
Chapter 6:

Functions

6-1

Introduction to Functions

6.1

6-2

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-3

What Is A Function?

Why Functions?

• We’ve been using functions (e.g. main()).
C++ program consists of one or more functions

• Function: a collection of statements that
performs a specific task and are grouped
together under a certain name

• Modular programming: breaking a program up
into smaller, manageable functions or modules

• Motivation for modular programming:

– Improves maintainability and readability of programs

– Simplifies the process of writing programs

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-4

// This program has one long and complex function (main)

// that contains all the necessary statements to solve

// a problem.

void main()

{

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 ……

 statement;

}

Task1: read and validate the data

Task2: process the data

Task3: print the data with certain format

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-5

In this program the problem has been divided into 3 smaller

modules, each of which is handled by a separate function.

void ReadData()

{

 statement;

 ………

}

void ProcessData()

{

 statement;

 ………

}

void PrintData()

{

 statement;

 ………

}

void main()

{

 ReadData();

 ProcessData();

 PrintData();

}

Main function calls three other functions

to handle separate problems

ReadData function contains statements

to read and validate input data

ProcessData function contains statements

to process the data

PrintData function contains statements

to print the data in required format

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

What Is A Function?

Why Functions?

• The whole program is divided into smaller

modules, each performing a specific task

• main() function is the control module

• It accomplishes the overall task by calling

other functions

• To main() all other functions are like

black boxes whose details are hidden

6-6

Defining and Calling Functions

6.2

6-7

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-8

Defining and Calling Functions

• How to use the function: first define the

function, then call the function

• Function definition: statements that make

up a function

• Function call: statement causes a function

to execute

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-9

Function Definition

• Definition includes:

– return type: data type of the value that

function returns to the part of the program

that called it

– name: name of the function. Function

names follow same rules as variables

– parameter list: variables containing values

passed to the function

– body: statements that perform the
function’s task, enclosed in {}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-10

Function Definition

Note: The line that reads int main() is the

function header.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-11

Function Return Type

• If a function returns a value, the type of the
value must be indicated:
 int main()

• If a function does not return a value, its return
type is void:
 void printHeading()

 {

 cout << "Monthly Sales\n";

 }

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-12

Calling a Function

• To call a function, use the function name
followed by () and ;

 printHeading();

• The main function is called automatically when
the program is executed

• When called, program executes the body of the
called function

• After the function terminates, execution resumes
in the calling function at point of call

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-13

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-14

Flow of Control in Program 6-1

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-15

Calling Functions

• main can call any number of functions

– Program 6-3

• Functions can call other functions

– Program 6-4

• Compiler must know the following about a
function before it is called:

– name

– return type

– number of parameters

– data type of each parameter

Source Code/Chapter 06/Pr6-3.cpp
Source Code/Chapter 06/Pr6-4.cpp

Function Prototypes

6.3

6-16

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-17

Function Prototypes

• Ways to notify the compiler about a function
before a call to the function:

1) Place function definition before all calls to that
function (e.g. Programs 6-1, 6-3, 6-4)

2) Place a function prototype (function
declaration) ahead of all calls to the function
o It is like the function header but with a semicolon

▪ Function header: void printHeading()

▪ Prototype: void printHeading();

o The function definition follows later

Source Code/Chapter 06/Pr6-1.cpp
Source Code/Chapter 06/Pr6-3.cpp
Source Code/Chapter 06/Pr6-4.cpp

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-18

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-19

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-20

Prototype Notes

• Place prototypes near top of program

• Program must include either prototype or full

function definition before any call to the

function – compiler error otherwise

• Most programs use function prototypes

• When using prototypes, the function definitions

are usually placed after the main function in
any order

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program Structure with Functions

6-21

#include <iostream>

using namespace std;

void myfunc(); // function prototypes go here

int main()

{

 …

 myfunc(); // function calls go here

 …

 return 0;

}

void myfunc() // function definitions go here

{

 …

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-22

Using Functions in

Menu-Driven Programs

• Functions can be used

– to implement user choices from menu

– to modularize the program to make it easier to

understand

• Change Program 5-8 using

showMenu() function (refer to Program

6-10 in the book)

Source Code/Chapter 05/Pr5-8.cpp
Source Code/Chapter 06/Pr6-10.cpp
Source Code/Chapter 06/Pr6-10.cpp

Sending Data into a Function

6.4

6-23

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-24

Sending Data into a Function

• Can pass values into a function at the

time of call:
 double a=27, b=5, c;

 c = pow(a, b); { }

• Values passed to a function call are

called arguments

• Variables in a function definition that hold

the values passed as arguments are

called parameters

b
ac =

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-25

A Function with a Parameter

Variable

void displayValue(int num)

{

 cout << "The value is " << num << endl;

}

The integer variable num is a parameter.

It accepts any integer value (argument) passed to

the function.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-26

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-27

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-28

The function call in line 11 passes the value 5

as an argument to the function parameter num.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-29

Other Parameter Terminology

• A parameter can also be called a formal

parameter or a formal argument

• An argument can also be called an actual

parameter or an actual argument

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-30

Parameters, Prototypes, and

Function Headers

• The prototype must include the data type of
each parameter inside its parentheses

• The header must include a declaration for each
parameter in its ()

• The call takes a value, an expression or a
variable (without data type) for each argument

 void evenOrOdd(int); //prototype

 void evenOrOdd(int num) //header

 {

 }

 evenOrOdd(val); //call

…

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-31

Function Call Notes

• Function can have multiple parameters

• There must be a data type listed in the
prototype () for each parameter and a
declaration in the function header () for
each parameter

• Arguments will be promoted / demoted as
necessary to match parameters

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-32

Passing Multiple Arguments

When calling a function and passing
multiple arguments:

– the number of arguments in the call must
match the prototype and definition

– the first argument will be used to initialize the
first parameter, the second argument to
initialize the second parameter, etc.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-33

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-34

Program 6-8 (Continued)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-35

The function call in line 18 passes value1,

value2, and value3 as arguments to the

function.

Passing Data by Value

6.5

6-36

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-37

Passing Data by Value

• Pass by value: when an argument is

passed to a function, only its value is

copied into the parameter.

• Changes to the parameter in the function

do not affect the value of the argument

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-38

Passing Information to

Parameters by Value

• Example: int val=5;
 evenOrOdd(val);

• evenOrOdd can change variable num, but
it will have no effect on variable val

5

val

argument in

calling function

5

num

parameter in
evenOrOdd function

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-39

// This program demonstrates that changes to a

// function parameter have no effect on the

// original argument.

#include <iostream>

using namespace std;

// Function prototype

void increase(int);

void main()

{

 int number=10;

 cout << "Originally number = " << number << endl;

 increase(number);

 cout << "Finally number = " << number << endl;

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-40

// **

// Function definition for increase(). *

// This function increases the value of *

// parameter by one. *

// **

void increase(int value)

{

 value ++;

 cout << "Inside function, number = "

 << value << endl;

}

Program Output:

Originally number = 10

Inside function, number = 11

Finally number = 10

Passing Data by Reference—

Using Reference Variables as

Parameters

6.13

6-41

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-42

Using Reference Variables as

Parameters

• A mechanism that allows a function to

access the original parameter’s argument

from the function call, not a copy of the

argument

• Allows the function to modify variables

defined in another function

• Provides a way for the function to “return”

more than one value

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-43

Passing by Reference

• A reference variable is an alias for another
variable

• Defined with an ampersand (&)

 void getDimensions(int&, int&);

• Changes to a reference variable are made
to the variable it refers to

• Use reference variables to implement
passing data by reference

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-44

The & here in the prototype indicates that the

parameter is a reference variable.

Here we are passing data by

reference.

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-45

The & also appears here in the function header.

Program 6-25 (Continued)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-46

// This program demonstrates that using a

// reference variable in a function call can

// change the original argument.

#include <iostream>

using namespace std;

// Function prototype

void increase(int &);

void main()

{

 int number=10;

 cout << "Originally number = " << number << endl;

 increase(number);

 cout << "Finally number = " << number << endl;

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-47

// **

// Function definition for increase(). *

// This function increases the value of *

// parameter by one. *

// **

void increase(int &value)

{

 value ++;

 cout << "Inside function, number = "

 << value << endl;

}

Program Output:

Originally number = 10

Inside function, number = 11

Finally number = 11

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-48

Reference Variable Notes

• Reference variables must be defined with & in
front of the name (but used without &)

• Space between type and & is unimportant

• Must use & in both prototype and header, but not
needed in the function call

• Argument passed to the reference parameter
must be a variable – cannot be an expression or
constant

• Their data types must match each other

• Use when appropriate – don’t use when
argument should not be changed by function, or
if function needs to return only 1 value

Using Functions in

Menu-Driven Programs

6.6

6-49

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-50

Using Functions in

Menu-Driven Programs

• Functions can be used

– to implement user choices from menu

– to implement general-purpose tasks:

• Higher-level functions can call general-

purpose functions, minimizing the total number

of statements and speeding program

development time

• See Program 6-10 in the book

(compare it with Program 5-8)

Source Code/Chapter 06/Pr6-10.cpp
Source Code/Chapter 05/Pr5-8.cpp

The return Statement

6.7

6-51

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-52

The return Statement

• Used to end execution of a function and return
the control back to the statement that called this
function

• Can be placed anywhere in a function
– Statements that follow the return statement will not

be executed

• Used to return a value to the calling function

• Can be used to prevent abnormal termination of
program

• In a void function without a return statement,
the function ends at its last }

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-53

(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-54

Program 6-11(Continued)

Returning a Value From a Function

6.8

6-55

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-56

Returning a Value From a

Function

• Data can be passed to functions through
parameter variables

• A function can also return a value back
to the statement that called the function

• In the following, the pow function returns
the value to x through an assignment
statement:

 double x;

 x = pow(2.0, 10.0);

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-57

Value-Returning Functions

• Functions that return a value are known as
value-returning functions

• In a value-returning function, the return
statement can be used to return a value from
function to the point of call. Example:

int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-58

Defining a Value-Returning

Function

int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

Return Type

Value Being Returned

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-59

Defining a Value-Returning

Function

int sum(int num1, int num2)

{

 return num1 + num2;

}

Functions can return the values of
expressions, such as num1 + num2

The next few slides show how to call a

Value-Returning Function

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-60(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-61

Program 6-12 (Continued)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-62

The statement in line 17 calls the sum function,
passing value1 and value2 as arguments.

The return value is assigned to the total variable.

Calling a Value-Returning

Function

return num1 + num2;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-63

Another Example, from

Program 6-13

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-64

Returning a Value From a

Function

• The prototype and the definition must indicate
the data type of return value (not void)

• Calling function should use return value:
– assign it to a variable

– send it to cout

– use it in an expression

 int x=10, y=5;

 double average;

 cout << "The sum is " << sum(x, y);

 average = sum(x, y)/2.0;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting Fahrenheit to Celcius

6-65

#include <iostream>

Using namespace std;

double Fahr2Cel(double);

void main()

{

 double degF, degC;

 cout << ″Please enter temperature in Fahrenheit: ″;

 cin >> degF;

 degC = Fahr2Cel(degF);

 cout >> ″The temperature in Celcius is ″ >> degC >> endl;

}

double Fahr2Cel(double fahr)

{

 return (fahr-32)*5/9;

}

Returning a Boolean Value

6.9

6-66

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-67

Returning a Boolean Value

• Function can return true or false

• Declare return type in function prototype
and heading as bool

• Function body must contain return

statement(s) that return true or false

• Calling function can use return value in a

relational expression

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-68(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-69

Local and Global Variables

6.10

6-70

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-71

Local and Global Variables

• Variables defined inside a function are

local to that function. They are hidden

from the statements in other functions,

which normally cannot access them.

• Because the variables defined in a

function are hidden, other functions may

have separate, distinct variables with the

same name.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-72

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-73

When the program is executing in main, the num variable

defined in main is visible. When anotherFunction is

called, however, only variables defined inside it are visible,
so the num variable in main is hidden.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-74

Local Variable Lifetime

• A function’s local variables exist only while the
function is executing. This is known as the
lifetime of a local variable

• When the function begins, its local variables and
its parameter variables are created in memory,
and when the function ends, the local variables
and parameter variables are destroyed

• This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-75

Global Variables and

Global Constants

• A global variable is any variable defined
outside all the functions in a program.

• The scope of a global variable is the
portion of the program from the variable
definition to the end.

• This means that a global variable can be
accessed by all functions that are defined
after the global variable is defined.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-76

Global Variables and

Global Constants

• You should avoid using global variables

for conventional purposes of storing,

manipulating and retrieving data, because

they make programs difficult to manage

• Global variables are commonly used to

create global constants

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-77

Global constants defined for values that

do not change throughout the program’s

execution.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-78

The constants are then used for those

values throughout the program.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 6-79

Initializing Local and Global

Variables

• Local variables are not automatically

initialized. They must be initialized by

programmer.

• Global variables (not constants) are
automatically initialized to 0 (numeric) or

NULL (character) when the variable is

defined.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Temperature Conversion Problem

• Write a program to convert temperature

either from Celsius to Fahrenheit or vice versa.

The main function will repeatedly prompt the

user to input both a temperature and a choice of

whether that number is in Celsius to be

converted to Fahrenheit or vice versa. The main

function MUST call one value returning

function to do both conversion. The function

should take two parameters: 1. Temperature, 2.

Choice. The function should return the converted

temperature to the calling function.
6-80

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Algorithm (Main Function)

1) Prepare for data:

 inputTemp, outputTemp, choice

2) Repeat the following until user chooses to stop:

i. Prompt the user to enter a choice:

 1: convert Cel to Fah

 2: convert Fah to Cel

 3: stop

ii. If choice == 1 or 2

 prompt the user to enter the temperature in Cels or Fahr

 call function “convTemp” to do the selected conversion

 print the converted temperature

iii. If choice == 3

 print a terminating message and stop the repetition
6-81

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Algorithm (ConvTemp Function)

1) Prepare for data

 inputTemp, choice, outputTemp

2) If choice==1

 convert from Celsius to Fahrenheit using:

 outputTemp = inputTemp * 9 / 5 + 32;

3) If choice==2

 convert from Fahrenheit to Celsius using:

 outputTemp = (inputTemp – 32) *5 / 9;

4) Return the converted temperature (outputTemp) to the

calling function

6-82

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Complete Program (1)

6-83

#include <iostream>

using namespace std;

double convTemp(int, double);

void main()

{

 double inputTemp, outputTemp;

 int choice;

 do {

 cout << ″1: Convert Celsius to Fahrenheit\n″;

 cout << ″2: Convert Fahrenheit to Celsius\n″;

 cout << ″3: Quit\n\n″;

 do {

 cout << ″Your choice? ″;

 cin >> choice;

 } while (choice!=1 && choice!=2 && choice!=3);

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Complete Program (2)

6-84

if (choice == 1 || choice == 2)

 {

 cout << ″Enter temperature: ″;

 cin >> inputTemp;

 outputTemp = convTemp(choice, inputTemp);

 }

 switch (choice)

 {

 case 1:

 cout << ″\nThe temperature in Fahr is ″

 << outputTemp << endl << endl;

 break;

 case 2:

 cout << ″\nThe temperature in Cels is ″

 << outputTemp << endl << endl;

 break;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Complete Program (3)

6-85

 case 3:

 cout << ″\nThe program is exiting.\n\n″;

 }

 } while (choice != 3);

}

double convTemp(int choice, double temp)

{

 if (choice == 1)

 return temp*9/5+32;

 else

 return (temp-32)*5/9;

}

	Slide 1: Chapter 6: Functions
	Slide 2: 6.1
	Slide 3: What Is A Function? Why Functions?
	Slide 4
	Slide 5
	Slide 6: What Is A Function? Why Functions?
	Slide 7: 6.2
	Slide 8: Defining and Calling Functions
	Slide 9: Function Definition
	Slide 10: Function Definition
	Slide 11: Function Return Type
	Slide 12: Calling a Function
	Slide 13
	Slide 14: Flow of Control in Program 6-1
	Slide 15: Calling Functions
	Slide 16: 6.3
	Slide 17: Function Prototypes
	Slide 18
	Slide 19
	Slide 20: Prototype Notes
	Slide 21: Program Structure with Functions
	Slide 22: Using Functions in Menu-Driven Programs
	Slide 23: 6.4
	Slide 24: Sending Data into a Function
	Slide 25: A Function with a Parameter Variable
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Other Parameter Terminology
	Slide 30: Parameters, Prototypes, and Function Headers
	Slide 31: Function Call Notes
	Slide 32: Passing Multiple Arguments
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 6.5
	Slide 37: Passing Data by Value
	Slide 38: Passing Information to Parameters by Value
	Slide 39
	Slide 40
	Slide 41: 6.13
	Slide 42: Using Reference Variables as Parameters
	Slide 43: Passing by Reference
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Reference Variable Notes
	Slide 49: 6.6
	Slide 50: Using Functions in Menu-Driven Programs
	Slide 51: 6.7
	Slide 52: The return Statement
	Slide 53
	Slide 54
	Slide 55: 6.8
	Slide 56: Returning a Value From a Function
	Slide 57: Value-Returning Functions
	Slide 58: Defining a Value-Returning Function
	Slide 59: Defining a Value-Returning Function
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Another Example, from Program 6-13
	Slide 64: Returning a Value From a Function
	Slide 65: Converting Fahrenheit to Celcius
	Slide 66: 6.9
	Slide 67: Returning a Boolean Value
	Slide 68
	Slide 69
	Slide 70: 6.10
	Slide 71: Local and Global Variables
	Slide 72
	Slide 73
	Slide 74: Local Variable Lifetime
	Slide 75: Global Variables and Global Constants
	Slide 76: Global Variables and Global Constants
	Slide 77
	Slide 78
	Slide 79: Initializing Local and Global Variables
	Slide 80: Temperature Conversion Problem
	Slide 81: Algorithm (Main Function)
	Slide 82: Algorithm (ConvTemp Function)
	Slide 83: The Complete Program (1)
	Slide 84: The Complete Program (2)
	Slide 85: The Complete Program (3)

