
CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu Sep. 07, 2003

Computer System Overview: Part 1

1 What is operating system

We don’t know what an OS is exactly until we have learned this course, but we may have
some clues about the answer. Let’s think about it. Whenever we want to use computers, we
have to boot them up first. Whatever happens in this period, we know it is the OS that is
in charge of it. After the computer is available for use, we then interact with the computer
through a graphical interface or text-only console. We may run programs, install or uninstall
applications in the OS as we need. Thus the following picture may be suitable for describing
a computer system:

Users

| | | | |

v v v | |

+---------------+ | |

| Applications | v v

+---------------+---------+

| OS |

+-------------------------+

| Hardware |

+-------------------------+

Thus, we may conclude that an operating system exploits and manages all kinds of computer
hardware to provide a set of services directly or indirectly to the users.

Services may be functions the human users can use directly, e.g. file creation, user management,
etc., and also those that may be used indirectly, which embody as application programming
interface, all kinds of libraries and functions they provide.

1

2 Computer hardware overview

To build an OS, as we can see from the figure, I need to know more details about the hardware.
In a computer system, there are all kinds of hardware, CPUs, mainboards, monitors, network
adapters, sound cards, mice, keyboards, printers, hard disks, etc. Mainboard is not something
that provides a specific function, instead it is a collection of all kinds of slots and modules. To
make all these things work together, mainboard provides some kind of physical connections
among them, i.e. what we call system bus. Thus based on our analysis, all these components
may be divided into several groups: CPU, memory, I/O modules and system bus.

Instead of I/O devices, we use I/O modules because it is those I/O modules that communicate
directly with CPU or memory.

As for memory, we may also say it is a kind of storage I/O module; however it has a special
position in the system since we never heard of drivers for memory to work but I have known
plenty of drivers for a variety of I/O modules. Those drivers are actually programs, which have
to be loaded into memory to run. Obviously, memory cannot depend on a driver, instead the
system includes physical circuits for accessing memory.

2.1 Basic elements

To depict these components and their connections, we present the following top-level view:

+---------------+ +---------------+ 0

| | | Instruction |

| | +---------------+ 1

| CPU |<----+ | Instruction |

| | | +---------------+ 2

| | | | / |

+---------------+ | | / |

+----->| \ |

| | \ |

+---------------+ | +---------------+ i

| | | | Data |

| | | +---------------+ i+1

| I/O Module |<----+ | Data |

| | +---------------+

| | | |

+---------------+ | |

+---------------- n

Main Memory

According to the figure, data may be transferred between CPU and memory, or CPU and I/O
modules, or even memory and I/O modules.

2

As we know, a memory consists of a set of locations, defined by a sequentially numbered
addresses. Each location may be a byte of 8 bits, or a word of 16 bits. It contains a binary
number that can be interpreted as either an instruction or pure data.

To access data in memory, CPU makes use of two internal registers: MAR (memory address
register) and MBR (memory buffer register). MAR specifies the address in memory for the
next read/write; MBR otherwise contains the data to be written into memory, or data to be
read from memory. Similarly, I/OAR specifies a particular I/O module, and I/OBR is used
for the exchange of data between an I/O module and the processor.

An I/O module transfers data from external devices to CPU and memory, and vice versa. It
contains buffers for temporarily holding data until they can be sent on.

2.2 Registers

Computers compute. The component that performs computation is CPU, or more concretely
it is the ALU (arithmetic logical unit) in CPU that do the computation. To compute, we need
first prepare input; however ALU cannot access memory directly, Instead, a set of registers are
provided as a cache that is faster but smaller than main memory. (They are smaller between
they are much more expensive than regular memory.)

Except for the registers directly involved in computation, CPU also has some registers in the
purpose of control and recording status.

The textbook categorizes registers into two types: user-visible registers, and control and status
registers. Since this separation is not common, so here we just explain registers one by one
without labelling them as one of which kind.

2.2.1 Data registers

MOV AX, 1234H

MOV [4321H], AL

2.2.2 Address registers

Segmented addressing registers

We may naturally assume that, to access some location of memory, we simply use an
address register to contain the address of that location, but the actual practice is kind of
much more complex. One popular addressing method is segmented addressing. With this
method, memory is divided into segments, and each segment are variable-length blocks
of words. To refer to a location in such a memory system, we need to give two pieces of

3

information. One is which segment, and the other is which item in that segment we are
visiting. That is the address consists of two parts, segment address, and the offset within
the segment. Accordingly there are two kinds of registers: segment address registers and
offset address registers. For example, CPU x8086, shifts the content of CS to the left by
4 bits, and then adds up the result and the content of IP . Finally the sum is used as the
effective address.

CS : IP

DS : DI

DS : SI

It should be made clear that segment is just a logical concept, not an physically existing
entity in memory. We may simply write to CS to change the segment it points to.

Stack pointers

Due to the popularity of stack in programs execution, computer systems provide registers
to access memory segment in the way of accessing stacks. For example, in x8086, we have

SS : SP

where SS gives the stack segment, and SP always points to the top of the stack. Thus
the following two sets of instructions have the same effect:

PUSH AX SUB SP, 2

MOV [SS:SP], AX

2.2.3 Control registers

All the registers we discuss above are related to data access, however we know, memory also
contains instructions for CPU to execute. In this purpose, CPU provides

Program counter (PC)

contains the address of an instruction to be fetched from memory

Instruction register (IR)

contains the instruction most recently fetched.

The execution of an instruction is actually to interpret the operation code in the instruction
and generate signals for ALU or other components in CPU. For example, when xy=00 , ALU
does A+B => C, and when xy=01 , ALU does A-B => C, etc.

4

| | | | | | | | | | | |

| | | | | | | | | | | |

.----------. .----------.

\ A \ / B /

\ \ / /

\ V /-----x

\ C /------y

.-----------------.

| | | | | | | |

| | | | | | | |

2.2.4 Status registers

Besides the above types of registers, CPU also includes registers, that contain status infor-
mation. They are known as PSW (program status word). PSW typically contains condition
codes plus other status information.

Condition codes are bits set by the processor hardware as the result of operations. For example,
an arithmetic operation may produce a positive, negative, zero, or overflow result. In addition
to the result itself being stored in a register or memory, a condition code is also set following
the execution of the instruction. The code may subsequently be tested as part of conditional
branch operation. Let’s say

CMP AX, BX

JGE exit

...

exit:

...

Generally, these condition codes cannot be altered by explicit reference because they are in-
tended for feedback regarding the execution of an instruction, and are updated automatically
whenever a related instruction is executed. For example, we aren’t supposed to use the follow-
ing instruction to clear the lowest bit of PSW register.

OR PSW, FEH

The registers we give here are all very common ones. A CPU may actually provide much more
registers. There are a number of factors that have to be taken into account. One is operating-
system support. Certain types of control information are of specific utility to the operating
system. If the processor designer has a functional understanding of the operating system to
be used, then register organization can be designed to provide hardware support for particular
features such as memory protection and switching between user program. These features may
originally be implemented in software.

5

Another key factor is the allocation of control information between registers and memory.
Although registers are much faster, but due to the price reason, a computer system doesn’t
have many registers, so at least part of control information has to be put into memory. Thus
here comes a problem of balance. You need to consider what control information is more
frequently used and in which order.

2.3 Instruction execution

The previous section mainly addresses the static characteristics of a processor, this section
otherwise talks about its dynamic side - instruction execution.

A program to be executed a CPU consists of a set of instructions stored in memory. Roughly,
the execution of an instruction may be looked on as a process of two steps. At the first step, the
instruction is read (fetched) from memory into IR, whose address is specified by PC register.
Then at the second step, CPU executes the instruction, i.e. interpreting the instruction and
performing the action specified. The first step is called fetch cycle and the second execute
cycle. The whole process of the two steps is called instruction cycle. Thus program execution
is actually repeating instruction cycles until either the computer is turned off, or an instruction
that asks CPU to halt is encountered. The following figure depicts this process:

+-------------------------------+

| |

| +---------------+ +---------------+

,---------. V | Fetch next | | Execute | ,---------.

(Start)--->| instruction |--->| instruction |-->(Halt)

‘---------’ +---------------+ +---------------+ ‘---------’

Fetch Cycle Execute Cycle

In a typical processer, the register PC contains the address of the instruction to be fetched
next. Whenever an instruction is obtained, the content of PC will increment automatically so
that it will fetch the next instruction in sequence.

The fetched instruction is loaded into IR. The instruction contains bits that specify the action
the processor is to take. In general, these actions fall into four categories:

• data exchange between CPU and memory

• data exchange between CPU and I/O modules

There are two popular methods to address I/O modules. One is allocating part of
memory address space for I/O modules, thus to read/write from/to an I/O module,
same instructions as used to access memory will do without any change. Of course, you
have to specify addresses in the instructions that are corresponding to I/O modules. The

6

other method is using a separate set of instructions for I/O module. For example, in
CPU x8086, the following instructions are used:

MOV DX, 61H

OUT DX, AL

...

MOV DX, 60H

IN AL, DX

• data processing

The processer may perform some arithmetic or logic operation on data.

• control

Some instructions may affect the sequence of execution. For example:

JMP 0700H

...

CMP AL, 08H

JNE different

...

An example is given in the textbook to show how a partial program is executed step by step
to add two numbers up.

7

