score = total_score / count;

cout << "Average score = " << avg_score << endl;

The continue Statement

5.13

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 5-73

The continue Statement

• Can use continue to go to end of loop

and prepare for next repetition (i.e. skip the

rest of current iteration)

– while, do-while loops: go to test, repeat

loop if test passes

– for loop: perform update step, then test, then

repeat loop if test passes

• Use sparingly – like break, can make

program logic hard to follow

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The continue Statement

5-74

double number, sqrt_number;

// Loop 100 times

for (int count=0; count<100; count++)

{

 cout << "Enter a positive number: ";

 cin >> number;

 if (number < 0) // If negative, skip the rest

 continue; // of current iteration

 sqrt_number = sqrt(number);

 cout << "square root of " << number

 << " = " << sqrt_number << endl;

}

	Slide 1: Chapter 5: Looping
	Slide 2: 5.1
	Slide 3: The Increment and Decrement Operators
	Slide 4: The Increment and Decrement Operators
	Slide 5
	Slide 6
	Slide 7: Prefix vs. Postfix
	Slide 8: Prefix vs. Postfix - Examples
	Slide 9: Notes on Increment, Decrement
	Slide 10: 5.2
	Slide 11: Introduction to Loops: The while Loop
	Slide 12: while Loop – How It Works
	Slide 13: The Logic of a while Loop
	Slide 14
	Slide 15: How the Loop in Lines 9 through 13 Works
	Slide 16: Flowchart of the Loop
	Slide 17: while is a Pretest Loop
	Slide 18: Watch Out for Infinite Loops
	Slide 19: An Infinite Loop
	Slide 20: 5.3
	Slide 21: Using the while Loop for Input Validation
	Slide 22: Using the while Loop for Input Validation
	Slide 23: Input Validation Example
	Slide 24: Flowchart
	Slide 25: Input Validation Example from Program 5-5
	Slide 26: 5.4
	Slide 27: Counters
	Slide 28: Counters
	Slide 29
	Slide 30: 5.5
	Slide 31: The do-while Loop
	Slide 32: The Logic of a do-while Loop
	Slide 33: do-while Example
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: do-while Loop Notes
	Slide 39: 5.6
	Slide 40: The for Loop
	Slide 41: for Loop - Mechanics
	Slide 42: for Loop - Example
	Slide 43: A Closer Look at the Previous Example
	Slide 44: Flowchart for the Previous Example
	Slide 45
	Slide 46
	Slide 47: A Closer Look at Lines 13 through 14 in Program 5-9
	Slide 48: Flowchart for Lines 13 through 14 in Program 5-9
	Slide 49: When to Use the for Loop
	Slide 50: The for Loop is a Pretest Loop
	Slide 51: for Loop - Modifications
	Slide 52: for Loop - Modifications
	Slide 53: for Loop - Modifications
	Slide 54: for Loop - Modifications
	Slide 55: 5.7
	Slide 56: Keeping a Running Total
	Slide 57
	Slide 58
	Slide 59: 5.8
	Slide 60: Sentinels
	Slide 61
	Slide 62
	Slide 63: 5.10
	Slide 64: Deciding Which Loop to Use
	Slide 65: 5.11
	Slide 66: Nested Loops
	Slide 67: Lines from Program 5-16
	Slide 68: Nested Loops - Notes
	Slide 69: 5.12
	Slide 70: Breaking Out of a Loop
	Slide 71: Breaking Out of a Loop
	Slide 72: 5.13
	Slide 73: The continue Statement
	Slide 74: The continue Statement

