oo (G

Chapter 7:

Arrays

From Control Structures
through Objects

sixth edition

TONY GADDIS

TONY GADDIS

7.1

Arrays Hold Multiple Values

Arrays Hold Multiple Values

[==
[

A single variable can only hold one value

Enough memory for 1 int

int test;

What if we need to store many test scores

Array: variable that can store multiple
values of the same type

Values are stored in a block of continuous
memory cells

sle 7-3

Array - Memory Layout

i

e Declared using [] operator:
int tests[5];

* The above definition allocates the following
memory:

[U R B

first second third fourth fifth
element element element element element

sle 7-4

Array Terminology

i

In the definition int tests[5];

e int is the data type of the array elements
» tests is the name of the array

5, in[5], Iisthe size declarator. It shows the
number of elements in the array

Arrays of any data type can be defined

float temperatures[100];
char name[41];
double grades[30];

sle 7-5

Array Terminology

_—
[

* The size of an array (the amount of memory
used by the array) is:
— the total number of bytes allocated for it
— (number of elements) * (number of bytes for
each element)
« Examples:

int tests[5] is an array of 20 bytes,
assuming 4 bytes for an int

long double measures[10] is an array of
80 bytes, assuming 8 bytes for a long double

sle 7-6

Size Declarators

1)

* Named constants are commonly used as
size declarators.

constint SIZE = 5;
int tests[SIZE];

e This eases program maintenance when the
size of the array needs to be changed.

sle 7-7

TONY GADDIS

[.2

Accessing Array Elements

Accessing Array Elements

i

* Each element in an array is assigned a unique
subscript or index

* Each array element can be accessed through its
subscript

* Subscripts start at 0 and end at n-1 where n is
the number of elements in the array

subscripts:
0 1 2 3 4

sle

7-9

Accessing Array Elements

i

« Given the following program:

int tests[5]

tests[0] = 85;
tests[3] = 90;

tests[0] tests[l] tests[2] tests[3] tests[4]

85

?

?

90 ?

tests[5] = 75;

/I not valid

sle

7-10

Accessing Array Elements

i

* Array elements can be used just like regular
variables:
tests[0] = 79;
cout <<tests[O];
cin >>tests[1];
tests[4] = tests[0] + tests[1];
» Arrays must be accessed via individual elements
(can’t read whole array with one statement):
cout << tests; /I not legal

sle

Program 7-1

// This program asks for the number of hours worked

// by six employees. It stores the values in an array.
#include <iostream>
using namespace std;

int main()

{

const int NUM_EMPLOYEES = 6;

int hours[NUM_EMPLOYEES];

// Get the hours worked by each employee.
cout << "Enter the hours worked by "

cin
cin
cin
cin
cin
cin

<< NUM_EMPLOYEES << "

>=
==
==
==
==
==

hours[0];
hours[1];
hours[2];
hours[3];
hours[4];
hours[5];

employees: ";

(Program Continues)

// Display the wvalues in the array.
cout << "The hours you entered are:";

cout << " << hours[0]; -
cout << " " << hours[1l]; 3
cout << " " << hours[2];

cout << " " << hours[3];

cout << " " << hours[4];

cout << " " << hours[5] << endl;

return 0;

}

Program Output with Example Input Shown in Bold
Enter the hours worked by 6 employees: 2012 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

Here are the contents of the hours array, with the values
entered by the user in the example output:

hours[0] hours([1] hours[2] hours[3] hours[4] hours([5]
l l 1 1 l l

20 12 40 30 30 15

sle

7-13

Accessing Array Contents

i

* The size declarator of an array definition must
be a constant or literal

» But the subscript of an array can also use
integer variable or expression

int i =5;
cout << tests][i] << endl;
cin >> tests[i+1];

* This makes it much easier to access array
elements with a loop

sle 7-14

Using a Loop to Step Through an
Array =

« Example — The following code defines an
array, numbers , and initializes each
element to O:

constint ARRAY_SIZE =5;
int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)
numbers[count] = 0;

sle

A Closer Look At the Loop

i

The loop ends when the
variable count reaches 5, which
is the first invalid subscript value.

The variable count starts at 0,
which is the first valid subscript value.

\

for (count = 0; count < ARRAY SIZE; count++)
numbers[count] = 0; T

The variable count is

incremented after
each iteration.

Nesle 7-16

Using a Loop to Step Through an
Array

const int NUM_EMPLOYEES = 6;
int hours[NUM_EMPLOYEES];

/I # of employees
// hours worked for
each employee
int count; /[loop counter
I/l Input hours worked for each employee
for (count=0; count<NUM_EMPLOYEES; count++)
{
cout << "Enter hours worked by employee "
<< count+l <<™ ™
cin >> hours[count];

sle

i

7-17

Default Initialization

i

* Global array - all elements initialized to O
by default

* Local array - all elements uninitialized by
default

sle

7-18

STARTING OUT WITH

7.3

No Bounds Checking in C++

TONY GADDIS

No Bounds Checking in C++

i

* When you use a value as an array
subscript, C++ does not check it to make
sure it is a valid subscript.

 In other words, you can use subscripts
that are beyond the bounds of the array.

sle

Code From Program 7-5

_—
[

* The following code defines a three-element
array, and then writes five values to it!

const int SIZE = 3; // Constant for the array size
int values[SIZE]; // Bn array of 2 integers
int count; // Loop counter variable

// Attempt to store five numbers in the three-element array.
cout << "I will store 5 numbers in a 3 element array!n";
for (count = 0; count < 5; count++)

values|[count] = 100;

sle 7-21

What the Code Does

i

The way the values array is set up in memory.
The outlined area represents the array.
Memory outside the array
(Each block = 4 bytes)

Memory outside the array
(Each block = 4 bytes)

| | I | | | | |

values[0] values[1l] wvalues(2]

How the numbers assigned to the array overflow the array's boundaries.
The shaded area is the section of memory illegally written to.

Anything previously stored
here is overwritten.

100 l 100 l 100 I 100 ‘ 100 ‘

values[0] values[1l] values([2] wvalues[3] values[4]
(Does not exist) (Does not exist)
Nesle 7-22

No Bounds Checking in C++

i

» Be careful not to use invalid subscripts.

* Doing so can corrupt other memory
locations, crash program, or lock up
computer, and cause elusive bugs.

sle 7-23

Off-By-One Errors

[==
[

* An off-by-one error happens when you use
array subscripts that are off by one.

* This can happen when you start subscripts
at 1 rather than O:

Il This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)
numbers[count] = 0O;

sle 7-24

STARTING OUT WITH +

~m | Array Initialization

_—
[

« Arrays can be initialized with an initialization
list:

TONY GADDIS

1.4

Array Initialization

const int SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

* The values are stored in the array in the
order in which they appear in the list.

* The initialization list cannot exceed the

array size.
sle 7-26
const int MONTHS = 12; . ., - . .
int days[MONTHS] - { 31, 28, 21, 30, Partial Array Initialization
31, 30, 21, 31, — =
30, 31, 20, 31};
for (int count = 0; count < MONTHS; count-++) * If array is initialized with fewer initial values than
{ cout << "Month " << (count + 1) << " has "; the size declarator, the remaining elements will
cout << days[count] << " days.\n": be set to O:

H
int numbers

(71 = {1, 2, 4, 8};
Program Output |
Month 1 has 21 days. Uninitialized Elements
| « [& |

Month 2 has 28 days.

Month 3 has 31 days. L | 2 o 0 | 0 |
Eonti : Eas 33 gays. numbers numbers numbers numbers numbers numbers numbers
ont as 31 days. 2

Month 6 has 30 days. [0] [1] (2] [3] [4] (5] [6]
Month 7 has 31 days. , . . YT . .

Month & has 21 days. » Can’t skip elements in initialization list

Month 9 has 30 days. .

Month 10 has 31 days. int numbers[7] ={1, ,4, ,10}; /I NOT legal

Month 11 has 30 days.
Month 12 has 31 days. 7-27 sle 7-28

Implicit Array Sizing

i

« Can determine array size by the size of the
initialization list:
int quizzes[]={22,17,15,20};

| 22 \ 17 | 15 \ 20 |

» Must use either array size declarator or
initialization list at array definition
int quizzes|]; // not legal

sle

7-29

Initializing With a String

_—
[

Can use a character array to store a string

Character array can be initialized by
enclosing string in " "

const int SIZE = 6;

char fName[SIZE] = "Henry";
Must leave room for \O " at end of array

If initializing character-by-character, must
add in \O ’ explicitly:
char fName[SIZE] =
{IHI’ Iel’ Inl’ 'rl’ 'yl’ I\OI}1 sle

7-30

TONY GADDIS

(.9

Processing Array Contents

Processing Array Contents

[==
[

 Individual array elements are processed like any
other type of variable

pay = hours[count] * rate;
if (cost[20] < cost[10])
 When using ++, -- operators, don’t confuse the
element with the subscript:

// add 1 to tests]i]

// increment i, no
Il effect on any element
/I of tests

sle

tests[i]++;
tests[i++];

7-32

Array Assignment

To copy one array to another,
* Don't try to assign one array to the other:
constint SIZE = 4;

int tests[SIZE] = {70, 75, 80, 85};
int newTests[SIZE];

newTests = tests; /I Won't work

 Instead, assign element-by-element:
for (i=0; i<SIZE; i++)
newTests[i] = tests]i;

sle

i

7-33

Printing the Contents of an Array

* You can display the contents of a
character array by sending its name to
cout;

char fNamel[] = "Henry";
cout << fName << endl,

But, this ONLY works with character arrays!

sle

i

7-34

Printing the Contents of an Array

* For other types of arrays, you must print
element-by-element:

const int SIZE = 4;

int tests[SIZE] = {70, 75, 80, 85};
for(i =0;i <SIZE; i++)
cout << tests[i] << endl;

sle

i

7-35

Summing and Averaging
Array Elements

» Use a simple loop to add together array
elements:
int tnum;
double average, sum = 0;
for(tnum =0; thum < SIZE; thum++)
sum += tests[tnum];

* Once summed, can compute average:
average = sum / SIZE;

sle

i

7-36

Finding the Highest Value in an
Array

i

int count;

int highest;

highest = numbers]0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] > highest)
highest = numbers[count];

}

When this code is finished, the highest variable
will contain the highest value in the numbers array.

Nesle

7-37

Finding the Lowest Value in an
Array

int count;

int lowest;

lowest = numbers|[O0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] < lowest)
lowest = numbers[count];

}

When this code is finished, the lowest
contain the lowest value in the numbers array.

Nesle

i

variable will

7-38

Partially-Filled Arrays

i

e If it is unknown how much data an
array will be holding:

—Make the array large enough to hold the
largest expected number of elements.

—Use a counter variable to keep track of
the number of items stored in the array.

sle

7-39

Partially-Filled Arrays

const int SIZE=100;
int studentID[SIZE], count=0, number;

cout << "Enter an ID or -1 to quit: ";
cin >> number;

while (number != -1 && count < SIZE)

{
studentID[count++] = number;
cout << "Enter an ID or -1 to quit: ";
cin >> number;

}

cout << count << " IDs were entered. They are\n";
for (int i=0; i<count; i++)
cout << studentlIDJi] << endl;

sle

i

7-40

Comparing Arrays

_—
[

» The following is an incorrect way to compare the
two arrays.

constint SIZE =5;
int firstArray [SIZE] ={5, 10, 15, 20, 25 };
int secondArray[SIZE] ={5, 10, 15, 20, 25 };

You Must Compare Arrays
Element-by-Element

i

const int SIZE =5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = {5, 10, 15, 20, 25 };
bool arraysEqual = true; /I Flag variable

/I Compare the two arrays.
for (int index=0; index<SIZE; index++)

{
if (firstArray[index] != secondArray[index])
if (firstArray == secondArray) {
cout << "The arrays are equal.\n"; arrayseEqual = false;
else break;
cout << "The arrays are not equal.\n";) }
if (arraysEqual)
cout << "The arrays are equal.\n";
else
sle 7-41 cout << "The arrays are not equal.\n"; ge 7-42
STARTING OUT WITH C++

From Control Structures
through Objects

TONY GADDIS

(.7

Arrays as Function Arguments

Arrays as Function Arguments

i

 Arrays can be used to pass blocks of data to
functions

* To define a function that takes an array
parameter, use empty [] for array argument:
void showScores(int []);

[/l function prototype
void showScores(int numsi])
/I function header

* To pass an array to a function, just use the array
name:

showScores(tests);

sle

7-44

Arrays as Function Arguments

_—
[

* When passing an array to a function, it is common
to pass array size so that function knows how many
elements to process:

showScores(tests, ARRAY_SIZE);

» Array size must also be reflected in the function
prototype and header:

void showScores(int [], int);
Il function prototype

void showScores(int nums[], int size)
/l function header

sle 7-45

Program 7-14

// This program demonstrates an array being passed to a function.

tinclude <iostream>
using namespace std;

vold showValues(int [], int); // Function prototype

int main()

{
const int ARRAY SIZE = &;
int numbers[ARRAY SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

showValues (numbers, ARRAY SIZE);
return 0;

(Program Continues)

sle 7-46

Program 7-14 (Continued)

i

;'_f*******************************1«******************
// Definition of functicon showValue. *
/f This function accepts an array of integers and *
/f the array's size as its argquments. The contents *

/f of the array are displayed. *
;’_f**************#********#**************************

volid showValues{int nums|[], int size)

{
for (int index = 0; index < size; index++)
cout << nums|[index] << " "
cout =< endl;

¥

Program Output
5 10 15 20 25 20 35 40

sle 7-47

Modifying Arrays in Functions

i

« Array names in functions are like
reference variables — changes made to
array in a function are reflected in actual
array in calling function

* Need to exercise caution that array is not
inadvertently changed by a function

sle 7-48

/I This program uses a function to double the value
/l of each element of an array.

#include <iostream>
using namespace std;

// Function prototypes
void doubleArray(int [], int);
void showValues(int [], int);

int main()

{
constint SIZE =7;

int data[SIZE] ={1, 2, 3, 4,5, 6, 7};

/l Display the initial array values
cout << " The array’s initial values are:

// Double the values in the array
doubleArray(data, SIZE);

sle

<< endl;

i

7-49

// Display the array values after the function call
cout << " After calling doubleArray the values are:\n
showValues(data, SIZE);

return O;

}

/I This function doubles the value of each element in the
/I array passed nums. The value of size is the number of
/I elements in the array.
void doubleArray(int numsl[], int size)
{
for (int index=0; index<size; index++)
numslindex] = nums[index]*2;

sle

i

7-50

/I This function displays the value of each element in the
/[array passed nums. The value of size is the number of
/l elements in the array.

void showValues(int nums[], int size)

{
for (int index=0; index<size; index++)
cout << numsfindex] << "y
cout << endl;
}

Program output:

The array’s initial values are:
1234567

After calling doubleArray the values are:
2468101214

sle

i

7-51

S

7.8

Two-Dimensional Arrays

TARTING OUT WITH ‘ B

From Control Structures
through Objects

TONY GADDIS

Two-Dimensional Arrays

Two-Dimensional Array
Representation

* 1D array can only hold one set of data constint ROWS =4, COLS = 3;
- 2D array can store multiple sets of data int exams[ROWS][COLS];
— Ex. Use a 1D array to store grades for one student. Column 0 Column 1 Column 2
Use a 2D array to store grades for all students
;) Row 0 exams[0][0] exams[0][1] exams[0][2]
* Like multiple 1D arrays of the same type
. . Row 1 exams[1][0] exams[1][1] exams[1][2]
* Like atable in a spreadsheet
) } ... Row 2 exams[2][0] exams[2][1] exams[2][2]
» Use two size declarators in definition:
Row3 [exams[3][0] exams[3][1] exams[3][2]
constint ROWS =4, COLS = 3;
int exams[ROWS][COLS]; - Use two subscripts to access element:
* First declarator is number of rows; second is exams(2][2] = 86;
number of columns
sle 7-53 sle 7-54
Use nested loops to cycle through Program 7-18 (continued)
eaCh element Of a tWO-dImenSIOI’]a| al'ray - // Nested leoops to £1i11 the array with guarterly =
— // sales figures for each division. =
for (div = 0; div < NUM DIVS; div++)
Program 7-18 {
for (gtr = 0; gtr < NUM QTRS; gtr++)
// This program demonstrates a two-dimensional array. { o)
tinclude <iostreams cout << "Division " << (div + 1);
sinclude <iomanip> cout << ", Quarter " << (gtr + 1) << ": 5";
using namespace std; cin >> sales[div][qgtr];
t
int main() cout << endl; // Print blank line.
}
{
const int NUM DIVS = 3; /{ Number of divisicns o
const int NUM QTRS = 4; /7 Mumber cl>f qlﬂlarters ;;rli?;;icLlg?p;j_:_lrsidlng g?gsiliizzf)elements.
double sales[NUM DIVS][WUM QTRS]; // Array with 3 rows and 4 columns. . -
double totalSales = 0; // To hold the total sales.
int div tr; // Loop counters for (ger = 0; gtr < NUM _QTRS; qtr+t)
¢ Gt o 3) totalSales += sales[div][gtr];
cout << "This program will calculate the total sales of\n"; }
cout << "all the company's divisions.\n"; cout << fixed << showpolint << setprecision(2);
cout =< "Enter the following sales informatien:\n'\n"; cout << "The total sales for the company are: S";
) cout << totalSales << endl;
(program continues) return 0;
sle 7-55 ' sie 7-56

Program Output with Example Input Shown in Bold
This program will caleculate the total sales of
all the company's diwvisions.

Enter the following sales data:

Division 1, Quarter 1l: $31569.45 [Enter]
Division 1, Quarter 2: 529654.23 [Enter]
Division 1, Quarter 3: 532982.54 [Enter]
Division 1, Quarter 4: $39651.21 [Enter]
Division 2, Quarter 1: $56321.02 [Enter]
Division 2, Quarter 2: 554128.63 [Enter]
Division 2, Quarter 3: 541235.85 [Enter]
Division 2, Quarter 4: 554652.33 [Enter]
Division 3, Quarter 1: 529654.35 [Enter]
Division 3, Quarter 2: 528963.32 [Enter]
Division 3, Quarter 3: $25353.55 [Enter]
Division 3, Quarter 4: $32615.88 [Enter]

The total sales for the company are: $456782.34

sle 7-57

2D Array Initialization

_—
[

« Two-dimensional arrays are initialized row-
by-row:

constint ROWS =2, COLS =2;

int exams[ROWS][COLS]= {{ 84,78 }{ 92,97 }};

Or:
int exams[ROWS][COLS] = {{84, 78},
{92, 97});
Col0 Col 1l
Rowo |84 |78
Rowl [92 (97
sle 7-58

2D Array Initialization
e Can omitinner { }

int exams[ROWS][COLS] = {{84, 78},{92, 97}};
int exams[ROWS][COLS] = {84, 78, 92, 97},

. The following are the same.

» Extra braces provide ability to leave out some
initial values in a row — array elements without
initial values will be set to O or NULL

int exams[ROWS][COLS] = { {84}, {92, 97} };
(exams[0][1] is automatically set to 0)

sle 7-59

Two-Dimensional Array as
Parameter, Argument =

* Use empty [] for row, size declarator for column
in prototype & header, and an int for # of rows:

constint COLS = 2;

Il Prototype
void getExams(int [[[COLS], int);

/l Header
void getExams(int exams[][COLS], int rows)

* Use array name as argument in function call:

getExams(exams, 2);

sle 7-60

Example — The showArray

Function from Program 7-19 -
,-"._.-"*******************************""*********************************
// Function Definition for showhArray *
// The first arqument is a two-dimensicnal int array with COLS *
// columns. The second argument, rows, specifies the number of *

// rows in the array. The function displays the array's contents. *
,-"._.-"***

void showlArray(int array[][COL3], int rows)
{
for (int x = 0; x < rows; X++)
{
for (int y = 0; y < COLS; y++)
{
cout =< setw(d) << array[x][y] =< " "
t
cout << endl;
}
h

vesie 7-61

How showArray is Called

int tablel[TBL1 ROWS][COLS]

{{1l, 2
{5, &

3, 41,
T, 8},

int table2[TBL2 ROWS][COLS]

i

{9, 1o, 11, 12%}%;
{{10, 20, 30, 40},

{50, &0, 70, 8O},

{90, 1loo0, 110,
{130, 140, 150,

cout << "The contents of tablel are:\n";
showhrray(tablel, TEL1 ROWS);
cout << "The contents of tabkle2 are:\n";
showhArray(table2, TBL2 ROWS);

Nesle

120%,
160} };

7-62

Summing All the Elements in a
Two-Dimensional Array

* Given the following definitions:
const int NUM_ROWS = 5; // Number of rows
const int NUM_COLS =5; // Number of columns
int total =0; /I Accumulator
int numbers[NUM_ROWS][NUM_COLS] =
{{2,7,9, 6, 4},

{6, 1, 8,9, 4},

{4,3,7, 2, 9},

{9,9,0, 3, 1},

{6,2,7,4,1}};

sle 7-63

Summing All the Elements in a
Two-Dimensional Array

// Sum the array elements.
for (int row = 0; row < NUM_ROWS; row++)

{
for (int col =0; col <NUM_COLS; col++)

total += numbers[row][col];

}

// Display the sum.
cout << "The total is " << total << endl;

Nesle

i

Summing the Rows of a Summing the Rows of a
Two-Dimensional Array Two-Dimensional Array

i
i

* Given the following definitions: /I Get each student's average score.

for (int row = 0; row < NUM_STUDENTS; row++)
constint NUM_STUDENTS = 3; {
const int NUM_SCORES = 5; Il Set the accumulator.
double total; /I Accumulator total = O;
double average; /l To hold average scores /I Sum a row.
double scores[NUM_STUDENTS][NUM_SCORES] = for (int col =0; col <NUM_SCORES; col++)

({88, 97, 79, 86, 94}, /e tE[)'E[z;I += scores[row][col];
et the average
Egg % ;3 ;g Sgi} average = total / NUM_SCORES;

// Display the average.
cout << "Score average for student "
<< (row + 1) << "is " << average <<endl;

sle 7-65 Nesle 7-66

Summing the Columns of a Summing the Columns of a Two-
Two-Dimensional Array Dimensional Array

i
i

* Given the following definitions: /Il Get the class average for each score.
for (int col =0; col <NUM_SCORES; col++)
constint NUM_STUDENTS = 3; {
const int NUM_SCORES =5; Il Reset the accumulator.
double total; /I Accumulator total = O;
double average; /l To hold average scores /I Sum a column
double scores[NUM_STUDENTS][NUM_SCORES] = for (int row = 0; row < NUM_STUDENTS; row++)
({88, 97, 79, 86, 94}, /e t?'E[:;I += scores[row][col];
et the average
%gg % ;3 ;2 Sgi} average = total / NUM_STUDENTS;

/l Display the class average.
cout << "Class average for test " << (col +1)
<<"is " << average << endl;

sle 7-67 Nesle 7-68

