
CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu October 8, 2003

Concurrency: Mutual Exclusion and Synchronization - Part 1

1 Introduction

So far we have discussed process and thread, and according to multiprogramming and mul-
tithreading, we know either process or thread may run simultaneously with other processes
or threads, which thus raises an issue of concurrency.

To deal with multiple processes or threads, the operating system needs to switch control be-
tween them from time to time based on the state transition model and accordingly save and
restore their contexts. In a uniprocessor multiprogramming system, processes are interleaved
in time to yield the appearance of simultaneous execution, as Figure 1 (a) illustrated, while in
a multiple-processor system, it is possible not only to interleave processes but also to overlap
them (Figure 1 (b)).

Ð®±½»­­ ï

Ð®±½»­­ î

Ð®±½»­­ í

ø¿÷ ×²¬»®´»¿ª·²¹ ø³«´¬·°®±¹®¿³³·²¹ô ±²» °®±½»­­±®÷

Ð®±½»­­ ï

Ð®±½»­­ î

Ð®±½»­­ í

ø¾÷ ×²¬»®´»¿ª·²¹ ¿²¼ ±ª»®´¿°°·²¹ ø³«´¬·°®±½»­­·²¹å ³«´¬·°´» °®±½»­­±®­÷

Þ´±½µ»¼ Î«²²·²¹

Ì·³»

Figure 1: Multiprogramming and multiprocessing

1

Although on the surface the two cases are different, they present the same problems: the
relative speed of execution of processes cannot be predicted.

1.1 A simple example

Consider the following procedure in a process:

void echo() {

char_in = getchar();

char_out = char_in;

putchar(char_out);

}

where char in and char out are global variables. The procedure first obtains a char from the
standard input and store it in char in, then transfers the char to char out, and finally display it
on the user’s screen.

Suppose in the process there are two threads: T1 and T2, both of which will invoke echo()
to accept user input and echo it on screen. If the execution traces of the two threads are as
follows:

T1:

char_in = getchar();

char_out = char_in;

putchar(char_out);

.

.

.

T2:

.

.

.

char_in = getchar();

char_out = char_in;

putchar(char_out);

That is T2 did not invoke echo() until T1 finishes its invocation. Obviously there is no problem
here, and every thread gets what it wants. However, how about the following sequence:

T1:

char_in = getchar();

.

char_out = char_in;

putchar(char_out);

.

.

T2:

.

char_in = getchar();

.

.

char_out = char_in;

putchar(char_out);

In this case, T1 accepts a char first and stores it in char in, then the control switches to T2
which does the same thing. Here comes a problem. That is the char stored in char in by T1
is overwritten and thus lost due to the execution of T2. Finally the char accepted by T2 will
be outputted twice by the two threads. This is not what the user expects. The point of this

2

example is that the unpredicted relative speed of execution of threads or processes may cause
unpredicted results.

The above example is assumed to be on a uniprocessor system. For a multi-processor system,
if we take the following sequence as an example, obviously the same problem also exists.

T1:

char_in = getchar();

.

char_out = char_in;

putchar(char_out);

.

T2:

.

char_in = getchar();

char_out = char_in;

.

putchar(char_out);

1.2 Another simple example

The operating system may allocate resources to processes upon their requests, however the
concurrency of the processes may lead to a dilemma.

Suppose there are two processes in the system: P1 and P2. Either of them needs both Resource
A and Resource B. Typically they request for the resources one at a time. After the operating
system allocates the requested resource, the owner may hold the resource for a while before
it is released. Thus at some moment, we may have a snapshot of the allocation of resources
as illustrated in Figure 2, where an arrow from a process to a resource indicates a relation-
ship of Requests, and one from a resource to a process a relationship of held by. According to
Figure 2, Resource A and Resource B are held by respectively P2 and P1, who also requests for
the resource already held by the other. This forms a circular wait. To proceed, both P1 and P2
have to wait until the other releases their resource, but without external interference there is
no possibility for them to give up what they have got. So from this moment, no progress can
be made and the processes enter a dilemma, called deadlock.

Ø»´¼ ¾§
Î»­±«®½»

Þ

Î»¯«»­¬­

Î»¯«»­¬­ Ø»´¼ ¾§

Ð®±½»­­
Ðï

Ð®±½»­­
Ðî

Î»­±«®½»
ß

Figure 2: Circular waiting

3

1.3 Problems caused by concurrency

The above example presents the following difficulties:

• The concurrent access to global resources by multiple processes may lead to unpre-
dictable results.

• The exclusive access to resources may lead to a deadlock.

• Unpredictable results make it difficult to locate a programming error in a concurrent
application since the results are not deterministic and reproducible.

1.4 Process interaction

Before we explore how to solve the above problems, we first need to know something behind
the scene, i.e. the relationship between concurrent threads and/or processes.

Competition among processes for resources

Concurrent processes come into conflict with each other when they are competing for
the use of the same resource. They are not necessarily aware of each other, but the
execution of one process may affect the behavior of competing processes.

There are three control problems that must be considered:

• Mutual exclusion

Suppose two processes both wish access to a single resource, say a printer. Obvi-
ously such a resource cannot be accessed by more than one process at the same
time. We cannot image a sheet with the upper half for one process and the lower
half for the other process.

We refer to such a resource like the printer as a critical resource and the portion
of the program that uses it a critical section of the program. For example, in the
above echo() procedure, global variable char in and char out are critical resources,
and the body of echo() is a critical section.

It is important to allow only one process at a time in its critical section, so that
expectable results are obtained always, which is referred to as mutual exclusion.

• Deadlock

Deadlock that we have mentioned above is actually an effect of mutual exclu-
sion. As we can see, deadlock always involves more than one process and more
than one resource.

4

• Starvation

Starvation is another control problem due to the enforcement of mutual exclu-
sion. Consider we have three processes, P1, P2, and P3, competing for a resource
R. Suppose each of them require periodic access to R, which is not sharable, and
P1 is first granted access to R. Then when P1 exits its critical section, either P2 or
P3 may be allowed access to R. Assume that R is allocated to P3 and P1 requires
access to R again. If the operating system alternately allocates R to P1 and P3,
then P2 has to wait indefinitely and thus experience starvation.

Cooperation among processes by sharing

Besides competition, concurrent processes may also cooperate with each other. For
example, multiple processes may have access to shared variables or files or databases.
They may alter the content of these resources respectively, but they must cooperate
to ensure the integrity of the shared data.

The above three control problems are also of concern in this case. The difference here
is that data items may be accessed in two different modes, reading and writing. Later
we will cover the classic Reader/Writer problem.

Cooperation among processes by communication

In the first two cases, processes interact with each other indirectly and are not ex-
plicitly aware of the others’ existence. It is also possible for processes to cooperate
directly by communicating with each other, say sending messages.

In this case, nothing is shared between processes, so mutual exclusion is not a control
requirement. However deadlock and starvation remain. For example, there are two
processes each providing a RPC service, and either of them also requires the other’s
service. If at some moment, both send a RPC request to the other and wait, then
neither will receive the response since neither can move on to serve the other before its
own request is served. Thus a circular waiting exists as well and so does a deadlock.

How to solve the above control problems involved in concurrency? As for deadlock
and starvation, we will discuss them in the following chapter. We now move on to
discuss mutual exclusion.

5

2 Mutual exclusion

Based on the above discussion and examples about mutual exclusion, it is clear that
any facility or capability that is to provide support for mutual exclusion should meet
the following requirements:

1. Only one process at a time is allowed into its critical section, among the pro-
cesses that have critical sections for the same resource or shared object.
To impose some form of control upon the execution of critical sections, we usu-
ally use the following programming structure:

...

enter_critical();

/* critical section */

exit_critical();

...

where enter critical() and exit critical() are provided by the system in some way
and they together guarantee the exclusive access to shared resources.

2. When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

3. A process remains inside its critical section for a finite time only.

4. No assumptions should be made about relative process speeds or number of
processors. That is the facility provided should be powerful enough to solve the
control problems unconditionally, without any limit on the nature of concurrent
processes.

There are many ways to satisfy these requirements. We may leave the responsibility
with the processes that wish to execute concurrently. That’s the user programs have
to deal with these without support from programming language or the operating
system. We refer to these as software approaches. Obviously application program-
mers have to take the responsibility and facility at the application level may lead to
hight processing overhead. A second approach involves the use of special-purpose
machine instructions. This reduces overhead but is not a general-purpose solution
as shown later on. A third approach is to provide some kind of support within the
operating system or programming languages.

6

2.1 Software approaches

Whether in a uniprocessor system or a multiprocessor one with shared main memory,
it usually assumed that only one access to a memory location can be made at a time, so
that the simplest operation, an assignment to a location, is always performed without
interference.

2.1.1 Dekker’s algorithm

First, let’s discuss an algorithm designed by a Dutch mathematician Dekker step by
step.

First attempt

Intuitively, based on the mutual exclusive access to a location of the main memory, we
may use a location, which is represented as a variable in a programming language, to
contain a flag to control the mutual exclusive execution of critical sections. Consider
we have two processes, P0 and P1, and a integer variable turn. If we use the different
values of turn to indicate the permission for a specific process to enter its critical
section, then the code given in Figure 3 (a) will be obtained.

Either process before entering its critical section must check the value of turn. If it is
not allowed, then it has to wait. The mechanism of the while loop to check and wait
is called busy waiting, which consumes much processor time unfortunately. Once
a process gains access to its critical section, it may manipulate the shared resources;
and when it exits, it must update the value of turn to allow the other process to enter.

This method has two drawbacks:

1. processes must strictly alternate in their use of their critical section.

2. if one process fails, the other process is permanently blocked, whether the failure
happens in the critical section or outside of it.

Second attempt

The problem with the first attempt is that only one variable is used to indicate the
states of both processes and the maintenance of its value relies on both processes.
We should have state information about each process and maintained by themselves.
Thus, an boolean array flag of 2 units may be used as below:

7

ñö ÐÎÑÝÛÍÍ ð ñö

{
{
©¸·´» ø¬«®² ÿã ð÷

ñö ¼± ²±¬¸·²¹ öñ å
ñö ½®·¬·½¿´ ­»½¬·±²öñå
¬«®² ã ïå
{

ñö ÐÎÑÝÛÍÍ ï öñ

{
{
©¸·´» ø¬«®² ÿã ï÷

ñö ¼± ²±¬¸·²¹ öñå
ñö ½®·¬·½¿´ ­»½¬·±²öñå
¬«®² ã ðå
{

ñö ÐÎÑÝÛÍÍ ð öñ

{
{
©¸·´» øº´¿¹ÅïÃ÷

ñö ¼± ²±¬¸·²¹ öñå
º´¿¹ÅðÃ ã ¬®«»å
ñö½®·¬·½¿´ ­»½¬·±²öñå
º´¿¹ÅðÃ ã º¿´­»å
{

ñö ÐÎÑÝÛÍÍ ï öñ

{
{
©¸·´» øº´¿¹ÅðÃ÷

ñö ¼± ²±¬¸·²¹ öñå
º´¿¹ÅïÃ ã ¬®«»å
ñö ½®·¬·½¿´ ­»½¬·±²öñå
º´¿¹ÅïÃ ã º¿´­»å
{

ø¿÷ Ú·®­¬ ¿¬¬»³°¬ ø¾÷ Í»½±²¼ ¿¬¬»³°¬

ñö ÐÎÑÝÛÍÍ ð öñ

{
{
º´¿¹ÅðÃ ã ¬®«»å
©¸·´» øº´¿¹ÅïÃ÷

ñö ¼± ²±¬¸·²¹ öñå
ñö ½®·¬·½¿´ ­»½¬·±²öñå
º´¿¹ÅðÃ ã º¿´­»å
{

ñö ÐÎÑÝÛÍÍ ï öñ

{
{
º´¿¹ÅïÃ ã ¬®«»å
©¸·´» øº´¿¹ÅðÃ÷

ñö ¼± ²±¬¸·²¹ öñå
ñö ½®·¬·½¿´ ­»½¬·±²öñå
º´¿¹ÅïÃ ã º¿´­»å
{

ñö ÐÎÑÝÛÍÍ ð öñ

{
{
º´¿¹ÅðÃ ã ¬®«»å
©¸·´» øº´¿¹ÅïÃ÷
¥

º´¿¹ÅðÃ ã º¿´­»å
ñö¼»´¿§ öñå
º´¿¹ÅðÃ ã ¬®«»å

£
ñö½®·¬·½¿´ ­»½¬·±²öñå
º´¿¹ÅðÃ ã º¿´­»å
{

ñö ÐÎÑÝÛÍÍ ï öñ

{
{
º´¿¹ÅïÃ ã ¬®«»å
©¸·´» øº´¿¹ÅðÃ÷
¥

º´¿¹ÅïÃ ã º¿´­»å
ñö¼»´¿§ öñå
º´¿¹ÅïÃ ã ¬®«»å

£
ñö ½®·¬·½¿´ ­»½¬·±²öñå
º´¿¹ÅïÃ ã º¿´­»å
{

ø½÷ Ì¸·®¼ ¿¬¬»³°¬ ø¼÷ Ú±«®¬¸ ¿¬¬»³°¬

Figure 3: Mutual exclusion attempts

boolean flag[2] = {false, false};

Figure 3 (b) gives the algorithm.

Now even if one process fails outside the critical section, the other process may still
enter its critical section; however if the failure happens inside the critical section, the
active process will still be permanently blocked.

What makes the situation worse is that this algorithm does not even guarantee mu-
tual exclusion. If P0 just passed the while loop but have not set its flag to be true, then
P1 may be scheduled and thus passes the while loop check as well. Thus both pro-
cesses enter their respective critical sections. The problem here is that the proposed
solution is not independent of relative execution speed of processes.

Third attempt

Since the second attempt fails just because the flag of a process is flipped after its en-
tering the critical section, how about flipping the flag before that? Thus we obtained
the third attempt, illustrated in Figure 3 (c).

8

Now let us check if the mutual exclusion is guaranteed in this attempt. Suppose P0 is
going to enter its critical section. First it sets flag[0] to be true. If at this moment, P1 is
outside its critical section, then it has to wait until P0 has entered and left its critical
section; if P1 is already in the critical section, then P0 will be blocked and has to wait
until P1 has left its critical section. So the requirement of mutual exclusion is met.

Unfortunately, another problem is created. If both processes set their flags to true
before either has passed the while loop, then either will think the other has entered its
critical section, which is actually circular waiting, thus a deadlock occurs.

Fourth attempt

If we examine the third attempt, we may find out the reason why a deadlock may be
caused is that either process, once setting its flags preventing the other from entering
the critical section, will never back off from this position. So we may introduce some
kind of courtesy here: each process sets its flag to indicate its desire to enter its critical
section but is prepared to reset the flag to defer to the other process, as shown in
Figure 3 (d).

This is not perfect yet. It is possible that both processes run at almost the same pace:
both set the flags to be true first, then check them simultaneously, thus do the courtesy
things, and later set the flags back to true. This indicates that the processes may both
wait indefinitely and can never enter critical sections. This is similar to deadlock,
but not exactly, since deadlock means a situation of no progress without external
interference while the current subtle situation may disappear once the relative speeds
of the processes change a little bit. We call the condition a livelock.

A correct solution

To avoid the above livelock, some facility should be used to assign different priorities
to the processes so that they know who goes first. The variable turn in the first attempt
may be used for this purpose, but in this case, it is used only for indicating an order
when both processes desire to enter their critical sections. So the problem in the first
attempt is not duplicated here. The solution is given as the left half of Figure 4.

2.1.2 Peterson’s algorithm

Dekker’s algorithm solves the mutual exclusion problem fully but is a little bit com-
plex. Peterson later provided a simpler solution as the right half of Figure 4. The
textbook presents a short analysis of this algorithm, please read it yourself.

9

boolean flag [2];

int turn;

void P0() {

while (true) {

flag [0] = true;

while (flag [1])

if (turn == 1) {

flag [0] = false;

while (turn == 1)

/* do nothing */;

flag [0] = true;

}

/* critical section */;

turn = 1;

flag [0] = false;

/* remainder */;

}

}

void P1() {

while (true) {

flag [1] = true;

while (flag [0])

if (turn == 0) {

flag [1] = false;

while (turn == 0)

/* do nothing */;

flag [1] = true;

}

/* critical section */;

turn = 0;

flag [1] = false;

/* remainder */;

}

}

void main () {

flag [0] = false;

flag [1] = false;

turn = 1;

parbegin (P0, P1);

}

boolean flag [2];

int turn;

void P0() {

while (true) {

flag [0] = true;

turn = 1;

while (flag [1] && turn == 1)

/* do nothing */;

/* critical section */;

flag [0] = false;

/* remainder */;

}

}

void P1() {

while (true) {

flag [1] = true;

turn = 0;

while (flag [0] && turn == 0)

/* do nothing */;

/* critical section */;

flag [1] = false;

/* remainder */

}

}

void main() {

flag [0] = false;

flag [1] = false;

parbegin (P0, P1);

}

Figure 4: Dekker’s algorithm and Peterson’s algorithm

10

2.2 Hardware supports

2.2.1 Interrupt disabling

In a uniprocessor system, the fundamental reason of concurrency is that the proces-
sor may dispatch different processes to run from time to time. And the switching
of control happens due to some kind of interrupt, such as timeout interrupt in a
time-sharing environment, I/O operation completion interrupt, etc.. Based on this
observation, if we could in some way avoid concurrency while the execution of crit-
ical sections is in progress, the mutual exclusion problem will then be solved nat-
urally. Fortunately, the capabilities of disabling and enabling interrupts are usually
provided in all kinds of computer systems in the form of primitives. Hence we obtain
a hardware-based solution as below:

while (true) {

/* disable interrupts */

/* critical section */

/* enable interrupts */

/* remainder */

}

However this approach also eliminates the concurrency between irrelevant processes
and thus the efficiency could be noticeably degraded. A second problem is that this
approach does not work in a multiprocessor architecture.

2.2.2 Special machine instructions

In a multiprocessor environment, the interrupt disabling approach does not work
work any more; however it is assumed that the processors share access to a common
main memory and at the hardware level, only one access to a memory location is
permitted at a time. With this as a foundation, some computer processors designed
several machine instructions that carry out two actions, such as reading and writing,
of a single memory location. Since processes interleave at the instruction level, so
such special instructions are atomic and are not subject to interference from other
processes. Two of such kind of instructions are discussed in the following parts.

Test and Set instruction

The function of the test and set instruction may be presented as the following func-
tion:

boolean testset (int i) {

if (i == 0) {

i = 1;

11

return true;

} else {

return false;

}

}

where the variable i is used like a traffic light. If it is 0, meaning green, then the
instruction sets it 1, i.e. red, and return true. Thus the current process is permitted
to pass but the others are told to stop. On the other hand, if the light is already
red, then the running process will receive false and realize not supposed to proceed.
Accordingly, Figure 5 (a) shows a process that uses this instruction. Obviously at any

ñö °®±¹®¿³ ³«¬«¿´»¨½´«­·±² öñ
½±²­¬ ·²¬ ² ã ñö ²«³¾»® ±º °®±½»­­»­ öñå
·²¬ ¾±´¬å
ª±·¼ Ðø·²¬ ·÷
¥

©¸·´» ø¬®«»÷
¥

©¸·´» øÿ¬»­¬­»¬ ø¾±´¬÷÷
 ñö ¼± ²±¬¸·²¹ öñå
ñö ½®·¬·½¿´ ­»½¬·±² öñå
¾±´¬ ã ðå
ñö ®»³¿·²¼»® öñ

£
£
ª±·¼ ³¿·²ø÷
¥

¾±´¬ ã ðå
°¿®¾»¹·² øÐøï÷ô Ðøî÷ô ò ò ò ôÐø²÷÷å

£

ø¿÷ Ì»­¬ ¿²¼ ­»¬ ·²­¬®«½¬·±²

ñö °®±¹®¿³ ³«¬«¿´»¨½´«­·±² öñ
·²¬ ½±²­¬ ² ã ñö ²«³¾»® ±º °®±½»­­»­ööñå
·²¬ ¾±´¬å
ª±·¼ Ðø·²¬ ·÷
¥

·²¬ µ»§·å
©¸·´» ø¬®«»÷
¥

µ»§· ã ïå
©¸·´» øµ»§· ÿã ð÷

»¨½¸¿²¹» øµ»§·ô ¾±´¬÷å
ñö ½®·¬·½¿´ ­»½¬·±² öñå
»¨½¸¿²¹» øµ»§·ô ¾±´¬÷å
ñö ®»³¿·²¼»® öñ

£
£
ª±·¼ ³¿·²ø÷
¥

¾±´¬ ã ðå
°¿®¾»¹·² øÐøï÷ô Ðøî÷ô ò ò òô Ðø²÷÷å

£

ø¾÷ Û¨½¸¿²¹» ·²­¬®«½¬·±²

Figure 5: Hardware support for mutual exclusion

time, at most one process may enter its critical section and all others that desire to
enter too go into a busy-waiting mode.

Exchange instruction

Similarly, the exchange instruction can be defined as follows:

void exchange (int register, int memory) {

int temp;

temp = memory;

memory = register;

register = temp;

}

12

This instruction exchanges the contents of a register with that of a memory location.
During execution of the instruction, access to the memory location is blocked for any
other instruction referencing that location.

Figure 5 (b) shows a solution based on this instruction. Note that the following ex-
pression always holds according to the initialization of variables and the nature of
the exchange instruction:

bolt +
∑

i

keyi = n

If bolt = 0, then no process is in its critical section; if bolt = 1, the exactly one process
is in its critical section, and its key value is 0.

Properties of the machine-instruction approach

There are a number of advantages of this kind of approaches:

• It is simple and therefore easy to verify.

• It is applicable to any number of processes on either a single processor or multi-
ple processors sharing main memory.

However there are also some serious disadvantages:

• Busy waiting is involved and thus processor time is wasted.

• Deadlock is possible.

Since the above approaches have such-and-such drawbacks, we need to look for other
mechanisms, which will be discussed in the following class.

13

	1 Introduction
	1.1 A simple example
	1.2 Another simple example
	1.3 Problems caused by concurrency
	1.4 Process interaction

	2 Mutual exclusion
	2.1 Software approaches
	2.1.1 Dekker's algorithm
	2.1.2 Peterson's algorithm

	2.2 Hardware supports
	2.2.1 Interrupt disabling
	2.2.2 Special machine instructions

