
Chapter 7:

ArraysArrays
7.1

Arrays Hold Multiple Values

7.1

Arrays Hold Multiple Values

• A single variable can only hold one value
int test;

Enough memory for 1 int

95

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-3

Enough memory for 1 int

• What if we need to store many test scores
• Array: variable that can store multiple

values of the same type
• Values are stored in a block of continuous

memory cells

Array - Memory Layout

• Declared using [] operator:
int tests[5];

• The above definition allocates the following
memory:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-4

memory:

first
element

second
element

third
element

fourth
element

fifth
element

Array Terminology

In the definition int tests[5];

• int is the data type of the array elements
• tests is the name of the array
• 5, in [5], is the size declarator. It shows the

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-5

• 5, in [5], is the size declarator. It shows the
number of elements in the array

Arrays of any data type can be defined

float temperatures[100];

char name[41];

double grades[30];

Array Terminology

• The size of an array (the amount of memory
used by the array) is:
– the total number of bytes allocated for it
– (number of elements) * (number of bytes for

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-6

– (number of elements) * (number of bytes for
each element)

• Examples:
int tests[5] is an array of 20 bytes,
assuming 4 bytes for an int

long double measures[10] is an array of
80 bytes, assuming 8 bytes for a long double

Size Declarators

• Named constants are commonly used as
size declarators.
const int SIZE = 5;
int tests[SIZE];

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-7

int tests[SIZE];

• This eases program maintenance when the
size of the array needs to be changed.

7.2
Accessing Array Elements

7.2

Accessing Array Elements

• Each element in an array is assigned a unique
subscript or index

• Each array element can be accessed through its
subscript

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-9

subscript
• Subscripts start at 0 and end at n-1 where n is

the number of elements in the array

0 1 2 3 4

subscripts:

Accessing Array Elements

• Given the following program:

int tests[5] ;
tests[0] = 85;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-10

tests[0] = 85;

tests[3] = 90;

tests[5] = 75; // not valid

tests[0] tests[1] tests[2] tests[3] tests[4]

85 ? ? 90 ?

Accessing Array Elements

• Array elements can be used just like regular
variables:

tests[0] = 79;

cout << tests[0];

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-11

cout << tests[0];

cin >> tests[1];

tests[4] = tests[0] + tests[1];

• Arrays must be accessed via individual elements
(can’t read whole array with one statement):

cout << tests; // not legal

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-12(Program Continues)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-13

Here are the contents of the hours array, with the values
entered by the user in the example output:

Accessing Array Contents

• The size declarator of an array definition must
be a constant or literal

• But the subscript of an array can also use
integer variable or expression

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-14

integer variable or expression

int i = 5;

cout << tests[i] << endl;

cin >> tests[i+1];

• This makes it much easier to access array
elements with a loop

Using a Loop to Step Through an
Array

• Example – The following code defines an
array, numbers , and initializes each
element to 0:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-15

const int ARRAY_SIZE = 5;
int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)
numbers[count] = 0;

A Closer Look At the Loop

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-16

Using a Loop to Step Through an
Array

const int NUM_EMPLOYEES = 6; // # of employees
int hours[NUM_EMPLOYEES]; // hours worked for

each employee
int count; // loop counter

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-17

// Input hours worked for each employee
for (count=0; count<NUM_EMPLOYEES; count++)
{

cout << "Enter hours worked by employee "
<< count+1 << ": ";

cin >> hours[count];
}

Default Initialization

• Global array � all elements initialized to 0
by default

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-18

• Local array � all elements uninitialized by
default

7.3
No Bounds Checking in C++

7.3

No Bounds Checking in C++

• When you use a value as an array
subscript, C++ does not check it to make
sure it is a valid subscript.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-20

sure it is a valid subscript.

• In other words, you can use subscripts
that are beyond the bounds of the array.

Code From Program 7-5

• The following code defines a three-element
array, and then writes five values to it!

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-21

What the Code Does

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-22

No Bounds Checking in C++

• Be careful not to use invalid subscripts.
• Doing so can corrupt other memory

locations, crash program, or lock up

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-23

locations, crash program, or lock up
computer, and cause elusive bugs.

Off-By-One Errors

• An off-by-one error happens when you use
array subscripts that are off by one.

• This can happen when you start subscripts
at 1 rather than 0:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-24

at 1 rather than 0:

// This code has an off-by-one error.
const int SIZE = 100;
int numbers[SIZE];
for (int count = 1; count <= SIZE; count++)

numbers[count] = 0;

7.4
Array Initialization

7.4

Array Initialization

• Arrays can be initialized with an initialization
list:

const int SIZE = 5;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-26

int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the
order in which they appear in the list.

• The initialization list cannot exceed the
array size.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-27

Partial Array Initialization

• If array is initialized with fewer initial values than
the size declarator, the remaining elements will
be set to 0:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-28

• Can’t skip elements in initialization list
int numbers[7] = {1, ,4, ,10}; // NOT legal

Implicit Array Sizing

• Can determine array size by the size of the
initialization list:

int quizzes[]={22,17,15,20};

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-29

• Must use either array size declarator or
initialization list at array definition

int quizzes[]; // not legal

22 17 15 20

Initializing With a String

• Can use a character array to store a string
• Character array can be initialized by

enclosing string in " ":
const int SIZE = 6;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-30

const int SIZE = 6;
char fName[SIZE] = "Henry";

• Must leave room for ‘\0 ’ at end of array

• If initializing character-by-character, must
add in ‘\0 ’ explicitly:

char fName[SIZE] =

{'H', 'e', 'n', 'r', 'y', '\0'};

7.5
Processing Array Contents

7.5

Processing Array Contents

• Individual array elements are processed like any
other type of variable

pay = hours[count] * rate;

if (cost[20] < cost[10])

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-32

if (cost[20] < cost[10])

……

• When using ++, -- operators, don’t confuse the
element with the subscript:

tests[i]++; // add 1 to tests[i]
tests[i++]; // increment i, no

// effect on any element

// of tests

Array Assignment

To copy one array to another,
• Don’t try to assign one array to the other:

const int SIZE = 4;

int tests[SIZE] = {70, 75, 80, 85};

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-33

int tests[SIZE] = {70, 75, 80, 85};

int newTests[SIZE];

newTests = tests; // Won't work

• Instead, assign element-by-element:
for (i=0; i<SIZE; i++)

newTests[i] = tests[i];

Printing the Contents of an Array

• You can display the contents of a
character array by sending its name to
cout:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-34

char fName[] = "Henry";
cout << fName << endl;

But, this ONLY works with character arrays!

Printing the Contents of an Array

• For other types of arrays, you must print
element-by-element:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-35

const int SIZE = 4;

int tests[SIZE] = {70, 75, 80, 85};

for (i = 0; i < SIZE; i++)

cout << tests[i] << endl;

Summing and Averaging
Array Elements

• Use a simple loop to add together array
elements:

int tnum;
double average, sum = 0;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-36

double average, sum = 0;

for(tnum = 0; tnum < SIZE; tnum++)

sum += tests[tnum];

• Once summed, can compute average:
average = sum / SIZE;

Finding the Highest Value in an
Array

int count;
int highest;
highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-37

{
if (numbers[count] > highest)

highest = numbers[count];
}

When this code is finished, the highest variable
will contain the highest value in the numbers array.

Finding the Lowest Value in an
Array

int count;
int lowest;
lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-38

{
if (numbers[count] < lowest)

lowest = numbers[count];
}

When this code is finished, the lowest variable will
contain the lowest value in the numbers array.

Partially-Filled Arrays

• If it is unknown how much data an
array will be holding:
– Make the array large enough to hold the

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-39

– Make the array large enough to hold the
largest expected number of elements.

– Use a counter variable to keep track of
the number of items stored in the array.

Partially-Filled Arrays

const int SIZE=100;
int studentID[SIZE], count=0, number;

cout << "Enter an ID or -1 to quit: ";
cin >> number;

while (number != - 1 && count < SIZE)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-40

while (number != - 1 && count < SIZE)
{

studentID[count++] = number;
cout << "Enter an ID or -1 to quit: ";
cin >> number;

}

cout << count << " IDs were entered. They are\n";
for (int i=0; i<count; i++)

cout << studentID[i] << endl;

Comparing Arrays

• The following is an incorrect way to compare the
two arrays.

const int SIZE = 5;
int firstArray [SIZE] = { 5, 10, 15, 20, 25 };

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-41

int firstArray [SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };

if (firstArray == secondArray)
cout << "The arrays are equal.\n";

else
cout << "The arrays are not equal.\n";

You Must Compare Arrays
Element-by-Element

const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable

// Compare the two arrays.
for (int index=0; index<SIZE; index++)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-42

for (int index=0; index<SIZE; index++)
{

if (firstArray[index] != secondArray[index])
{

arraysEqual = false;
break;

}
}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

7.7
Arrays as Function Arguments

7.7

Arrays as Function Arguments

• Arrays can be used to pass blocks of data to
functions

• To define a function that takes an array
parameter, use empty [] for array argument:

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-44

void showScores(int []);
// function prototype

void showScores(int nums[])
// function header

• To pass an array to a function, just use the array
name:

showScores(tests);

Arrays as Function Arguments

• When passing an array to a function, it is common
to pass array size so that function knows how many
elements to process:

showScores(tests, ARRAY_SIZE);

• Array size must also be reflected in the function

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-45

• Array size must also be reflected in the function
prototype and header:
void showScores(int [], int);

// function prototype

void showScores(int nums[], int size)
// function header

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-46

(Program Continues)

Program 7-14 (Continued)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-47

Modifying Arrays in Functions

• Array names in functions are like
reference variables – changes made to
array in a function are reflected in actual
array in calling function

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-48

array in calling function

• Need to exercise caution that array is not
inadvertently changed by a function

// This program uses a function to double the value
// of each element of an array.

#include <iostream>
using namespace std;

// Function prototypes
void doubleArray(int [], int);
void showValues(int [], int);

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-49

int main()
{

const int SIZE = 7;
int data[SIZE] = {1, 2, 3, 4, 5, 6, 7};

// Display the initial array values
cout << " The array’s initial values are: " << endl;

// Double the values in the array
doubleArray(data, SIZE);

// Display the array values after the function call
cout << " After calling doubleArray the values are:\n " ;
showValues(data, SIZE);

return 0;
}

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-50

}

// This function doubles the value of each element in the
// array passed nums. The value of size is the number of
// elements in the array.
void doubleArray(int nums[], int size)
{

for (int index=0; index<size; index++)
nums[index] = nums[index]*2;

}

// This function displays the value of each element in the
// array passed nums. The value of size is the number of
// elements in the array.
void showValues(int nums[], int size)
{

for (int index=0; index<size; index++)
cout << nums[index] << ;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-51

cout << nums[index] << " " ;
cout << endl;

}

Program output:

The array’s initial values are:
1 2 3 4 5 6 7
After calling doubleArray the values are:
2 4 6 8 10 12 14

7.8
Two-Dimensional Arrays

7.8

Two-Dimensional Arrays

• 1D array can only hold one set of data
• 2D array can store multiple sets of data

– Ex. Use a 1D array to store grades for one student.
Use a 2D array to store grades for all students

• Like multiple 1D arrays of the same type

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-53

• Like multiple 1D arrays of the same type
• Like a table in a spreadsheet
• Use two size declarators in definition:

const int ROWS = 4, COLS = 3;
int exams[ROWS][COLS];

• First declarator is number of rows; second is
number of columns

Two-Dimensional Array
Representation

const int ROWS = 4, COLS = 3;
int exams[ROWS][COLS];

exams[0][0] exams[0][1] exams[0][2]

Column 0 Column 1 Column 2

Row 0

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-54

• Use two subscripts to access element:
exams[2][2] = 86;

exams[0][0] exams[0][1] exams[0][2]

exams[1][0] exams[1][1] exams[1][2]

exams[2][0] exams[2][1] exams[2][2]

exams[3][0] exams[3][1] exams[3][2]

Row 0

Row 1

Row 2

Row 3

Use nested loops to cycle through
each element of a two-dimensional array

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-55 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-56

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-57

2D Array Initialization

• Two-dimensional arrays are initialized row-
by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS][COLS] = {{ 84, 78 },{ 92, 97 }};

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-58

int exams[ROWS][COLS] = {{ 84, 78 },{ 92, 97 }};

Or:
int exams[ROWS][COLS] = {{84, 78},

{92, 97}};

84 78

92 97

Row 0

Row 1

Col 0 Col 1

2D Array Initialization

• Can omit inner { } . The following are the same.

int exams[ROWS][COLS] = {{84, 78},{92, 97}};

int exams[ROWS][COLS] = {84, 78, 92, 97};

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-59

• Extra braces provide ability to leave out some
initial values in a row – array elements without
initial values will be set to 0 or NULL

int exams[ROWS][COLS] = { {84}, {92, 97} };

(exams[0][1] is automatically set to 0)

Two-Dimensional Array as
Parameter, Argument

• Use empty [] for row, size declarator for column
in prototype & header, and an int for # of rows:

const int COLS = 2;

// Prototype

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-60

// Prototype
void getExams(int [][COLS], int);

// Header
void getExams(int exams[][COLS], int rows)

• Use array name as argument in function call:

getExams(exams, 2);

Example – The showArray
Function from Program 7-19

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-61

How showArray is Called

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-62

Summing All the Elements in a
Two-Dimensional Array

• Given the following definitions:

const int NUM_ROWS = 5; // Number of rows
const int NUM_COLS = 5; // Number of columns
int total = 0; // Accumulator

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-63

int total = 0; // Accumulator
int numbers[NUM_ROWS][NUM_COLS] =

{ {2, 7, 9, 6, 4},
{6, 1, 8, 9, 4},
{4, 3, 7, 2, 9},
{9, 9, 0, 3, 1},
{6, 2, 7, 4, 1} };

Summing All the Elements in a
Two-Dimensional Array

// Sum the array elements.
for (int row = 0; row < NUM_ROWS; row++)
{

for (int col = 0; col < NUM_COLS; col++)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-64

total += numbers[row][col];
}

// Display the sum.
cout << "The total is " << total << endl;

Summing the Rows of a
Two-Dimensional Array

• Given the following definitions:

const int NUM_STUDENTS = 3;
const int NUM_SCORES = 5;
double total; // Accumulator

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-65

double total; // Accumulator
double average; // To hold average scores
double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

Summing the Rows of a
Two-Dimensional Array

// Get each student's average score.
for (int row = 0; row < NUM_STUDENTS; row++)
{

// Set the accumulator.
total = 0;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-66

total = 0;
// Sum a row.
for (int col = 0; col < NUM_SCORES; col++)

total += scores[row][col];
// Get the average
average = total / NUM_SCORES;
// Display the average.
cout << "Score average for student "

<< (row + 1) << " is " << average <<endl;
}

Summing the Columns of a
Two-Dimensional Array

• Given the following definitions:

const int NUM_STUDENTS = 3;
const int NUM_SCORES = 5;
double total; // Accumulator

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-67

double total; // Accumulator
double average; // To hold average scores
double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

Summing the Columns of a Two-
Dimensional Array

// Get the class average for each score.
for (int col = 0; col < NUM_SCORES; col++)
{

// Reset the accumulator.
total = 0;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7-68

total = 0;
// Sum a column
for (int row = 0; row < NUM_STUDENTS; row++)

total += scores[row][col];
// Get the average
average = total / NUM_STUDENTS;
// Display the class average.
cout << "Class average for test " << (col + 1)

<< " is " << average << endl;
}

