RoboCup:
The Robot World Cup Initiative

Hiroaki Kitano!, Minoru Asada?, Yasuo Kuniyoshi®, Itsuki Noda?, Eiichi Osawa'

Sony Computer Science Lab.!
3-14-13 Higashi-Gotanda
Shinagawa, Tokyo 141 Japan

Dept. of Mechanical Engineering?
Osaka University
Suita, Osaka 565 Japan

Electrotechnical laboratory®
1-1-4 Umezono

Tsukuba, 305 Japan

Mailing-list: RoboCup@csl.sony.co. jp
Web: http://www.csl.sony.co.jp/person/kitano/RoboCup/RoboCup.html

Abstract

The Robot World Cup Initiative (RoboCup)
is an attempt to foster AI and intelligent
robotics research by providing a standard prob-
lem where wide range of technologies can be
integrated and examined. The first RoboCup
competition will be held at IJCAI-97, Nagoya.
In order for a robot team to actually per-
form a soccer game, various technologies must
be incorporated including: design principles
of autonomous agents, multi-agent collabora-
tion, strategy acquisition, real-time reasoning,
robotics, and sensor-fusion. Unlike AAAI robot
competition, which is tuned for a single heavy-
duty slow-moving robot, RoboCup is a task for
a team of multiple fast-moving robots under
a dynamic environment. Although RoboCup’s
final target is a world cup with real robots,
RoboCup offers a software platform for research
on the software aspects of RoboCup. This pa-
per describes technical challenges involved in
RoboCup, rules, and simulation environment.

1 Introduction: RoboCup as a
Standard AI Problem

We propose a Robot World Cup (RoboCup), as a new
standard problem for AI and robotics research. This
is a proposal to use a soccer game as a platform for
a wide range of AI and robotics research, such as de-
sign principles of autonomous agents, multi-agent col-
laboration, strategy acquisition, real-time reasoning, and
sensor-fusion. Every year, AAAI hosts the robot com-
petition for a single autonomous robot. Although the
task of the AAAI competition changes every year, it
is designed for a slow-moving and heavy-duty single
robot[Nourbaksh et al 93]. The goal of the RoboCup
is the opposite. RoboCup aims at providing a stan-
dard task for research on fast-moving multiple robots,
which collaborate to solve dynamic problems. Although
RoboCup’s final target is a world cup with real robots,
RoboCup offers a software platform for research on the
software aspects of RoboCup. In addition, we intend to
create an award for an expert robot, which demonstrates
a high-level of competence for a specific task, such as
shooting, intercepting, etc. Thus, RoboCup consists of

three competition: the real robot competition, the soft-
ware robot competition, and the special skills competi-
tion.

Standard AI problems have been the basic driving
force for Al research. Research on computer chess, which
is the most typical example of a standard problem, lead
to the discovery of various powerful search algorithms.
Other problems including, the Yale Shooting Problem
and the Monkey-Banana, contributed to AI research by
illustrating the essential difficulties involved in everyday
reasoning. Criticisms against using such problems often
focus on the fact that these are abstract tasks, which ig-
nore essential difficulties of real world problem solving.
Proponents of such criticism argue that the real world
problem must be the target of serious research. While
there is truth in such a claim, solving real world problems
inherently involves domain-specific constraints and often
social and economic constraints, which are not necessary
common in other domains. In addition, research on us-
able real world systems are beyond the manpower and
funding of many research groups. This hampers compar-
ative studies of techniques for real world tasks. Thus, we
need to setup a standard problem which is realistic, but
affordable for many research groups.

The RoboCup is designed to meet the need of han-
dling real world complexities, though in a limited world,
while maintaining an affordable problems size and re-
search cost. RoboCup offers an integrated research task
covering the broad areas of AI and robotics. Such areas
include: real-time sensor fusion, reactive behavior, strat-
egy acquisition, learning, real-time planning, multi-agent
systems, context recognition, vision, strategic decision-
making, motor control, intelligent robot control, and
many more.

2 Viewing a Soccer Game as A
Multi-agent Environment

A soccer game is a specific but very attractive real-
time multi-agent environment from the viewpoint of dis-
tributed artificial intelligence and multi-agent research.
If we regard a soccer team as a multi-agent system, a lot
of interesting research issues will arise.

In a game, we have two competing teams. Each team
has a team-wide common goal, namely to win the game.
The goals of the two teams are incompatible. The op-
ponent team can be seen as a dynamic and obstructive



environment, which might disturb the achievement of
the common team goal. To fulfill the common goal, each
team needs to score, which can be seen as a subgoal.
To achieve this subgoal, each team member is required
to behave quickly, flexibly, and cooperatively; by taking
local and global situations into account.

The team might have some sorts of global (team-wide)
strategies to fulfill the common goal, and both local and
global tactics to achieve subgoals. However, consider the
following challenges:

1. the game environment, i.e. the movement of the
team members and the opponent team, is highly
dynamic.

2. the perception of each player could be locally lim-
ited.

3. the role of each player can be different.

4. communication among players is limited, there-
fore, each agent is required to behave very flexibly
and autonomously in real-time under the resource
bounded situation.

Summarizing these issues, a soccer team can be viewed
as a cooperative distributed real-time planning scheme,
embedded in a highly dynamic environment. In coop-
erative distributed planning for common global goals,
important tasks include the generation of promising lo-
cal plans at each agent and coordination of these local
plans. The dynamics of the problem space, e.g. the
changing rate of goals compared with the performance of
each planner, are relatively large, reactive planning that
interleaves the plan generation and execution phases is
known to be an effective methodology at least for a single
agent [McDermott 78, Agre and Chapman 87, Maes 91,
Ishida and Korf 91] to deal with these dynamic prob-
lems.

For cooperative plan schemes, there are frequent
changes in the problem space or the observation of each
agent is restricted locally. There is a trade-off between
communication cost, which is necessary to coordinate
the local plans of agents with a global plan, and the
accuracy of the global plan (this is known as the pre-
dictability /responsiveness tradeoff). The study of the
relationship between the communication cost and pro-
cessing cost concerning the reliability of the hypotheses
in FA/C [Lesser and Erman 80], and the relationship be-
tween the modification cost of local plans and the ac-
curacy of a global plan in PGP [Durfee and Lesser 87]
illustrate this fact. Also, Korf addressed it theoretically
in [Korf 87].

Schemes for reactive cooperative planning in dy-
namic problem spaces have been proposed and evaluated
sometimes based on the pursuit game (predator-prey)
[Benda et al. 85, Stephens and Merx 89,
Gasser et al. 89, Levy and Rosenschein 92,
Korf 92, Osawa 95]. However, the pursuit game is a rela-
tively simple game. Tileworld[Pollack and Ringuette 90]
was also proposed and studied[Kinny and Georgeff 91,
Ishida and Korf 91]. However, the environment is basi-
cally for the study of a single agent arichtecture.

We see that a robot soccer game will provide a much
tougher, fertile, integrated, exciting, and pioneering eval-

uation environment for distributed artificial intelligence
and multi-agent research.

3 Research Issues for RoboCup with
Real Robots

In this section, we discuss several research issues involved
in realizing real robots for RoboCup.

e Design of RoboCup player and their control:
Existing robot players have been designed to per-
form mostly single behavior actions, such as push-
ing/driblling/rolling [Connel and Mahadevan 93a,
Asada et al. 95, Sahota 94], juggling
[Rizzi and Koditschek 93, Schaal and Atkeson 94],
or hitting [Watanabe et al. 94]. A RoboCup player
should be designed so that it can perform multiple
subtasks such as shooting (including kicking), drib-
bling (pushing), passing, heading, and throwing a
ball; which often involves the common behavior of
avoiding the opponents. Roughly speaking, there
are two ways to build RoboCup players:

1. Design each component separately, which is
specialized for a single behavior and then as-
semble them into one.

2. Design one or two components that can per-
form multiple subtasks.

Approach 1 seems easier to design but more difficult
to build and wice versa. Since the RoboCup player
should move around quickly it should be compact;
therefore, approach 2 should be a new target for the
mechanical design of the RoboCup player. We need
compact and powerful actuators with wide dynamic
ranges. Also, we have to develop sophisticated con-
trol techniques for as few as possible multiple be-
havior components with low energy consumption.
The ultimate goal of a RoboCup player would be
a humanoid type, that can run, kick and pass a
ball with its legs and feet; can throw a ball with its
arms and hands, and can do heading with its head.
To build a team of humanoid type robots currently
seems impossible, this is just future goal.

¢ Vision and sensor fusion: Visual information is
a rich source of information to perceive, not only
the external world, but the effects of the robot’s
actions as well. Computer Vision researchers have
been seeking an accurate 3-D geometry reconstruct-
ing from 2-D visual information, believing in that
the 3-D geometry is the most powerful and general
representation. This could be used in many applica-
tions, such as view generation for an video database,
robot manipulation and navigation. However, the
time-consuming 3-D reconstruction may not be nec-
essary nor optimally suited for the task given to
the RoboCup player. In order to react to the sit-
uation in real time, the RoboCup player quickly
needs information to select behavior for the situa-
tion. we are not suggesting a special-purpose vision
system, just that the vision is part of a complex sys-
tem that interacts in specific ways with the world
[Aloimonos 94]. RoboCup is one of these worlds,



which would make clear the role of vision and eval-
uate the performance of image processing which has
been left ambiguous in the computer vision field.
In addition to vision, the RoboCup player might
need other sensing devices such as: sonar, touch,
and force/torque, to discriminate the situations that
cannot be discriminated from only the visual infor-
mation nor covered by visual information. Again,
the RoboCup player needs the real time process-
ing for multi-sensor fusion and integration. There-
fore, the deliberative approaches with rough estima-
tion using multi-sensor system does not seem suit-
able. We should develop a method of sensor fu-
sion/integration for the RoboCup.

Learning RoboCup behaviors: The individual
player has to perform several behaviors, one of
which is selected depending on the current situa-
tion. Since programming the robot behaviors for
all situations, considering the uncertainties in sen-
sory data processing and action execution is unfea-
sible, robot learning methods seem promising. As
a method for robot learning, reinforcement learn-
ing has recently been receiving increased atten-
tion with little or no a prior: knowledge giving
higher capability of reactive and adaptive behav-
iors [Connel and Mahadevan 93b]. However, almost
all of the existing applications have been done only
with computer simulations in a virtual world, real
robot applications are very few [Asada et al 94a,
Connel and Mahadevan 93a]. Since the prominence
of the reinforcement learning role is largely deter-
mined by the extent to which it can be scaled
to larger and complex robot learning tasks, the
RoboCup seems a very good platform.

At the primary stage of the RoboCup tourna-
ment, one to one competition seems feasible. Since
the player has to take the opponent’s motions
into consideration, the complexity of the prob-
lem is much higher than that of simple shooting
without an opponent. To reduce the complex-
ity, task decomposition is often used. Asada et
al. [Asada et al 94b] proposed a method for learn-
ing a shooting behavior avoiding a goal keeper.
The shooting and avoiding behaviors are indepen-
dently acquired and they are coordinated through
the learning. Their method still suffers from the
huge state space and the perceptual aliasing prob-
lem [Whitehead and Ballard 90], due to the limited
visual field. Sahota [Sahota 94] proposed a reac-
tive deliberation approach to the architecture for
real time intelligent control in a dynamic environ-
ment. He applied it to a one to one soccer-like game.
Since his method needs global sensing for robot po-
sitions inside the field, it does not seem applicable
to the RoboCup that allows the sensing capability
only through the agents (see the rule section).

At the final stage, a many-to-many competition is
considered. In this case, collective behaviors should
be acquired. Defining all the collective behaviors
as a team seems infeasible, especially, the situa-
tions where one of multiple behaviors should be per-

formed. It is difficult to find a simple method for
learning these behaviors, definition of social behav-
iors [Mataric 94]. A situation would not be defined
as the exact positions of all players and a ball, but
might be perceived as a pattern. Alternatives, such
as “coordination by imitation,” should be consid-
ered.

In addition to the above, the problems related to the
RoboCup such as task representation and environment
modeling are also challenging ones. Of course, integra-
tion of the solutions for the problems mentioned above
into a physical entity is the most difficult one.

4 Rules for RoboCup

This section describes rules for RoboCup. RoboCup con-
sists of three sections, the real robot section, the simu-
lation section and the special skill section. In the real
robot section, real robots are controlled by themselves
or computers play matches. Competitors need to con-
struct real robots and their control programs. The sim-
ulation section is the computer-simulation version of the
real robot section, so that competitors need to construct
only control programs for each player. In the special skill
section, competitors compete for one of the special skills,
for example, a penalty kick (PK), goal saving, human-
like actions, and so on.

In each section, play basically conforms to the rules of
human soccer. Two teams of up to 11 robots compete
with each other, trying to kick a ball into the goal of
the opponent. However, because of differences between
robots and humans, it is necessary to simplify and mod-
ify the rules for the robots. Major changes are as follows:

o Field size is 1/20 of the World Cup soccer field, but
the width of the goal is enlarged.

e Total number of robots in a team is limited. This
agrees with the real soccer game. We set the upper
limit to 11. We allow each team to consist of a
smaller numbers of robots, such as 3 robots or 4
robots. It is the design decision of each team.

o Total weight of robots in a team is limited. Weight
of a robot is an important factor because there is a
lot, of physical contact in a soccer match.

o Total size of robots is also limited. This is necessary
to prohibit making a wall of robots to cover the goal.

e Robots may move with wheels or caterpillars instead
of legs. Considering the current state of technology,
it is a hard task to build a robot that can walk on
two legs. Therefore it is reasonable to allow wheels.

e Robots must not hold ! a ball for more than 5 sec-
onds. In order to ‘kick’ the ball, robots may have
imitation legs. In this case, the robot can control the

1¢A robot holding a ball’ means that the robot makes the
ball not accessible to other robots. For example, the follow-
ings are considered holding:

— To surround a ball with its arms.
— To pick up the ball.



ball by using its legs like hands. In order to avoid
“holding”. We introduce the “hand-ball” rule.

e Fouls concerned with the intentions of player and
flows of plays, such as obstruction, dangerous charg-
ing etc., are ignored. Considering the current state
of technology, it is difficult to determine the inten-
tions of robots. Therefore it is difficult to judge
these fouls.

o In the simulation section, we will use a soccer server
system, which provides an interface to control a
player via networks for each client program. A client
program can control a player on a field with “dash”,
“turn” and “kick” commands. The client can get in-
formation about the field and messages from other
players and referees.

In the early stages of RoboCup, human referees will
control the match. Many soccer rules require the subjec-
tive interpretation of the referee. Therefore, it is difficult
to judge plays automatically. However building a referee
program and robot is an important open problem.

These RoboCup rules described in this section are ten-
tative and details are currently under discussion.

5 RoboCup Simulators

5.1 The Soccer Server

In the simulation section, we will use Soccer Server, a
simulator of RoboCup developed by Dr. Itsuki Noda,
ETL, Japan, which is a network-based graphical simula-
tion environment for multiple autonomous mobile robots
in a 2D space. Using the soccer server, each client
program can control each player on a soccer field via
UDP/IP. This allows us to compare different types of
multi-agent systems through the server, and test how
well techniques of cooperation of agents work in dynam-
ical varied situations.

The soccer server provides a virtual field where players

of two teams play a soccer (association football) game.
Each player is controlled by a client program via local
area networks. Control protocols are simple in that it
is easy to write client programs using any kind of pro-
gramming system that supports UDP/IP sockets.
Control via Networks: A client can control a player
via local area networks. The protocol of the communi-
cation between clients and the server is UDP/IP. When
a client opens a UDP socket, the server assigns a player
to a soccer field for the client. The client can control the
player via the socket.
Physical Simulation: The soccer server has a physi-
cal simulator, which simulates movement of objects (ball
and players) and collisions between them. The simu-
lation is simplified so that it is easy to calculate the
changes in real-time, but the essence of soccer is not
lost.

The simulator works independently of communica-
tions with clients. Therefore, clients should assume that
situations on the field change dynamically.

Referee: The server has a referee module, which con-
trols each game according to a number of rules. In the
current implementation, the rules are: (1) Check goals;

(2) Check whether the ball is out of play; (3) Control
positions of players for kick-offs, throw-ins and corner-
kicks, so that players on the defending team keep a min-
imum distance from the ball.

Judgments by the referee are announced to all clients
as an auditory message.

5.2 MARS
The other possible simulator is MARS. MARS is in-

tended for use in intelligent robotics research on sin-
gle/multiple mobile robot(s), such as RoboCup, behav-
ior learning, map building, collective intelligence, multi-
robot cooperation, cooperative learning, etc. MARS
is a network-based graphical simulation environment for
multiple autonomous mobile robots in a 2D space. This
simulator is under development by Electrotechnical Lab-
oratory, using the EuLisp object-oriented programming
environment, developed by Dr. Toshihiro Matsui of
ETL.

Modular Architecture: The MARS system adopts
a modular architecture; a physical simulation module,
robot control modules, a graphical user interface module
(GUI), and network interface modules.

Physical Simulation: Our current physical simula-
tion module handles four types of objects: walls (static
obstacles, used for goal posts), area (static area with
containment checking used for soccer court representa-
tion), blocks (passive objects), and a robot-body (ac-
tive objects).

Robot Models: There is a clear interface between
the physical simulation module and the robot control
modules. Any number of robot models can be generated
and simulated in (pseudo-)parallel. Each robot consists
of a pair of modules, a robot-body and a robot-brain.
A robot-body defines physical properties of a robot and
a robot-brain defines how the robot behaves.

Sensor Models: A user can choose and attach any
number of sensors to any place of a robot-body. Cur-
rently available sensor models are as follows: distance
(odometry), angle (rotation), touch, infrared, radar
(sonar), and eye (object-name sensor). Noise or uncer-
tainty is not considered in the current version.

Robot Brains: A robot-brain is a user defined
module for processing the simulated sensor data and gen-
erating action commands. It must accept sensor data
and return action commands. In addition, it must be
written as a re-entrant program, time-sliced by a :step
message, sent by the global control loop. Aslong as these
constraints are met, a user can adopt any cognitive archi-
tecture. The system provides an example behavior-based
type architecture as a default.

Network Extension: Each robot-brain can be con-
figured to be connected to an external process, via an
asynchronous socket connection (UDP/IP). In this case,
a user can use an arbitrary language (C, Prolog, Scheme,
Perl, etc...) and an arbitrary control scheme (sequential,
multi-thread, etc.) to write the remote-brain. Thanks
to the asynchronous connection, a user does not have to
worry about handshaking or timing problems concerning
communication. Moreover the simulator server is not af-
fected by communication failures.



GUIL: The MARS main window has a menu-bar
with several buttons for controlling the system. Also,
the system has a built-in graphical editor for creat-
ing/modifying the physical environment, including the
robot-body. You can save/load a physical environment
definition together with agent definitions to/from a file.

Soccer Specific Extensions: Soccer specific brain-
body message protocol is given in Table 1. The messages
are defined on top of the primitive messages/actions pro-

vided in MARS.

6 Summary

In this paper, we proposed a RoboCup as a new stan-
dard AI problem. RoboCup provides rich research issues
for a wide range of Al and robotics studies. We are cur-
rently inviting participation to this initiative, in order to
define rules of play, develop a common research environ-
ment, and to host competitions and workshops. Those
who are interested in RoboCup, please send e-mail to
RoboCup@csl.sony.co.jp. Or write to: Robot World
Cup Initiative (RoboCup), ¢/o Hiroaki Kitano, Sony
Computer Science Laboratory, 3-14-13 Higashi-Gotanda,
Shinagawa, Tokyo 141 Japan, or Prof. Minoru Asada,
Department of Mechanical Engineering, Osaka Univer-
sity, Suita, Osaka, 565 Japan.
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| Command

Return Message

Description

(turn Dir)

Turn the body to Dir.

(dash Power)

Accelerate the body by Power in
the current heading direction.

(lookup) (ok lookup . Result)

Result ::= (ObjInfo Objlnfo ...)

ObjlInfo ::= (ObjName Direction Distance)

Detect objects around.

(kick Dir Power)

Kick toward Direction with Power.

(say Message)
(hear) (ok hear . MessageList)

MessInfo ::= (Name Time Message)
Name ::= Originator of the Message

MessageList ::= (MessInfo MessInfo ...

Time ::= Time stamp of the Message

)

Put Message on a global blackboard.
It expires after a fixed duration.
Fetch all the messages from the blackboard.

Table 1: Soccer specific message protocol between a robot-brain and a robot-body.
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