
Dynamic Data Migration Policies for

Query-Intensive Distributed Data
Environments�

Tengjiao Wang1, Bishan Yang1, Allen Huang2, Qi Zhang1, Jun Gao1,
Dongqing Yang1, Shiwei Tang1, and Jinzhong Niu3

1 Key Laboratory of High Confidence Software Technologies, Peking University,
Ministry of Education, China

School of Electronics Engineering and Computer Science, Peking University
Beijing, 100871 China

{tjwang, bishan yang, rainer, dqyang, gaojun, swtang}@pku.edu.cn
2 Microsoft SQL China R&D Center

allen.huang@microsoft.com
3 Computer Science, Graduate School and University Center,

City University of New York
365, 5th Avenue, New York, NY 10016, USA

jniu@gc.cuny.edu

Abstract. Modern large distributed applications, such as telecommuni-
cation and banking services, need to respond instantly to a huge
number of queries within a short period of time. The data-intensive,
query-intensive nature makes it necessary to build these applications in
a distributed data environment that involves a number of data servers
sharing service load. How data is distributed among the servers has a
crucial impact on the system response time. This paper introduces two
policies that dynamically migrate data in such an environment as the
pattern of queries on data changes, and achieve query load balance. One
policy is based on a central controller that periodically collects the query
load information on all data servers and regulates data migration across
the whole system. The other policy lets individual server dynamically
selects a partner to migrate data and balance query load in between. Ex-
perimental results show that both policies significantly improve system
performance in terms of average query response time and fairness, and
communication overhead incurred is marginal.

1 Introduction

As more and more query-intensive applications, such as telecommunication and
banking services, are running in large distributed data environments, it is a
� This work is supported by the Cultivation Fund of the Key Scientific and Tech-

nical Innovation ProjectMinistry of Education of China(No.708001), the National
’863’ High-Tech Program of China(No.2007AA01Z191,2006AA01Z230), and the
NSFC(Grants 60873062).

Q. Li et al. (Eds.): APWeb/WAIM 2009, LNCS 5446, pp. 63–75, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 T. Wang et al.

major concern for these service providers how to serve millions of requests with
short response time. These environments typically involve a number of data
servers sharing service load and the distribution of data among these servers has
a crucial impact on how fast queries are fulfilled in average.

A typical example of these applications is telephony service. When a user
dials a number to make a call, a request is made to query the callee’s location
information so as to establish a connection between the two parties. Typically
each user’s location information is stored as a record in a database that spans
across a set of distributed database servers, as the overall data volume is massive.
Assuming that each record is unique system-wide, a query on a particular record
needs to be routed to the server on which the record is stored. It is usually the
case that the number of queries on records are not evenly distributed. A high
access frequency of a small set of data records on a single server may easily
overload the server; while some other servers may be basically idle if their data
is rarely accessed. When load imbalance is severe, the average query response
time may easily surpass the maximal time human users can stand. Therefore,
how the records are distributed across the system is an important issue for system
designers.

Generally, these systems share the following features:

– A massive amount of data is distributed among multiple database server
nodes without duplicates. That is a data record is available on exactly one
node in the system and queries on the data have to be routed to the node.

– Fast response and high efficiency in serving queries are guaranteed even when
the overall query load is high system-wide.

– Data distribution has a significant impact on query load distribution. When
data is unevenly distributed among nodes, load imbalance occurs and queries
on some records may have to wait a long time to get served.

– The pattern of queries may change over time, and as a result, data records
need to be migrated between server nodes dynamically to balance workload.

1.1 Related Work

Load balancing involving data distribution has been addressed in [1,2]. Their
approaches are however used to allocate web documents among a cluster of web
servers in order to achieve load balance, which is different from the problem we
would like to tackle.

A relating problem domain is data distribution in parallel storage systems.
In these systems, horizontal data partitioning has been commonly used to dis-
tribute data among system nodes. There are further three different strategies
for horizontal partitioning: round-robin, hash, and value-range partitioning. The
value-range partitioning may create skewed data distributions. The round-robin
partitioning is capable of allocating data approximately evenly between parti-
tions, but it requires brute-force searches and is ineffective for queries. The hash
partitioning can not only obtain even data distribution, but also perform well for
exact matching queries. Although these partitioning strategies each have both

Dynamic Data Migration Policies 65

advantages and disadvantages, they do not take into consideration the access
pattern on data, which would be a problem when the pattern is not a uni-
form distribution. Dynamic data reallocation is necessary to effectively adapt
for changes of access patterns. When access frequencies of data items lead to
unbalanced workload on system nodes, data migration should be performed to
balance workload. The simple data skew handling method in [3] balances the
storage space for data, but does not guarantee balanced data access load across
system nodes. Similarly most access load skew handling methods do not consider
data balancing [4,5]. In [6], a data-placement method was proposed to balance
both access load and storage space of data, but it is applied in parallel storage
system, and focuses on achieving availability and scalability for parallel storage
configuration.

In this paper, we introduce a series of effective policies for dynamic data
migration in query-intensive distributed data environments. Our work differs
from previous work in that our approach models patterns of end-user queries
and performs dynamic data migration to speed up query processing. To adapt
for the ever-changing load distribution in the system, we design dynamic data
migration policies to do query load balancing. The idea is basically to collect
query load information at system nodes periodically and perform data migration
automatically to obtain load balance in the system. In particular, our work has
the following contributions:

– We propose a dynamic data migration policy with centralized control. The
data migration process is controlled by the central controller that makes
decisions from the system-wide viewpoint.

– We propose a dynamic data migration policy with decentralized control.
Each individual node has its local viewpoint and makes decisions concur-
rently along others.

– We develop a platform to evaluate the effectiveness of our proposed policies.
Experimental results show that these policies perform almost optimally, and
are able to significantly reduce query response time even with the varying
query load across the system.

The remainder of this paper is organized as follows: Section 2 presents a model
for the query-intensive distributed data environments; Section 3 describes the
two proposed dynamic data migration policies in details, one with centralized
control and the other with distributed control; Section 4 describes the experi-
mental environment and presents an experimental comparison between the three
strategies; and Section 5 concludes this article.

2 Model Description and Formulation

This section presents a query-intensive distributed model, which is commonly
used in mobile communications[7]. As Fig. 1 depicts, the model can be divided
into three parts: back-end (BE) servers, front-end (FE) servers and application
clients (ACs).

66 T. Wang et al.

FE

Switch

FE

Switch Switch

FE

AC AC AC AC

BE

BE BE

BE

BE BE

BE

BE BE

send query
request

fetch data return data

Application

Client

Front-End

return the query
result

Back-End

Fig. 1. A model for query-intensive distributed data environment

The BE servers hold data that would be queried about and together form
a huge database system. Here we assume that data is distributed between BE
servers without overlap and can be migrated between them.1 The databases on
BE servers have a homogeneous structure, but the processing powers of these
BE servers may differ. When a user sends a query through an application client,
it first arrives at one of the FE servers and then is routed to the BE server where
the queried data is located. The BE server then executes the query on its local
database, and returns the requested information.

We now make several definitions that would be needed in subsequent sections.

Definition 1. The query load associated with a data unit is the frequency of
read operation2 on it in a unit of time, denote as l.3

Definition 2. Given a data group, G, which has k data units with their corre-
sponding loads being l1, l2, ..., lk respectively, the query load associated with G is

defined as L =
k∑

j=1

lj.

Definition 3. The process power of a BE sever, μ, is the highest query fre-
quency it can deal with within a unit of time. If there are k data groups on the
BE server and L1, L2, ..., Lk are their query loads respectively, the load level of

the BE server is defined as β =

k∑

i=1
Li

μ .

1 Multiple BE servers could possibly be used to hold a same set of data units for higher
reliability, with one of them being the main sever and the others being backups.

2 We only consider read operations here because in the environment read operations
are the main operation.

3 In our experiment one unit of time is 10 seconds, which is common in most applications
in our application domain.

Dynamic Data Migration Policies 67

3 Dynamic Data Migration Policies

To adapt the fluctuation of query load in the system, dynamic data migration
policies are needed. We propose two dynamic data migration policies that can
adapt for the changing pattern of query load, one with centralized control and
the other with distributed control.

Either migration policy consists of three components: (1) information rule,
which defines how the query load information is collected and maintained; (2)
selection rule, which regulates the selection of source server nodes, with high load,
and destination server nodes, with low load, for data migration; (3) migration
rule, which determines when and how to migrate data.

3.1 DDMC: Dynamic Data Migration with Centralized Control

We now present the dynamic data migration policy with a central controller
(CC). With centralized control, the global information of the query load is col-
lected by asking each BE server to inform the central center of its local load.
Data migration decisions are made by the central controller itself. The process-
ing power of the central controller is assumed high enough to fulfill the task. It
can be implemented by a low cost processor or even run as a single process on
an existent node in the system.

Information Rule. Suppose the query load of data group Gi on FEj is denoted
as Li,j , and there are totally Nfe FE servers in the system, the total query load
of data group Gi is then the sum of query loads recorded on all the FE servers,

expressed as Li =
Nfe∑

j=1

Li,j . Since the data groups have no overlap across BE

servers, we can calculate the load level of BEk as the ratio of the overall load of
the data groups on BEk and BEk’s processing power βk =

∑
Lj/μi.

To avoid high communication overhead, CC periodically notifies all the FE
servers to collect load information of each data group in their data group tables.
The gathered information is also stored in a table on CC, which has the same
structure as the FE data group tables though it records the global information of
data groups. CC also maintains a table, called TBE , as a whole picture of the BE
servers. Each entry of TBE contains information about a BE server, including
its BE’s ID, its processing power, and its current load level.

Selection Rule. The objective is to balance the query load in the system
through data reallocation. Since BE servers may have various processing capabil-
ities, we can not simply redistribute data to make an uniform load distribution.
Intuitively, if all the nodes are at the same level of utilization, the resources are
considered to have been made best use of and the servers have achieved system-
wide balance. We classify the BE servers into three categories: HL (Heavily
Loaded), NL (Normally Loaded), and LL (Lightly Loaded). The classification is

based on the average load level of the system: AvgL = (
N∑

i=1

�Li)/(
N∑

i=1

μi).

68 T. Wang et al.

The system is viewed as in an optimal state when the load levels of each BE
server converged to to AvgL. With a toleration constant φ, a node is considered
a HL one if its load level β > AvgL + φ, a NL one if AvgL−φ ≤ β ≤ AvgL + φ,
or a LL one if β < AvgL − φ. All the HL nodes are chosen as source node
candidates and LL nodes are chosen as destination node candidates.

The basic idea is to balance loads between HL nodes and LL nodes. First a
HL node is selected, then a LL node is selected for data migration between
the two parties. Due to the communication overhead in a large distributed
network, only a small set of LL nodes should be selected for a particular HL
node. We, in particular, choose the LL node from the k nearest neighbors to
the source node. To further minimize the migration overhead, we assign each
destination node candidates a priority, which represents the priority for it to
be chosen. For a destination node candidate BEi, the priority, pi, is defined as:
pi = (μi∗(AvgL+φ)−Li

max
j

{μj∗(AvgL+φ)−Lj}) The priority reflects how much potential a LL node

has to take more query load. We select the node with the highest priority as the
destination node.

Migration Rule. To speed up data migration, the algorithm is divided into
two stages: decision making and data migrating.

First, the source node candidate with the highest load level is chosen as a
source node, called BEi, and the destination node candidate with the highest
priority is chosen as a destination node, called BEj . In order to move less data,
the data groups on BEi are considered in descending order of their corresponding
load values. A data group that is eligible for migration if it satisfy the following
two conditions:

Condition 1. ωcδi > Δ, where c is the number of times the data group has
been migrated, ω (0 < ω ≤ 1) is a weighting factor used to prevent the data
group from being migrated too frequently, δi describes how heavier the load level
of the source node is relatively, and Δ (> 0) is a constant used to protect the
system from potential instability. In particular, δi is defined as: δi = βi/ max

k
βk

where max
k

βk is the highest load level in the system. When ω = 1, c will not

effect the data migration decisions, and only the load level of the node matters;
and when ω = 0, no data groups would be migrated.

Condition 2. After the migration, the load level of the source node should not
be lower than AvgL − φ and the load level of the destination node should not
be higher than AvgL + φ, which can be expressed as βi − l/μi ≥ AvgL − φ and
βj + l/μj ≤ AvgL+φ, where l is the query load of the data group to be migrated
from the source node to the destination node.

It is possible that there are no data groups on the source node satisfying
the above two conditions. Under this case, data groups on the destination node
will also be taken into consideration and we allow data exchanging between the
source node and the destination node. A data group with load l on the source

Dynamic Data Migration Policies 69

node BEi and a data group with load l′ on the destination node BEj would be
exchanged if βi−(l−l′)/μi ≥ AvgL−φ and βj+(l−l′)/μj ≤ AvgL+φdestination
node should be searched in the order of increasing load. The first one that meets
the above conditions is selected for exchanging.

Once the migration decision is made, the central controller will control the
migration process. The priority of the destination node will be updated, and the
new destination node will be chosen after migration. This procedure is repeated
until all the data groups on the source node are explored for the migration
possibilities. Then the next source node candidate is chosen. Until the iterative
loop on the source node candidates is finished, the decision process is ended.

Data Migration Mechanism. We provide a data migration mechanism for ensur-
ing data consistency during the migration process. The exchanging process can
be divided into two migration processes, by exchanging source and destination.

Step 1. At the beginning, CC sends a command to source node BEs for mi-
grating data D to destination node BEd.
Step 2. BEs performs the migration.
Step 3. If BEd successfully receives and stores the data, it sends a success signal
to CC.
Step 4. CC broadcasts messages to all FE servers to ask for location update in
their data group tables.
Step 5. Each FE server performs location update, and then sends a success
signal to CC.
Step 6. After receiving the success signals from all FE servers, CC sends a com-
mand to BEs for deleting the migrated data D.
Step 7. BEs performs the deletion.

3.2 DDMD: Dynamic Data Migration with Distributed Control

This section provides an alternative approach without any centralized control.
Individual BE server makes the data migration decision based on their own
situation. With this policy, each BE server calculates AvgL by broadcasting its
own information to other BE servers in the system. Similar to the policy with
centralized control, the BE servers are classified into three categories: HL, NL
and LL.

The policy is a HL-initiating one. The objective is to lighten the query load
in HL nodes by migrating their frequently queried data to the LL nodes. Only
the HL nodes need to store information about the LL nodes. This will enable
the HL nodes to make migration decisions, i.e., choosing a LL node that is the
best for migration. A LL node may receive migration requests for different HL
nodes at the same time. In this case, the LL node will choose the one it thinks
the most deserved for migration. The decision of the HL node is valid only if the
decision is accepted by the chosen LL node. In this way, a HL node that is too
desperate in reducing its load is regulated to some extent.

70 T. Wang et al.

BEs BEd

FE-1

data group

table

FE-1

data group

table

FE-1

data group

table

(1) Migrate data G

(2) Message: Migration
Success

(3) Update data group
table

(3) (3)
(4) Message: Update

Success

(4) (4)

(5) Delete data

Fig. 2. Data migration process with distributed control

Information Rule. To obtain the overall load, each BE server requests all
the FE servers to collect the corresponding data groups information. Then it
calculates and stores its own load value L and the load level β, and classifies
itself to HL, NL or LL in the light of the threshold. After that, each BE server
broadcasts their own state to other BE servers in the system. In this way, every
BE server can know the average load level, AvgL, of the system. If a server finds
itself as a LL node, it will build up a HL-list to record all the HL nodes’s IDs,
for knowing where its information has been kept. If a server is a HL node, it
will build up a LL-List and store the load values of the LL nodes from their
broadcasting. The aim of this process is to build up the necessary information
for migration decisions.

Selection Rule. The basic idea is that each HL node chooses the destina-
tion node candidate that most appropriate for migration regardless of other HL
nodes’s decisions. On the other hand, the LL node tries to let the most needed
HL node to migrate data. This is a concurrent decision making process. Individ-
ual HL node can making decisions simultaneously based on their own viewpoints
of the system. Specifically, they have different description about the LL nodes
in the system, owing to the distance factor. The method used to measure the
priority of the LL node is the same way as that used in the centralized policy.
It can be computed locally since the HL node knows the current load and the
processing power.

Migration Rule. Based on the selection rule, the HL node chooses the des-
tination node based on the priority, from high to low. Since the selection pro-
cess in various HL nodes can be taken place at the same time, it is likely that
a LL node is selected as a destination node by more than one HL nodes. To
maintain a coherent view of the system, the load copies of the LL nodes must
be consistent. To address this coherency problem, the selected LL node should
choose only one source node, and make other HL nodes in the HL-List to see its
new load.

Dynamic Data Migration Policies 71

The migration mechanism for DDMD is introduced in the follow. It only deals
with the information update for the migrated data, and the overall load value of
individual node is assumed to get consistent through the above communication
process. Fig. 2 shows the mechanism.

Step 1. the data group migrates from the source node to the destination node.
Step 2. if the destination node successfully receives the data, it return a success
signal to the source node.
Step 3. the source node notifies all the FE servers to update the location
information of the migrated data.
Step 4. All the FE servers performs the update and then sends a signal to the
source node.
Step 5. When the source node receives signals from all the FE servers, it deletes
the data and its corresponding information in the local table.

This mechanism can also be extended to apply in data exchanging by replacing
the source node by a LL node and the destination node by a HL node.

4 Experiments

For the purpose of this study, we prepare real customer data from a mobile
communication company. It contains 6,000,000 users covering attributes like the
basic ID of the user, the current location of the user and IMSI (International
Mobile Subscriber Identification Number). All the data is stored in database,
and is queried and processed through SQL sentence. Our platform consists of
six BE servers and one FE server. Each server runs a DB2 V8.0 database. The FE
server is responsible for dispatching an incoming query request to one of the BE
servers. The hardware configurations are presented in Table 1. The processing
rate is measured by the number of queries being dealt with by 600 threads in
a second, and the processing rate of the slowest computer is set to 1. All the
system nodes are assumed to be connected by a communication network with
100Mbps bandwidth. A query was created by generating an id number, which
was used as the key for searching the users’ location information in the database.
They are generated according to a Zipf distribution, the Zipf factor is varied from
0.7 to 0.9. The reason is that in real case, only a few data is queried with high
frequency in a period, a medium amount of data with middle query frequency,
and a large amount of data is queried not so continually.

Table 1. System configuration

CPU Memory Number Process power(relative)

2.0GHz P4 512M 1 1

4*1.8GHz AMD Opteron 865 18GB 1 5

AMD Athlon 64 3200+ 1G 4 2

72 T. Wang et al.

4.1 Description of Experiments

To simulate the queries in the real applications, we generate 600 threads to send
queries to the system concurrently, each thread carrying several SQL queries.
We found from experiments that if the number of overall queries reach 6000, the
system resources are in the largest extent of use. Hence we generate queries from
3000 to 6000 to vary the system load level from 0.5 to 1.0.

For comparison purpose, an algorithm NoLB was used. It distributes data
to databases based on the commonly used horizontal fragmentation method
and does not consider any query load information. A static data distribution
algorithm DAH in [9] is also used for comparison.

Initially, the data is distributed by NoLB. The data group size is set to be 100
records. The system load level is defined as the ratio of total query frequency to

the overall processing power of the system: AvgL = (
N∑

i=1

�Li)/(
N∑

i=1

μi). At initial

state, we set the system load level at 0.5. Then we varied it from 0.5 to 1.0.

Comparisons between DAH, DDMC, and DDMD. In the second exper-
iment, the effectiveness of the dynamic data migration policies are evaluated,
including DDMC and DDMD. After the system query load is moderated by
DAH, we vary the query distribution a little by tuning the Zipf factor. At this
time, the previous distribution is not adaptable, and DDMC and DDMD poli-
cies are considered. As for DDMC, the central controller periodically collected
the query load information from the FE server at a time interval of 10 minutes.
Similarly for DDMD, BE servers gather information from each other at each 10
minutes. A large number of runs for DDMC and DDMD were conducted with
different values of adjustable parameters, and the best combination of those pa-
rameter values were used. The tolerable deviation of the average query load φ is
set at 10% of AvgL.

In Fig. 3, we present the average response time of DDMC, DDMD and DAH
with the increasing load level of the system. From the result in Fig. 3, DDMC
and DDMD both provide substantial speedup of the average response time of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

s)

System Load Level

DAH
DDMC
DDMD

Fig. 3. Average response time

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5 0.6 0.7 0.8 0.9 1

F
ai

rn
es

s
In

de
x

System Load Level

DAH
DDMC
DDMD

Fig. 4. Fairness indices with DAH,
DDMC, and DDMD respectively

Dynamic Data Migration Policies 73

0 1 2 3 4 5
0

20

40

60

80

100

Av
er

ag
e

re
sp

on
se

 ti
m

e
(re

la
tiv

e
va

lu
e)

BE S ervers

 DAH
 DDMC
 DDMD

Fig. 5. Average response time at indi-
vidual servers

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

M
ig

ra
tio

n
T

im
e

(s
)

w

DDMC
DDMD

Fig. 6. Migration time with different
migration weights

system over the situation where there are no dynamic migration decisions. This
is because dynamically data migration can contribute to achieve load balancing
and adapt the changing query patterns, and the overall performance of the sys-
tem can be expected to be improved. The comparison results are more obvious
with higher load level of the system. The performance provided by DDMD is
close to that provided by DDMC. This confirms the fact that making decisions
based on individual server’s viewpoint will not be inferior to the system-wide
viewpoint.

The average response time for individual BE server before and after dynamic
migration is also given. Fig. 5 shows the average response time when the system’s
load level is at 0.7. Both the two policies moderate the response time and make
much better utilization of the system resources. Each BE server’s load level is
inside the expected zone of the average load level.

Fairness index I proposed in [8] is used as a measure of balance: I =
[

n∑

i=1
Fi]

2

n
n∑

i=1
F 2

i

where Fi is the expected response time of node i. If the expected response time
is the same for all nodes, then I = 1, which means the system achieves fairness
distribution. Otherwise, if the expected response time differs significantly from
one node to another, then I decreases, which means the system suffers load
imbalance to some extent. With respect to fair index, Fig. 4 shows that DDMC
and DDMD has a close fairness index of about 0.91 to 1.0. The fairness index of
DAH varies from 0.97 at high load to 0.79 at low load, while DDMC and DDMD
shows stable fair index value with the increasing load level of the system.

Comparisons between DDMC and DDMD on Communication Over-
head. In the dynamic policies, the communication overhead costs caused by
gathering and exchanging information may negate the benefits of them. In Fig. 6,
we show cost of the dynamic migration algorithms DDMC and DDMD in terms
of their communication time.

74 T. Wang et al.

To examine how communication overhead changes at different levels of data
migration, we experimented with ω varying from 0.1 to 1.0. Fig. 6 show that with
the increasing value of ω, more communication and migration time are needed.
From the result, we can see that DDMD incurs more communication overhead
than DDMC. The reason is that DDMD needs exchanging state information
between individual servers, while in DDMC, broadcasting is avoided in that
each server only needs to report its state information to the central controller.
However, the cost difference is not large, and compared to the efficiency benefit,
DDMD is also an attractive alternative, especially for highly distributed settings,
where communication cost is high and reliability is a top priority.

5 Conclusion

In this paper, we propose a series of policies to address the response efficiency
challenge in the distributed query-intensive data environment. The main goal is
to reduce the query response time by dynamically adjusting data distribution
and achieve balanced load. To effectively adapt the system changes, two dynamic
policies DDMC and DDMD are designed to adapt for the changing query load
and obtain load balance through data migration. DDMC uses a central controller
to make migration decisions based on the global load information of the system,
while in DDMD, individual server makes decisions based on their own viewpoints
of the system without centralized control. Our experiments show that DDMC
and DDMD exhibit similar performance in term of average query response time,
and as expected, DDMD involves higher communication overhead than DDMC,
but the difference is not significant. The experimental results also show that
the proposed policies offer favorable response time with increasing query load
system-wide.

References

1. Narendran, B., Rangarajan, S., Yajnik, S.: Data distribution algorithms for load
balanced fault-tolerant Webaccess. In: Proceedings of The Sixteenth Symposium on
Reliable Distributed Systems, pp. 97–106 (1997)

2. Savio, S.: Approximate Algorithms for Document Placement in Distributed Web
Servers. IEEE Transactions on Software Engineering, 100–106 (2004)

3. Yokota, H., Kanemasa, Y., Miyazaki, J.: Fat-Btree: An Update-Conscious Parallel
Directory Structure. In: International Conference on Data Engineering (ICDE), pp.
448–457 (1999)

4. Lee, M.-L., Kitsuregawa, M., Ooi, B.-C., Tan, K.-L., Mondal, A.: Towards Self-
Tuning Data Placement in Parallel Database Systems. In: International Conference
on Management of Data (SIGMOD), pp. 225–236 (2000)

5. Feelifl, H., Kitsuregawa, M., Ooi, B.-C.: A fast convergence technique for online
heat-balancing of btree indexed database over shared-nothing parallel systems. In:
Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 846–858.
Springer, Heidelberg (2000)

Dynamic Data Migration Policies 75

6. Watanabe, A., Yokota, H.: Adaptive Lapped Declustering: A Highly Available Data-
Placement Method Balancing Access Load and Space Utilization. In: International
Conference on Data Engineering (ICDE), pp. 828–839 (2005)

7. Feldmann, M., Rissen, J.P.: GSM Network Systems and Overall System Integration.
Electrical Communication (1993)

8. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley Interscience,
Hoboken (1991)

9. Wang, T., Yang, B., Gao, J., Yang, D.: Effective data distribution and reallocation
strategies for fast query response in distributed query-intensive data environments.
In: Zhang, Y., Yu, G., Bertino, E., Xu, G. (eds.) APWeb 2008. LNCS, vol. 4976,
pp. 548–559. Springer, Heidelberg (2008)

	Dynamic Data Migration Policies forQuery-Intensive Distributed Data Environments
	Introduction
	Related Work

	Model Description and Formulation
	Dynamic Data Migration Policies
	DDMC: Dynamic Data Migration with Centralized Control
	DDMD: Dynamic Data Migration with Distributed Control

	Experiments
	Description of Experiments

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

