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Abstract With the coming shift to cloud computing, cloud database is emerging to provide database service

over the Internet. In the cloud-based environment, data are distributed at internet scale and the system needs to

handle a huge number of user queries simultaneously without delay. How data are distributed among the servers

has a crucial impact on the query load distribution and the system response time. In this paper, we propose a

market-based control method, called MBA, to achieve query load balance via reasonable data distribution. In

MBA, database nodes are treated as traders in a market, and certain market rules are used to intelligently decide

data allocation and migration. We built a prototype system and conducted extensive experiments. Experimental

results show that the MBA method significantly improves system performance in terms of average query response

time and fairness.
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1 Introduction

Cloud computing is a fast-developing computing paradigm where data are distributed at massive scales
and services are available for users over the Internet [6]. The currently available ”Clouds”, like Amazon’s
S3 and Google FS (GFS), typically provide unstructured storage services. Also, more and more modern
large-scale applications have strong demand for database as a service over the Internet.

Cloud database is emerging to serve this end. Large database provider like Microsoft SQL puts much
concern on the techniques about developing an effective cloud database. In the joint research project
between Peking University and Microsoft Cloud DB Software Center, we are focusing on how to improve
load balancing mechanism in cloud database, which is a critical issue for improving system’s performance.

Generally, cloud database has the following features:

• Fast response and high efficiency in serving queries are guaranteed. Importantly, load balancing
should be maintained through reasonable data distribution, and thus favorable system performance
can be guaranteed.

• The system can provide high manageability and availability with the ever-changing query patterns.
∗Corresponding author (email: tjwang@pku.edu.cn)
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• The topology of database is dynamic, that is, database nodes may be added or deleted over time.

In the cloud database, how data are distributed in the system is a key factor which affect the load
balancing resolution. Besides, the workload history on data and the workload changes in the system also
play important roles in balancing query load.

In this paper, we developed an effective method MBA (Market, Bid and Ask) to achieve reasonable
data distribution among cloud db nodes, and balance the workload and improve the overall DB operation
performance in the cloud database. MBA is a novel market-based control method. In MBA, database
nodes are treated as traders in a market, and certain market rules are used to intelligently decide data
allocation and migration. With this technique, MBA can achieve load balancing very fast, and adapt to
the ever-changing query load and database node topology effectively. Specifically, our method has the
following contributions:

• Fast convergence to query load balance based on market mechanism. Database nodes
are considered as traders in a market and interact with each other under certain market rules [11].
With the intelligent market mechanism, MBA can achieve equilibrium on the workload quickly via
query load exchanging.

• Quickly adapting to query load evolution. In a cloud database system, query load distribution
evolves with the change of user query patterns. MBA can quickly make the system converge to a
new equilibrium state whenever the previous equilibrium is broken.

• Effectively accommodating to ”cloud drift” with market mechanism. Cloud drift means
the evolution of database node topology and data location over time. In fact, the change of database
node topology can be seen as that of trader participation. Market mechanism, famous for being
”free in and out”, is good at accommodating itself to this scenario.

Moreover, a prototype system named MADAM (MArket-based Data Allocation and Migration) is
developed to carry out a series of experiments. We obtained customer data from a mobile communication
company. Experimental results on the data set show that MBA significantly improves system performance
in terms of average query response time and fairness.

The remainder of this paper is organized as follows: Section 2 discusses the related work; Section 3
introduces cloud database and problem statement; Section 4 describes an overview of market-based data
allocation and migration; Section 5 presents in detail the MBA method; The experimental results are
reported in Section 6; We finally give the discussion and conclusion in Section 7.

2 Related work

Load balancing. Much research has been done to address the issue of load balancing in distributed
systems. They are typically classified into static and dynamic ones [18]. Static policies determine job
assignments based on information about the average behavior of the system. They are simple, efficient,
and easy to implement, but can not adapt to the changing workload in the system. To respond to the
fluctuation of workload over time, dynamic load balancing policies are proposed. [8] for example is a
policy with a central job dispatcher, which periodically collects load information at system nodes and
makes decisions for job transformation. They are more complex than static policies, but exhibit better
performance. These load balancing policies view system nodes as a collection of common resources for
arriving jobs. This makes them inapplicable to the scenario we concern, in which a query should be
processed by a particular server where the queried data are located. [9, 1, 14] address the issue of data
allocation, however they are typically designed for allocating web documents among a cluster of web
servers, where the document size and HTTP connection numbers are main concerns.

A more relative work is data distribution in parallel storage systems. In these systems, horizontal data
partitioning has been commonly used to distribute data among system nodes. There are typically three
strategies for horizontal partitioning: round-robin, hash, and value-range partitioning. These partitioning
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Figure 1: The model of cloud database

strategies each have advantages and disadvantages, but they do not take into consideration the access
pattern on data, which would be a problem when the pattern is not a uniform distribution. Dynamic data
reallocation is necessary to effectively adapt for changes of access patterns. When access frequencies of
data items lead to unbalanced workload on system nodes, data migration should be performed to balance
workload. The simple data skew handling method in [17] balances the storage space for data, but does
not guarantee balanced data access load across system nodes. Similarly most access load skew handling
methods do not consider data balancing [7, 3]. In [16], a data-placement method was proposed to balance
both access load and storage space of data, but it is designed for parallel storage system, and focuses on
achieving availability and scalability for parallel storage configuration.

Market mechanism. During the past few years, market mechanism has gained much interest in both
the economics and computer science literature. Market-based techniques ([11]) are applying themselves
to resource allocation, often through the creation of artificial market. This is due to the fact that market
mechanisms, when well designed, can achieve desired economic outcomes like high allocated efficiency.
Auctions are a subclass of market mechanisms that have received particular attention. Double auction
[4], on which our method is based, is one type of auction where both buyers and sellers can make offers.
There is a wide range of literature published on double auctions (e.g. [10, 13]).

Connecting load balancing to the market mechanism in the distributed environment is a new direction
of research. In our approach, we will show how to integrate the ideas of the artificial market into solving
load balancing challenges in the cloud-based environment.

3 Problem statement

In this section we will first give an introduction to cloud database, and then the problem to be solved is
defined formally.

As Fig.1 shows, a typical cloud database includes cloud database nodes (CDNs), cloud database master
nodes (CDMNs) and application clients. In a cloud database, data are partitioned across CDNs. CDNs
are distributed, heterogeneous database systems, with each storing a subset of records. CDMNs play the
role of data nodes manager, and guide certain application clients to proper data nodes for data accessing.
When a user sends a query through an application client, it first arrives at one of the CDMNs and then
is routed to the CDN where the queried data are located. The CDN then executes the query on its local
database, and returns the requested information.

Now we give some definitions related to query load in the cloud database.

Definition 1. The query load associated with a data unit R (i.e. a row) in a time interval ∆t, denoted
by l, is its read frequency during ∆t. ∆t is measured in terms of ten seconds, which is attractive in most
applications.
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Figure 2: The architecture of MADAM

Definition 2. Given a partition P with k data units and their corresponding loads are l1, l2, ..., lk

respectively. The query load associated with P is expressed as LP =
k∑

j=1

lj .

Definition 3. Given a CDN D with m partitions and their corresponding loads are L1
P , L2

P , ..., Lm
P

respectively. The query load associated with D is expressed as LD =
m∑

j=1

Lj
P .

Suppose a cloud database D, which is composed of data nodes of D1, D2,..., DN , is with total processing
capacities cD and with query load vector

−→
L0

D={LD1 , LD2 ,..., LDN
}, where LDi represents the query load

on data node Di, and
N∑

i=1

LDi
< cD. Let ci be the processing capacity (or computing power) of data node

Di, and ri, the unused computing power of Di, is defined as ci − LDi
. If c1 = c2 = ... = cN , all CDNs

have the same processing capacity and we call such cloud database a homogeneous one as apposed to a
heterogeneous one where various CDNs are with non-uniform processing capacities. In real applications,
a cloud database is usually heterogeneous.

Definition 4. Suppose a cloud database D with N data nodes satisfying that c1 6 c2 6 ... 6 ci 6 ... 6
cN . If there exists a k (1 6 k 6 N) satisfying that

(1)LD1 = LD2 = ... = LDk−1 = 0,
(2)LDk

, LDk+1 , ..., LDN
6= 0,

(3)rk = rk+1 = ... = rN and
(4)rk > ck−1,
then we say that D is query load balanced.

The condition of rk = rk+1 = ... = rN means a strict balance state. In real applications, we can hardly
make unused computing powers of various CDNs strictly equal to each other. The goal of MBA is to
diminish the difference of unused powers on various CDNs as much as possible.

Suppose a cloud database D with a query load distribution of
−→
L0

D={LD1 , LD2 ,..., LDN
} satisfying that

c1 > c2 > ... > ci > ... > cN , and
−→
L0

D is not in a query load balanced state. The problem of query load

balancing for D is identified as a function f(
−→
L0

D) → −→
L1

D, where
−→
L1

D={L∗D1
, L∗D2

,..., L∗DN
}, and

−→
L1

D is in
a query load balanced state.

4 An overview of market-based data allocation and dynamic migration

Fig.2 illustrates the architecture of the MADAM system. The market-based data allocation and dynamic
migration runs on the components with gray background (DTA and DAA). The others components are
those necessary for the implementation of a cloud database system and here they are simply classified as
CDSCs (Cloud Database System Components). CDSCs include local partitioning map, global partition-
ing map, partition manager, name resolution and so on. In a cloud database system, there are usually
more than one CDMNs (Cloud Database Master Nodes) for high availability. Therefore, there is no cen-
tral CDMN, and some information such as global partition map is further replicated in all the CDMNs.
Client applications can get services from any CDMN. For simplification, there is only one CDMN in Fig.2.
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In MBA approach, there are two types of agents, i.e. DTA (Data Trading Agent) and DAA (Data
Auctioning Agent), working together to achieve query load balancing. A DTA is responsible for the real-
time tracking of query load on a CDN (Cloud Database Node), and for determining the bid or ask price
for the CDN it resides on. (DAA) plays the role of market institution, which defines how a transaction
takes place, in other words, which traders (i.e. CDNs) can buy and which traders can sell. Since there are
more than one DAAs residing on various CDMNs, each DTA on ceratin CDN may make its own decision
on joining in which market, i.e. being administered by which DAA. It is similar to the scenario in real
life, where traders can freely choose the market to take part in. It also avoids the bottleneck resulting
from the only one DAA.

The query load is the commodity to exchange. Exchanging is determined based on the query frequency
associated with the data. The query load on a data group with k data units (records) is expressed as

L =
k∑

j=1

lj , where l1, l2, ..., lk are query loads for the k data units respectively. In order to sell a query load

of Ls, n data units should be first picked out on which the sum of the query load equals to Ls. When
query load Ls is sold from one CDN, say D1, to another CDN, say D2, the n data units are migrated
from D1 to D2.

Generally, in MBA, the whole query load balancing process is as follows:

• A DTA monitors the query load upon the CDN it resides on, and sends the ask (bid) price for the
load to sell (buy) to DAA;

• DAA collects ask or bid price information from DTAs distributed on various CDNs, determines
transactions between traders with the market clearing algorithm (see Algorithm 1 in the following
section), and reports matching results to every DTA;

• DTAs carry out data migration and update status information such as query load and storage space;

• DAA notifies the GPM (Global Partition Map) to update its partition mapping information, so
that the later arrived application can get the most current location on which the required data
reside. Also data index will be updated.

The above process is executed iteratively until the system arrives at a convergence, that is, a state of
query load balance. It may take more than one round to converge. The time complexity of the above
process is O(m.N2), where N is the number of CDNs, and m is the number of rounds to convergence.

5 Market, bid and ask

In this section we will give the details on the MBA approach, including how to define the query load to
sell, how to give a bid or ask price and how a transaction between traders is decided.

5.1 Defining the Query Load to Sell

In a cloud database system, the basic unit for migrating is a partition. Suppose there are two partitions

P1 and P2, their query loads are LP1 =
k∑

i=1

li1 and LP2 =
m∑

j=1

lj2, where li1 is the query load of row Ri

(∈ P1)and lj2 is that of row Rj (∈ P2). Usually, li1 6= lj2, and thus LP1 6= LP2 . That is, different partitions
can not be identified as the same type of commodity simultaneously since the query loads associated with
them are very different from each other.

However, most work in the computer-simulating-based market mechanism design [5, 2], consider only
one type of good in the market and trade one single unit at a time. Thus they are not inapplicable here.

To deal with the problem, we first define a standard trading amount Lunit used by all traders in the
market, which is the amount of query load a trader has to buy or sell at a time. And then, we provide
a simple but efficient function GET−PARTITIONS−TO−SELL() to get as quickly as possible the target
partitions to sell for a data node.
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(a) query load is unbalanced

(b) query load balancing process stops after m1 rounds with Lunit1

MAX

AVERAGE

MIN

DUCP0

DUCP1

DUCP2

m1<m2Lunit1>Lunit2 DUCP0>DUCP1>DUCP2

(c) query load balancing process stops after m2 rounds with Lunit2

Figure 3: Query load balancing with different Lunit

Partitions to sell in Γ is treated as a single unit for trading. The little difference in load value of every
Γ is generally negligible, so the goods in the market can all be seen as the same type.

Standard trading amount Lunit has direct effects on the speed of convergence. The smaller Lunit is, the
better balanced state the system can achieve. The reason is as follows. Suppose the unused computing
powers of various CDNs are r1, r2, ..., rN , and the average value is ravg=(r1 + r2 + ... + rN )/N when the
system obtains load balancing. Note that the strict balanced state r1 = r2 = ... = rN = ravg, is hard to
achieve. Suppose DMAX is the CDN with the most unused computing power and DMIN with the least.
The following two conditions could not be true at the same time:

(1)rDMAX
− ravg > Lunit and

(2)ravg − rDMIN
> Lunit,

otherwise there will be a transaction between DMAX and DMIN . However, as Lunit decreases, a value
of Lunit can be found that enables the above two conditions be true at the same time. Then there will
be a transaction between CDNs again, and a better balanced state can be achieved.

For example, as is shown in Fig.3, unused computing powers of various CDNs are very different from
each other at first. It takes m1 and m2 rounds to converge when the standard trading units are Lunit1

and Lunit2 respectively. Here Lunit1 > Lunit2 and m1 < m2. After the process of load balancing stops,
the largest difference of unused computing power between CDNs, are DUCP1 and DUCP2 respectively,
and we have DUCP1 > DUCP2.

5.2 Bid and Ask

Data Trading Agent (DTA) is further classified into two types: buyer and seller. Each data node (see
Fig.2) is associated with these two types of agents. The seller sells its load (or sends data records), and
the buyer buys load from the sellers (or receives data records). Thus a data node has two self-interested
traders with diametrically opposite goals. A seller from one data node can transact with a buyer from
another data node, but never with the buyer from the same data node. Executing a transaction means
some records would be relocated from the date node associated with the seller to the data node associated
with the buyer.

To make the above scheme work, the limit prices of the two traders for each data node should be
deliberately set and updated. When the query load on a data node is high, the seller on it can make
transactions with buyers from lightly-loaded data nodes, similarly, when the query load on a data node
is low, the buyer on it can make transactions with sellers from heavily-loaded data nodes. Here the limit
price, or known as private value, is the highest (lowest) price a buyer (seller) is prepared to buy (sell) a
good. A buyer is constrained to purchase a price no more than its limit price, and a seller to accept a
price no lower than its limit price.

For data node Di with constant computing capacity ci, suppose the seller on it is denoted as Si and
the buyer on it Bi, and its load is LDi

and its unused computing power is ri = (ci−LDi
), then the limit

price of Si is set to be
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vSi = α.ri + β (1)

, and the limit price of Bi is set to be
vBi

= α.ri − β (2)

,where α ∈[0, 1] and β is a small positive number. α is introduced to make sure only a fraction of
remaining computing power will be offered to help heavily-loaded data nodes, otherwise a lightly-loaded
server may have the risk of becoming a heavily-loaded machine; and β is introduced to make sure there is
no possibility that the seller and the buyer from a same data node can make a transaction when they both
make shouts in the market. Having two traders with opposite interests guarantees that it is up to the
auction mechanism to determine whether the data node is competitive on the selling side (heavily-loaded)
or competitive on the buying side (lightly-loaded).

In a real market, however, traders are usually not willing to offer their true value (limit price or private
value) in an auction process, for the reason of earning profits. If a buyer pays more than its private value,
or a seller accepts less, then the trading will be considered to be at a loss. Therefore, at first, a buyer
will usually give a lower bid price than its private value and a sell will give a higher ask price than its
private value. Based on this observation, the bid (ask) price a buyer (seller) is prepared to bid (ask) is a
monotonic function of their private value for the good in question.

Suppose the private values of a buyer and a seller are vBi
and vSi

respectively, the bid price pBi
and

ask price pSi
are defined as follows:

pBi
= Ψ(vBi

) and pSi
= Ψ(vSi

).

A bid or ask usually takes the following form:

V={ID, commodity, amount, price, storage}.

In our method MBA, a bid vector is VB={Bi, Lunit, 1, pBi
, δBi

} and an ask vector is VS={Si, Lunit,
1, pSi

, ηSi
}. δSi

is the storage requirement for the data sold by Si. ηBi
is storage limit for buyer Bi.

If a transaction between Bi and Sj is determined, then ηBi
> ηSj

. For a bid, a buyer only knows the
total loads (Lunit) it will buy, but will know nothing about which partitions constitute the query loads
of Lunit until a transaction is decided. In contrast, a seller knows which partitions to sell at the time of
ask, which are the partitions in Γ. Through bid and ask, the decentralized control for load balancing is
achieved.

5.3 Market Clearing

Data Auctioning Agent (DAA) can be seen as a market institution which lays down rules about what the
traders can do and how the final allocation of commodities (i.e. data) given the actions of the traders.
DAA receives messages about the price information from traders nodes. In the case of a bid, the price
information may be an offer to buy, and in the case of an ask may be an offer to sell. DAA is also
responsible for market clearing, that is , DAA will decide a transaction between traders whose bid and
ask values cross. In other words, if there is a transaction between seller Si and buyer Bj , and the prices
of the ask and the bid are respectively pSi and pBi , then we have pBi > pSi .

Suppose there are buyers B1, B2, ..., Bn, and sellers S1, S2, ..., Sn, market clearing maximizes∑
TRANSACTION(Bi, Sj) subject to

pBi
> pSi

and ηBi
> ηSj

,

where TRANSACTION(Bi, Sj) denotes a transaction between buyer Bi and seller Si, ηBi
denotes

the available storage space of buyer Bi, and ηSj
represents the required storage space of seller Si.

The market clearing aims to maximize the total amount of transactions between buyers and sellers.
ηBi

> ηSj
ensures that the buyer Bi has enough storage space to store the data from the seller Si.

Algorithm 1 shows the process of market clearing. MAX(VBi
.price) − MIN(VSj

.price) < θ (θ is a
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system-defined threshold of profits) is used to ensure that the market clearing begins only if there is
enough trading profits. Generally, there will be few or even no trading profits when the system arrives
at or near a balanced state. Under such circumstances, market clearing algorithm will not do any match
between buyers and sellers. By setting different values of θ, the system will arrive at different states.
With the increase of θ, the system will arrive at a state farther from the strict balance. Note that a strict
balanced state requires more communication cost than a near optimal state, θ can be set according to
the system requirement.

ALGORITHM 1 : MARKET−CLEARING()

INPUT: the bid vectors VBi
of all buyers;

the ask vectors VSi
of all sellers;

01. sort the elements in BL

according to price in descending order;
02. sort the elements in AL

according to price in ascending order;
03. if (MAX(VBi

.price)−MIN(VSj
.price) < θ)

04. then return;
05. for each bid vector VBi in BL

06. if (VBi .price > VSj .price

and VBi .storage > VSj .storage)
then
07. output TRANSACTION(Bi, Sj);
08. remove VBi

and VSi
from BL and AL;

09. break;

6 Experimental study

In this part, we will report our experimental results. In our prototype system, each CDN runs a DB2 V8.0
database. As is described in Section 3, the CDMN is responsible for redirecting an incoming query request
to a proper CDN to get the required data. Table 1 gives an overview of the hardware configurations of
our experimental environment. The processing rate is measured by the number of queries processed by
600 threads in a second. Here the relative processing rate is computed by setting the processing rate of
the slowest computer to 1. The distances between these CDNs are also available, which will be used in
data migrating process. All the CDNs are assumed to be connected by a communication network with a
bandwidth of 100Mbps.

For the purpose of this study, we obtain customer data from a mobile communication company. Basic
information of 6000,000 users are contained in the tables, covering attributes like the basic ID of the
user, the current location of the user and IMSI (International Mobile Subscriber Identification Number).
The table group is partitioned and spreads across various CDNs. Queries are submitted through the
application clients, and then be routed to certain CDNs. A query created by our program includes an ID
number used as the key for searching the user location information in the cloud database. All queries are
generated according to a Zipf distribution with the Zipf factor varying from 0.7 to 0.9. This makes the
simulated scenario be more tally with practice. Because in real applications, only a few data are queried
with high frequency during a period of time, a medium amount of data with middle query frequency, and
a large amount of data are queried not so continually.

To simulate the queries in the real applications, we generate 600 threads to send queries concurrently
to the cloud database system, with each thread carrying several SQL statements. It is found from our
experiments that, if the overall queries amount to 6000, the system resources are consumed to the largest
extent. Hence the total amount of the generated queries is varied from 3000 to 6000, which results in the

system load level changing from 0.5 to 1.0, which is defined as Lsys = (
N∑

i=1

Li)/(
N∑

i=1

µi), where Li is the
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Table 1: System configuration

Computer Hardware Number Processing Capacity(relative)

CPU 2.0GHz P4, 512M RAM, Windows 2003 Server SP1 1 1

CPU 41.8GHz AMD Opteron 865, 18GB RAM, Windows Server 2003 X64 SP2 1 5

AMD Athlon 64 3200+, 1G RAM, Windows XP Professional 2002 50 2

query load of a CDN and µi the processing capacity of it.

6.1 Performance comparison

In this part, we will first introduce the performance index, and then give the methods for comparison
and the experimental results.

When it comes to performance evaluation on various approaches of query load balancing, query response
time and balance metric are two main aspects to concern. In our experiments, a fairness index I proposed

in [12] is used, which is I = ([
n∑

i=1

Fi]2)/(n
n∑

i=1

F 2
i ), where Fi is the expected response time of node i. If the

expected response time is the same for all nodes, then there is I = 1, which means the system achieves
fair distribution. Otherwise, if the expected response time differs significantly from one node to another,
then I decreases, meaning that the system is suffering from load imbalance to some extent.

It is good to start the simplest scenario where (1)the auctioneer is stationary, that is, it does not
change over time; (2)each trader knows where the auctioneer is; (3)the query frequency history of all the
data are available; (4)the distribution of queries upon the data records is stationary; and (5)the physical
topology of the database servers is not considered.

Based on these assumptions, we can now compare market-based approach with other methods. RR
and DAH[15] are static methods, which means there will be no data reallocation process.

In RR, an incoming partition P is allocated to the ’next’ available data node D in a ring, without
considering whether D is currently heavily-loaded or not, or how many query loads will be imposed on
D by P . For this purpose, an iterator is used which cycled through the ring of data nodes in a cloud
database system. The search starts at the current position of the iterator, which is incremented after a
proper data node is found for the locating of P .

DAH is an abbreviation for Data Allocation using a Hash-based Heuristic Technique, and is used to
allocate data fairly for load balancing in the system. To achieve this, the history of query load on the data
is used for load prediction. In DAH, data partitions are allocated to different data nodes by a hash-based
heuristic technique.

Then we will compare MBA with a dynamic data allocation method, DDMC (Dynamic Data Migration
by Centralized control) [15] in a more complex environment, where query patterns are ever-changing over
time. DDMC is a dynamic data reallocation policy with a central controller proposed in our previous
work, which collects the global information of all servers such as query load and processing power, and
then makes decisions on data migrating by heuristic algorithm. In order to reduce cost, all the above
jobs are carried out periodically instead of in real-time.

6.1.1 Comparison with static methods

From the experimental results, MBA achieves much better performance than other static methods, such
as RR and DAH. The much difference of MBA from both RR and DAH is that, in MBA, there will be
data exchanging among various CDNs during the data allocation process, but it is not the case for both
RR and DAH, i.e., for them data remain in a CDN instead of being relocated from one to another. As
is described above, this experiment is based on the assumption that query load distribution history is
available, and the distribution of queries upon the data records is stationary, so that the method of DAH
can perform best here. Note that DAH performs worse than RR in some cases if query load distribution
is evolving along the time, which is also proved by our experimental results. But DAH is not the focus
of this paper, thus experimental results on such cases will not be included here.
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In the experiments, the number of CDNs is fixed at 10, and the query arrives after the data allocation
process stops. The system load level changes from 0.5 to 1.0. There are several aspects to evaluate:

• Average response time of cloud database system as a whole. As Fig.4 shows, the average
response time of RR changes the most during the whole process of load adjustment. When Lsys

equals 0.5, it is 0.152 second, but it reaches a high level of 0.326 second when Lsys increases to 0.8.
MBA achieves the best average response time under all system load levels compared with RR and
DAH. It is only 0.05 second for the case of Lsys = 0.5, and slowly increases to 0.104 second along
with the changing of Lsys from 0.5 to 1.0.

• Average response time of individual CDN. Since the hardware configurations for each CDN
in our experiment are all the same, the average response time of each individual CDN should not
have much difference from each other, when there is a load balance among various CDNs. Here
we provide the average response time of 10 CDNs, as is shown in Fig.5 and the system load level
is 0.7. It can be concluded that MBA is better at query loading balancing than RR and DAH.
Because the difference in the response time between the fastest CDN (the first, seventh and eighth
one for RR, DAH and MBA respectively) and the slowest one (the fifth, fourth and fourth one for
RR, DAH and MBA respectively) is decreased, and the load level of each CDN is moderated to
average system load level as much as possible. As far as standard deviation (sd) is concerned, MBA
achieves the lowest level, while RR is with the highest level, as is shown in Fig.5. Here there is also
an interesting thing that the average response time of RR for the CDNs of 1, 2, 7 and 9, is even
faster than that of both DAH and MBA. The reason is that these CDNs are allocated by RR too
few query loads, which results in lightly-loaded CDNs.

• Fairness index. With respect to fair index, Fig.6 shows that RR is with the lowest level of fairness
index, which changes between 0.801 and 0.543 when system load level increases from 0.5 to 1.0.
DAH achieves a moderate level of fairness index ranging from 0.911 to 0.778. MBA remains a high
level of fairness index between 0.980 and 0.916 during the whole process, because there exist neither
heavily-loaded nor lightly-loaded CDNs when the system load level does not exceed the processing
capacity of the cloud database system.
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Figure 5: Average response
time of individual CDN

0.5
 0.6
 0.7
 0.8
 0.9
 1.0

0.0


0.2


0.4


0.6


0.8


1.0


 


 


F
ai

rn
es

s 
in

de
x


System load level


 RR

 DAH

 MBA


Figure 6: Fairness index

6.1.2 Comparison with dynamic method

In this part, we will show that MBA as a decentralized-control based dynamic method, can achieve better
performance than other centralized-control based dynamic method such as DDMC. Also, in order to show
the performance advantage of dynamic method over static one, we will take DAH into consideration. Here
the number of CDNs is fixed at 10, and the query load pattern varies continuously.The system load level
changes from 0.5 to 1.0. There are two aspects to evaluate:
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• Average response time of cloud database system as a whole. As Fig.7 shows, dynamic
methods MBA and DDMC can achieve much better performance compared with static method
DAH. This is due to the reason that DAH is based on the history information of query load
distribution, and therefore it will be no longer as much useful when query load pattern changes
along the time. In contrast, MBA and DDMC can adapt to such variation effectively. Furthermore,
MBA has a better performance than DDMC, and the difference will be more with the increase of
the number of CDNs (shown in the experimental results later).

• Fairness index. As Fig.8 shows, MBA achieves higher fairness index than both DAH and DDMC.
As system load level increases from 0.5 to 1.0, the fairness index of DAH becomes worse in a faster
speed than both MBA and DDMC. This shows the effectiveness of dynamic method in achieving
load balancing.
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Figure 7: Average response time
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Figure 8: Fairness index

6.2 Detailed report on MBA

In this part, we will report on the experiments of dynamic data migrating with MBA, including its
flexibility and scalability under different testing environments. We set the transaction round amount in
a day to be 20. Within each round a trader can only make one offer, either a bid for a buyer or an ask
for a seller. In each transaction, there is only one good (i.e. partition) to be exchanged. Also, for the
convenience of comparison, we use the relative value of query load for each CDN. In the auction, the bid
and ask price for a trader is computed using equation (1) and (2) given in Section 5.2. Since each CDN
has the same hardware power, ci is the same for each CDN. Here α and β) are fixed at 0.8 and 0.05
respectively.

Fig.9 demonstrates the query load balancing processes when adopting the auction mechanism of CDA,
when the system load level is 0.7, the query load levels (relative values) of CDNs are distributed between 1
and 100, and the processing capacities of CDNs range from 20 to 100. In Round 0, the unused computing
powers of CDNs are very different from each other, whereas they are becoming more and more close
along the time. In the 15th round, unused computing powers of various CDNs arrive at a convergence to
equilibrium, which is also the load balanced state defined in our approach.

We also change the distribution of query load to see how MBA performs desirably under such variation.
As shown in Fig.10, in the first round R1, unused computing powers (relative values) of 10 CDNs are 5,
21, 23, 27, 25, 1, 0, 4, 25 and 20 respectively. unused computing powers of various CDNs begin to come
close to each other resulting from the auction mechanism. Then in the sixth round R6, there occurs a
variation on the distribution of query load, which leads to the change of unused computing powers of
CDNs. Based on this new distribution, CDA works again to arrive at a new balance. Similarly, in the
rounds of R12 and R18, the same process happens again. Once such variation occurs, it means that CDA
carries out its job on a new base of query load distribution. In the 29th round, this process arrives at a
convergence of equilibrium, thus there will be little change in query load distribution afterwards. From
Fig.10, we can see the fluctuations of the query load curves for various CDNs. No matter how query
load distribution changes, in the end, the query loads of various CDNs will converge at an equilibrium.
Therefore, it can be concluded that MBA can effectively deal with query load evolution.
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Figure 9: Load balancing for 10 CDNs
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Figure 10: Dynamically changing query load distri-
bution

We measure the flexibility and scalability of MBA by changing the data node topology during the
load balancing process. For flexibility, it mainly considers how MBA adapts itself to the changing of
CDN topology, i.e. the adding or removing of CDNs. For scalability, it concerns how MBA performs
with a large increase in the number of CDNs. Scalability is especially important in the cloud database
environment.

Fig.11 shows the query load balancing process when dynamically adding or deleting CDNs. Initially,
there are 10 CDNs with unused computing powers (relative values) of 5, 21, 23, 27, 25, 1, 0, 4, 25 and 20
respectively. In round 6, two more CDNs, namely N1 and N2 with unused computing powers of 30 and
25, are added to the system. In round 17, some two CDNs are deleted from the system, and the data
residing on them is reallocated to N1 and N3. From Fig.11, it can be seen that MBA can effectively deal
with the variation of CDN amount.

It can be easily proved that the number of CDNs has no influence on the speed of the convergence, which
means MBA has high scalability. In Fig.9, there are 10 CDNs, and b(MAXN

i=1|ri − ravg|)/Lunitc equals
15, hence it takes 15 rounds to converge. In Fig.12, there are 50 CDNs, and b(MAXN

i=1|ri−ravg|)/Lunitc
is 48, thus the system arrives at a converge after 48 rounds. For both cases, the number of CDNs has
no effect on the convergence speed. Furthermore, we compare the scalability of MBA and DDMC. As
Fig.13 shows, MBA can achieve better performance than DDMC with the increase number of CDN.
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Figure 11: Dynamically add or
delete CDNs
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Figure 12: Query load balanc-
ing process for 50 CDNs
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Figure 13: Average response
time when varying number of
CDNs

7 Conclusion

In this paper, we proposed a market-based approach, called MBA, to address load balancing in cloud
database via data allocation and dynamic migration. Unreasonable data distribution may lead to an
load-imbalanced system, and thus slower the average response time of the system. MBA successfully
deals with data distribution in cloud database from a new angle. Intelligent market rules are integrated
into the mechanism of data allocation and migration in the cloud database. With MBA, the system can
achieve load balance efficiently and adapt to the changes over time effectively. We conducted extensive
experiments on the prototype system with customer data from a mobile communication company, and the
results show that MBA can achieve much better performance than other baseline methods. Furthermore,
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it has desired flexibility and scalability, which is especially important for the ever-changing and extreme-
scale cloud database environment.
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