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Abstract. This paper presents an approach to automated mechanisgn diesi
the domain of double auctions. We describe a novel parainetespace of dou-
ble auctions, and then introduce an evolutionary searchadethat searches
this space of parameters. The approach evaluates auctidmanisms using the
framework of the TAC Market Design Game and relates the padoce of the

markets in that game to their constituent parts using redefoent learning. Ex-
periments show that the strongest mechanisms we found théggpproach not
only win the Market Design Game against known, strong opptseut also

exhibit desirable economic properties when they run irgisoh.

1 Introduction

Auctions play an important role in electronic commerce, hade been used to solve
problems in distributed computing. A major problem to saivéhese fields isGiven a
certain set of restrictions and desired outcomes, how cadeg@gn a good, if not opti-
mal, auction mechanism; or when the restrictions and gohiés,ahow can the current
mechanism be improved to handle the new scenario?

The traditional answer to this question has been in the doofauction theory [9].

A mechanism is designed by hand, analyzed theoreticalijtiaan revised as necessary.
The problems with the approach are exactly those that dogreamual process — it
is slow, error-prone, and restricted to just a handful ofvitials with the necessary
skills and knowledge. In addition, there are classes of comynused mechanisms,
such as the double auctions that we discuss here, which@oaioplex to be analyzed
theoretically, at least for interesting cases [21].

Automated mechanism desigayD) aims to overcome the problems of the manual
process by designing auction mechanisms automatieally. considers design to be a
search through some space of possible mechanisms. For kx&tifh[2] and Phelpst
al. [16, 17] explored the use of evolutionary algorithms to wyte different aspects of
the continuous double auction. Around the same time, Cendémd Sandholm [4] were
examining the complexity of building a mechanism that fithquhrticular specification.

*Part of this work was done while the author was a student atityeUniversity of New York.



These different approaches were all problematic. The glgos that Conitzer and
Sandholm considered dealt with exhaustive search, andafigtthe complexity was
exponential. In contrast, the approaches that Cliff and@tet al. pursued were com-
putationally more appealing, but gave no guarantee of ssced were only searching
tiny sections of the search space for the mechanisms thesidmed. As a result, one
might consider the work of Cliff and Phelpsal., and indeed the work we describe here,
to be what Conitzer and Sandholm [5] call “incremental” maglm design, where one
starts with an existing mechanism and incrementally afiarss of it, aiming to iterate
towards an optimal mechanism. Similar work, though work tees a different ap-
proach to searching the space of possible mechanisms hasdeed out by [20] and
has been applied to several different mechanism designgmas{18].

The problem with taking the automated approach to mechadesign further is
how to make it scale — though framing it as an incremental ggeds a good way
to look at it, it does not provide much practical guidancewiow to proceed. Our
aim in this paper is to provide more in the way of practicaldguce, showing how it
is possible to build on a previous analysis of the most releeamponents of a com-
plex mechanism in order to set up an automated mechanisigndeiblem, and then
describing one approach to solving this problem.

2 Grey-box AMD

We propose grey-boxambd approach, which emerged from our previous work on the
analyses of theAT games.

2.1 From analysesof CAT gamestowardsa grey-box approach

The cAT game, a.k.a. the Trading Agent Competition Market Designegavhich has
run for the last three years, asks entrants to design a nfarleset of automated traders
which are based on standard algorithms for buying and geilina double auction,
includingzi-c [8], zIP [3], RE[6], andGD [7]. The game is broken up into a sequence
of days and each day every trader picks a market to trade in, usingrkanselection
strategy that models the situation asraarmed bandit problem [19, Section 2]. Markets
are allowed to charge traders in a variety of ways and areddmsed on the number of
traders they attract (market share), the profits that thékerfram traders (profit share),
and the number of successful transactions they brokeiveltt the total number of
shouts placed in them (transaction success rate). Fuilslefahe game can be found
in [1].

We picked thecAT game as the basis of our work for four main reasons. First, the
double auctions that are the focus of the design are a widglgt mechanism. Second,
the competition is run using an open-source software packatiedJCAT which is
a good basis for implementing our ideas. Third, after threary of competition, a
number of specialists have been made available by theioestlyiving us a library
of mechanisms to test against. Fourth, there have been aetwhpublications that
analyze different aspects of previous entrants, giving gead basis from which to
start searching for new mechanisms.



With colleagues we have carried out two previous studiesAaf games [11,13],
which mirror the white-box and black-box analyses from wafe engineering. [13]
provides a white-box analysis, looking inside each marketimanism in order to iden-
tify which components it contains, and relating the perfance of each mechanism
to the operation of its components. [11] provides a black-#alysis, which ignores
the detail of the internal components of each market mesharut provides a much
more extensive analysis of how the markets perform. Theslysas make a good com-
bination for examining the strengths and weaknesses ofajsts. The white-box ap-
proach is capable of relating the internal design of a gisate its performance and
revealing which part of the design may cause vulneralslitut it requires internal
structure and involves manual examination. The black-Ipmpx@ach does not rely upon
the accessibility of the internal design of a strategy. it ba applied to virtually any
strategic game, and is capable of evaluating a design in mmmg situations. How-
ever, the black-box approach tells us little about what mayehcaused a strategy to
perform poorly and provides little in the way of hints as tawto improve the strategy.
It is desirable to combine these two approaches in orderriefidrom the advantages
of both. Following theGA-based approach to trading strategy acquisition and auctio
mechanism design in [2, 15, 17], we propose what we cgiteg-boxapproach to auto-
mated mechanism design that solves the problem of autcaigtazeating a complex
mechanism by searching a structured space of auction canpmonin other words, we
concentrate on the components of the mechanisms as in the-ldw approach, but
take a black-box view of the components, evaluating théécs’enesses by looking at
their performance against that of their peers.

More specifically, we view a market mechanism as a combinati@uction rules,
each as an atomic building block. We consider the problesw can we find a com-
bination of rules that is better than any known combinati@eading to a certain
criterion, based on a pool of existing building blocksRe black-box analysis in [11]
maintains a population of strategies and evolves them g#&oerby generation based
on their fitnesses. Here we intend to follow a similar apphoataintaining a population
of components or building blocks for strategies, assotja¢iach block with @uality
score which reflects the fithesses of auction mechanisms usia@pthck, exploring the
part of the space of auction mechanisms that involves mgjldlocks of higher quality,
and keeping the best mechanisms we find.

Having sketched our approach at a high level, we now look taibat how it can
be applied in the context of theaT game.

2.2 A search space of double auctions

The first issues we need to addressahat composite structure is used to represent
auction mechanismsahdwhere can we obtain a pool of building blocks?

Viewing an auction as a structured mechanism is not a new Meamanet al.
[22] introduced a conceptual, parameterized view of anctiechanisms. Niet al.
[13] extended this framework for auction mechanisms compeh CAT games and
provided a classification of entries in the fiGhT competition that was based on it.
The extended framework includes multiple intertwined comgnts, ompolicies each
regulating one aspect of a market. We adopt this framewndkidle more candidates



for each type of policy and take into consideration paramsdteat are used by these
policies.

These policies are either inferred from the literature [1@8ken from our previous
work [11,13, 14], or contributed by entrants to ther competitions. The set of poli-
cies, each a building block, form a solid foundation for theygbox approach.

Figure 1 illustrates the building blocks as a tree structuinech we describe after
we review the blocks themselves. Below we describe therdiftetypes of policies
just briefly due to space limitations. An in-depth underdtag of these policies is not
required in understand the grey-box approach, but a fultrg@son of these policies
can be found in the extended version of this paper [12].

Matching policies, denoted as in Figure 1, define how a market matches shouts
made by traders, includingquilibrium matching(ME), max-volume matchin¢vv),
andtheta matchingmT). ME clears the market at the equilibrium price, matching asks
(offers to sell) lower than the price with bids (offers to binygher than the pricevv
maximizes transaction volume by considering also lesspatitive shouts that would
not be matched imE. MT uses a parametdd,c [—1, 1], to realize a transaction volume
that is proportional to 0 and those realizedvie andmv.

Quote policies, denoted a® in Figure 1, determine the quotes issued by markets,
including two-sided quotindQT), one-sided quotingQo), andspread-based quoting
(@s). Typical quotes are ask and bid quotes, which respectsmdgify the upper bound
for asks and the lower bound for bids that may be placed in &egdidven marketQT
defines the quotes based on information from both the setlerand the buyer side,
while Q0 does so considering only information from a single side.extendsQT to
maintain a higher ask quote and a lower bid quote for use mith

Shout accepting policies, denoted a2 in Figure 1, judge whether a shout made
by a trader should be permitted in the market, includiigays acceptingaA), never
accepting AN), quote-beating acceptingQ), self-beating acceptin@s), equilibrium-
beating acceptingAE), average-beating acceptir(@D), history-based acceptingH),
transaction-based acceptingT), andshout type-based acceptifgy). AE uses a pa-
rameterw, to specify the size of a sliding window in terms of the numbfktransac-
tions, and a second paramei®rto relax the restriction on shouts [14p is basically
a variant ofAE and uses the standard deviation of transaction prices iglitiag win-
dow rather tharw to relax the restriction on shoutst is derived from thesD trading
strategy and accepts only shouts that will be matched withadsility no lower than
a specified threshold, € [0,1]. Ay stochastically allows shouts based merely on their
types, i.e., asks or bids, and uses a paramater|0, 1], to control the chances that
shouts of either type are allowed to place.

Clearing conditions, denoted ag in Figure 1, define when to clear the market
and execute transactions between matched asks and bidsljmgontinuous clearing
(c@), round clearing(Cr), andprobabilistic clearing(cpP). CP uses a parametep, €
[0,1], to define a continuum of clearing rules witkR andcc being the two ends.

Pricing policies, denoted a® in Figure 1, set transaction prices for matched ask-
bid pairs, includingdiscriminatory k-pricing(PD), uniform k-pricing(Pu), n-pricing
(PN), andside-biased pricingpPB). BothPD andpPu use a prefixed parametére [0, 1],
to control the bias in favor of buyers or sellers, amladjusts an internd aiming to
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represents a set of leaf nodes that have the common parent and take values
evenly distributed between x and y for a parameter.

Fig. 1: The search space of double auctions modeled as aliseassed in details in Section 2.



obtain a balanced demand and supplywas introduced in [14] and sets the transaction
price as the average of the lategtairs of matched asks and bids.

Charging policies, denoted as in Figure 1, determine the charges imposed by
a market, includindixed charging(GF), bait-and-switch chargindGs), andcharge-
cutting charging(Gc), learn-or-lure-fast chargingGL). GF imposes fixed charges while
the rest three policies adapt charges over time in diffesays.GL relies upon two pa-
rametersy andr, to achieve dynamic adjustments. All these charging pedicequire
an initial set of fees on different activities, includingefen registration, fee on infor-
mation, fee on shout, fee on transaction, and fee on profiptae asf;, f;, fs, f;, and
fp respectively in Figure 1.

2.3 The GReEY-Box-AMD algorithm

The tree model of double auctions in Figure 1 illustrates hoviding blocks are se-
lected and assembled level by level. There @med nodes,or nodes, andeaf nodes

in the tree. Anand node, rounded and filled, combines a set of building blocashe
represented by one of its child nodes, to form a compoundlimgjlblock. The root
node, for example, is aand node to assemble policies, one of each type described in
the previous section, to obtain a complete auction mechamis or node, rectangular
and filled, represents the decision making of selecting llimgj block from the candi-
dates represented by the child nodes ofdhaeode based on their quality scores. This
selection occurs not only for those major aspects of an @uctiechanism, i.ev, Q,

A, P, C, andG (atG’s child node of ‘policy’ in fact), but also for minor componts, for
example, a learning component for an adaptive policy (fathg Phelpset al.s work

on acquiring a trading strategy [15]), and for determinipgjmal values of parameters

in a policy, like 8 in MT andk in PD. A leaf node represents an atomic block that can
either be for selection at itsr parent node or be further assembled into a bigger block
by itsand parent node. A special type l&faf node in Figure 1 is that with a label in the
format of [x,y]. Such aeaf node is a convenient representation of a sdeaf nodes
that have a common parent — the parent of this spée&ilnode — and take values
evenly distributed betweenandy for the parameter labeled at the parent node.

or nodes contribute to the variety of auction mechanisms isélaech space and are
where exploitation and exploration occur. We model earchode as am-armed bandit
learner that chooses among candidate blocks, and use thiesoftmax method [19,
Section 2.3] to solve this learning problem.

Given a set of building block®, and a set of fixed market&8M, as targets to beat,
we define the skeleton of the grey-box algorithm in AlgorithmThe GREY-BOX-
AMD algorithm runs a certain number of stepssfi_or_sTEPs in Line 2). At each
step, a singleAT game is created @ ATE-GAME() in Line 3) and a set of markets are
prepared for the game. This set of markets includes all nsink&M, a certain number
(num_oF_saMPLES in Line 5) of markets sampled from the search space, denet@da
and a certain numberg¢m_oF_HoF_saMPLES in Line 11) of markets, denoted &M,
chosen from a Hall of Famé&{OF. All these markets are put into the game, which is
run to evaluate the performance of these marketsNASAME (G, FM U EM U SM)
in Line 12).HOF has a fixed capacitgapaciTy_orF_HoF, and maintains markets that
performed well in games at previous steps in terms of theiraye scores across games



GREY-BOX-AMD (B,FM)
1 HOF «— {}
2 for s« 1toNUM_OF_STEPS
3 do G« CREATE-GAME()
4  SM—{}
5 for m«+ 1to NUM_OF_SAMPLES
6 doM «— CREATE-MARKET()
7 for t «— 1t0 NUM_OF_POLICYTYPES
8 do B« SELECT(Bt,1)
9 ADD-BLOCK(M,B)
10 SM — SMU{M}
11 EM « SELECT(HOF, NUM_OF_HOF_SAMPLES )
12 RUN-GAME (G, FMUEMUSM)
13 for each M in EMUSM
14 do UPDATE-MARKET-SCOREM, SCOREG,M))
15
16
17

if M not in HOF
then HOF — HOF U {M}
if capaciTy_0F_HOF < |HOF]
18 then HOF «— HOF — {WORSFMARKET(HOF)}
19 for each B used byM
20 do UPDATE-BLOCK-SCOREB, SCORE G, M))

21 return HOF

Algorithm 1: The GREY-Box-AMD algorithm.

they participatedHOF is empty initially, updated after each game, and returndden
end as the result of the grey-box process.

Each market infSM is constructed based on the tree model in Figure 1. After
an ‘empty’ market mechanisn, is created (REATE-MARKET() in Line 6), build-
ing blocks can be incorporated inkd (ADD-BLOCK(M,B) in Line 9, whereB € B).
NUM_OF_POLICYTYPES in Line 7 defines the number of different policy types, and
from each group of policies of same type, denoted®asvheret specifies the type,

a building block is chosen fdvl (SELECT(By, 1) in Line 8). For simplicity, this algo-
rithm illustrates only what happens to tbe nodes at the high level, including, Q,
A, C, andp. Markets inEM are chosen frontIOF in a similar way (ELECT(HOF,
NUM_OF _HOF_SAMPLES) in Line 11).

After acAT game,G, completes at each step, the game score of each partigpatin
marketM € SMIUEM, ScoREG, M), is recorded and the game-independent score of
M, SCOREM), is updated (BWDATE-MARKET-SCOREM, SCORHG, M)) in Line 14).

If M is not currently inHOF and SSoREM) is higher than the lowest score of markets
in HOF, it replaces that corresponding market@®5+MARKET(HOF) in Line 18).

ScoRHG, M) is also used to update the quality score of each buildingdilsed by
M (UPDATE-BLOCK-SCORHB, SCORHG, M)) in Line 20). Both LPDATE-MARKET-
ScoRE and UPDATE-BLOCK-SCORE calculate respectively game-independent scores
of markets and quality scores of building blocks by avergdeedback 80rRHG, M)
over time. Because choosing building blocks occurs onlyratodes in the tree, only



child nodes of aror node have quality scores and receive feedback aftategame.
Initially, quality scores of building blocks are all 0, sattthe probabilities of choosing
them are even. As the exploration proceeds, fitter blockeedtigher and are chosen
more often to construct better mechanisms.

3 Experiments

This section describes the experiments that are carrietbcatquire auction mecha-
nisms using the grey-box approach.

3.1 Experimental setup

We extended cAT with the parameterized framework of double auctions andhall
individual policies described in Section 2.2. To reducedhputational cost, we elim-
inated the exploration of charging policies by focusing oectranisms that impose a
charge of 10% on trader profit, which we denotesgg;. Analysis ofCAT games [11]
and what entries have typically charged in actoat competitions, especially in the
latest two events, suggest that such a charging policy imsoreble choice to avoid
losing either intra-marginal or extra-marginal tradengewith this cut-off, the search
space still contains more than2D0,000 different kinds of auction mechanisms, due
to the variety of policies on aspects other than chargingthadhoices of values for
parameters.

The experiments that we ran to search the space each laste30 At each step,
we sample two auction mechanisms from the space, and aaT @ame to evaluate
them against four fixed, well known, mechanisms plus two raaigms from the Hall
of Fame. To sample auction mechanisms, the softmax exjgoratethod used bgr
nodes starts with a relatively high temperature=(10) so as to explore randomly, then
gradually cools dowr, scaling down by @6 (a) each step, and eventually maintains a
temperaturet = 0.5) that guarantees a non-negligible probability of chogsiven the
worst action any time. After all, our goal in the grey-box eggch is not to converge
quickly to a small set of mechanisms, but to explore the spaderoadly as possible
and avoid being trapped in local optima.

The fixed set of four markets in evegaT game includes twaH markets —CH;
and cHp, — and twoCDA markets —CDA; and CDA, — with one of each charging
10% on trader profit, like&Fg 1 does, and the other charging 100% on trader profit (de-
noted asGFi ). The cH and cDA mechanisms are two common double auctions and
have been used in the real world for many years, in financiaketplaces in partic-
ular due to their high allocative efficiency. Earlier expeents we ran, involvingH
andCcDA markets against entries intbAT competitions, indicate that it is not trivial to
win over these two standard double auctions. Markets wifleréint charge levels are
included to avoid any sampled mechanisms taking advanthgevase. Based on the
parameterized framework in Section 2.2, ttie andcbA markets can be represented
as follows:

CH /CHy, =ME+ QT +AQ+ CR+ PUyk_qg5 + GFg1/GF1o
CDA| / CDAR = ME + QT + AQ + CC + PDy—g5 *+ GFg1 / GF10



The Hall of Fame that we maintain during the search contaims&active’ members
and a list of ‘inactive’ members. After eactaT game, the two sampled mechanisms
are compared with those active Hall of Famers. If the scoeesafmpled mechanism is
higher than the lowest average score of the active Hall ofdfanthe sampled mecha-
nism is inducted into the Hall of Fame and replaces the cpomeding Hall of Famer,
which becomes inactive and ineligible foaT games at later steps (lines 15-18 in Al-
gorithm 1). An inactive Hall of Famer may be reactivated ifidantical mechanism
happens to be sampled from the space again and scores higghetmopromote its
average score to surpass the lowest score of active Halléfsa In addition, the soft-
max method used to choose two Hall of Famers out of the temeacties involves a
constantr = 0.3. Since the scores of the Hall of Famers gradually convergies ex-
periments and the difference between the best and the walsbtHramers is less than
25% (see Figure 2b below), this valuemfuarantees that the bias towards the best Hall
of Famers is modest and all Hall of Famers have fairly big ckaro be chosen.

EachcAT game is populated by 120 trading agents, using, zIP, RE, andGD
strategies, a quarter of the traders using each stratedfythdaraders are buyers, half
are sellers. The supply and demand schedules are both dramrafuniform distribu-
tion between 50 and 150. EaclT game lasts 500 days with ten rounds for each day.
This setup is similar to that of actuakt competitions except for a smaller trader pop-
ulation that helps to reduce computational costs. A 20p-gtey-box experiment takes
around sixteen hours onvaNDOWS PcCthat runs at 2.8GHz and has a 3GB memory. To
obtain reliable results, we ran the grey-box experimemntd@dterations and the results
that are reported in the next section are averaged over itieeggons.

3.2 Experimental results

We carried out four experiments to check whether the greyapproach is successful
in searching for good auction mechanisms.

First, we measured the performance of the generated mechaimidirectly, through
their effect on other mechanisms. Since the four standaréetsaparticipate in all the
CAT games, their performance over time reflects the strengthedf dpponents — they
will do worse as their opponents get better — which in turrectf whether the search
generates increasingly better mechanisms. Figure 2a sheivthe scores of the four
markets (more specifically, the average daily scores of thkets in a game) decrease
over 200 games, especially over the first 100 games, suggehtit the mechanisms
we are creating get better as the learning process progresse

Second, we measured the performance of the set of mechawismiseated more
directly. The mechanisms that are active in the Hall of Fatreegiven point represent
the best mechanisms that we know about at that point and pieefiormance tells us
more directly how the best mechanisms evolve over time.reigb shows the scores of
the ten active Hall of Famers at each step over 200-step*rAssn Figure 2a, the first
100 steps sees a clear, increasing trend. Even the scoheswbtst of the ten at the end

4Note that the active Hall of Famers will be different meclsams at different steps in the process,
so what we see in the figure is the performance of the best mistha we know of up to the
point we collected the data.
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Fig. 2: Scores of market mechanisms across 200 steps (gaavesyged over 40 runs.

are above 0.35, higher than the highest score of the four faattets from Figure 2a,
and the difference is statistically significant at the 95%ftence level. Thus we know
that our approach will create mechanisms that outperfaaindstrd mechanisms, though
we should not read too much into this since we trained our neeh@nisms directly
against them.

Third, a better test of the new mechanisms is to run them agiase mechanisms
that we know to be strong in the context@AT games, asking what would have hap-
pened if our Hall of Fame members had been entered into pAbrcompetitions and
had run against the carefully hand-coded entries in thosgettions. We chose three
Hall of Famers, which are internally labeledsas . 1, SM88.0, andsM127.1 and can be
represented in the parameterized framework in Sectionfallaws:

SM7.1 =MV + QO + AHr—0.4 + CPp=0.3 + PNp=11 + GFo.1
SM88.0 = MTg—04 + QT + AA + CPp—0.4 + PUk=0.7 + GFo.1
SM127.1 =MV + QS + AS + CPp=0.4 *+ PUk=0.7 + GFo.1

We ran these three mechanisms against the best recreatiastoAT competitions that
we could achieve given the contents of thec agent repository,where competitors
are asked to upload their entries after the competitiontdvere enough entries in the
repository at the time we ran the experiments to create nedde facsimiles of the 2007
and 2008 competitions, but there were not enough entries fr@ 2009 competition
for us to recreate that year's competition. Tdwr games were set up in a similar way
to the competitions, populated by 500 traders that are g\t between buyers and
sellers and between the four trading strategiexz €, zIP, RE, andGb — and the
private values of sellers or buyers were drawn from a unifdisiribution between 50
and 150. For each recreated competition, we ran three games.

Table 1 lists the average cumulative scores of all the mar&etoss their three
games along with the standard deviations of those scoresthfae new mechanisms
we obtained from the grey-box approach beat the actualesrior CAT 2007 andcAT

Shttp://www.sics. se/tac/showagents.php.



Table 1: The scores of markets @anT games including the best mechanisms from
the grey-box approach and entries in praT competitions, averaged over threat
games respectively.

(a) AgainstcAT 2007 entries. (b) AgainstcAT 2008 entries.
Market Score SD Market Score SD
SM7.1 199.4500 5.9715 SM7.1 196.7240 9.2843
SM88.0 191.1083 10.3186 SM88.0 186.9247 4.2184
SM127.1 180.1277 9.0289 SM127.1 183.5887 9.7835
MANX 154.6953 1.3252 jackaroo 177.5913 2.5722
CrocodileAgent 142.0523 9.0867 Mertacor 161.5440 5.8741
TacTex 138.4527 5.8224 MANX 147.3050 15.7718
PSUCAT 133.1347 5.6565 IAMwildCAT 142.9167 8.9581
PersianCat 124.3767 11.2409 PersianCat 139.1553 17.9783
jackaroo 108.8017 8.6851 DOG 130.2197 18.9782
IAMwildCAT" 106.8897 4.4006 MyFuzzy 125.9630 1.9221
Mertacor 89.1707 4.9269 CrocodileAgent” 71.4820 5.8687

PSUCAT" 68.3143 6.7389

* TAMwildCAT from CAT 2007, andCrocodileAgent and PSUCAT from CAT 2008 worked
abnormally during the games and tried to impose invalid,feesbably due to competition
from the three new, strong opponents. Although we modifiedr to avoid kicking out these
markets on those trading days when they impose invalid feeghieh JCAT does in an actual
CAT competition — these markets still perform poorly, in costr@ their rankings in the actual
competitions.

2008 by a comfortable margin in both cases. The fact that wetalee mechanisms
that we generate in one series of games (against the fixedhepfsand other new
mechanisms) and have them perform well against a sepatatensechanisms suggests
that the grey-box approach learns robust mechanisms.

In passing, we note that the rankings of the entries fromepesitory do not reflect
those in the actuatAT competitions. This is to be expected since the entries noes fa
much stronger opponents and different markets will, in galheespond differently to
this. Excluding the markets that attempt to impose invadiesfand are marked with
* we can see that the overall performance of entries in®@2008CAT competition is
better than that of those into the 200&T competition when they face the three new,
strong, opponents, reflecting the improvement in the enaver time.

Finally, we tested the performance $47.1, svM8s.0, andsM127.1 when they are
run in isolation, applying the same kind of test that auctimechanisms are tradition-
ally subject to. We tested the mechanisms both for alloeagfticiency and, following
our work in [14], for the extent to which they trade close tedretical equilibrium as
measured by the coefficient of convergereeeven when populated by minimally ra-
tional traders. In [14] we investigated a class of doubldians, calledNCDAEE, which
can be represented as:



Table 2: Properties of the best mechanisms from the greyelperiments and the
auction mechanisms explored in [14]. AIEDAEE mechanisms are configured to have
w = 4 in their AE policies anch = 4 in theirpN policies.The best result in each column
is shaded. Data in the first four rows are averaged over 1j@@and those in the last
four are averaged over 100 runs.

ZI-C GD

M arket E, o Ea o

Mean sb Mean sb Mean sb Mean SD

CDA 97.464 3.510 13.376 4.351 99.740 1.! 4.360 3.589
NCDAEEs_g 98.336 3.26. 4.219 3.141 9.756 28.873 14.098 1.800
NCDAEEs_19 98.912 2.605 5.552 2.770 23.344 41.727 7.834 5.648
NCDAEEs_p 98.304 2.562 7.460 3.136 89.128 30.867 4.826 3.487
NCDAEEs_3q 97.708 3.136 8.660 3.740 99.736 1.723 4.498 3.502

SM7.1 99.280 1.537 4.325 2.509 58.480 47.983 4.655 4.383
SM88.0 98.320 2.477 11.007 4.2!99.920 0.560 4.387 2.913
SM127.1 97.960 3.225 11.152 4.584 99.520 1.727 4.751 3.153

NCDAEE = ME + AEy, 5 + CC + PNpy

The advantage ofCDAEE is that it can give significantly lower — faster convergence
of transaction prices — and higher allocative efficieri€y) than acbA when populated
respectively by homogeneonsc traders and can perform comparably toma when
populated by homogeneog® traders.

We replicated these experiments usirpT and ran additional ones for the three
new mechanisms with similar configurations. The resulte@$é experiments are shown
in Table 2% The best result in each column is shaded. We can see thasimthwith
zI-C traders andM8s.0 with GD traders give higheE, than the best of the existing
markets respectively, and both of these increases arstitally significant at the 95%
level. Both cases also lead to law not the lowest in the column but close to the lowest,
and the differences between them and the lowest are nddtstally significant at the
95% level. Thus the grey-box approach can generate mechsitlisit perform as well
in the single market case as the best mechanisms from theglite.

4 Conclusions and future work

This paper describes a practical approach to the automatgrdof complex mech-
anisms. The approach that we propose breaks a mechanismiwlimaa set of com-
ponents each of which can be implemented in a number of diffevays, some of

60ur results are slightly different from those in [14], bue thattern of these results still holds. In
addition, we ran amCDAEE variant © = 30) that was not tested in [14], observing that those
with & < 20 do not perform well when populated by traders.



which are also parameterized. Given a method to evaluattidate mechanisms, the
approach then uses machine learning to explore the spacssibfe mechanisms, each
composed from a specific choice of components and param@&teeskey difference
between our approach and previous approaches to this tésétithe score from the
evaluation is not only used to grade the candidate mechapmmalso the components
and parameters, and new mechanisms are generated in a way biased towards
components and parameters with high scores.

The specific case-study that we used to develop our appreahk design of new
double auction mechanisms. Evaluating the candidate mexha using the infrastruc-
ture of the TAC Market Design competition, we showed that weld learn mecha-
nisms that can outperform the standard mechanisms agdinst Vearning took place
and the best entries in past Market Design competitions. [g¢eshhowed that the best
mechanisms we learned could outperform mechanisms froritéature even when
the evaluation did not take place in the context of the Mab&sign game. These re-
sults make us confident that we can generate robust douhi®@muneechanisms and,
as a consequence, that the grey-box approach is an effegtp@ach to automated
mechanism design.

Now that we can learn mechanisms effectively, we plan to attepapproach to
also learn trading strategies, allowing us to co-evolvelraatsms and the traders that
operate within them.
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