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Concurrency: Mutual Exclusion and Synchronization - Part 2

To avoid all kinds of problems in either software approaches or hardware approaches, people
then turned to build concurrency support in operating systems and programming languages.

1 Semaphores

1.1 The origin of the idea

Semaphores are first proposed by Dijkstra in 1960s. According to him, an operating system
should be designed as a collection of cooperating sequential processes with efficient and reli-
able mechanisms for supporting cooperation. He brought forward a principle for cooperation
mechanism as follows: Two or more processes can cooperate by means of simple signals, such
that a process can be forced to stop at a specified place until it has received a specific signal.

In the purpose of signaling, special variables called semaphores are used. And two primitives,
signal(s) and wait(s) associated with a semaphore s, are available respectively for the signal
sender and the signal receiver. Through the invocation of these two primitives the coopera-
tion among processes is implemented.

In more details, to achieve the desired effect, the functions of semaphores and the associated
primitives may be described as follows:

• A semaphore can be viewed as an integer variable, whose initial value indicates the
number of resources of concern available.

• The wait operating decrements the semaphore value, indicating the desire for resource.
If the value becomes negative, then the running process is blocked because no resource
is available at the moment. Thus the absolute value of the negative integer also shows
the number of blocked processes due to unsuccessful requests.

• The signal operation increments the semaphore value, indicating that a resource be-
comes available. If the updated value is not positive, i.e. zero or negative, there must be
a process blocked before the update. Since now at least a source is available for alloca-
tion, then a process blocked by the corresponding wait operation should be unblocked.
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Figure 1 shows the formal definition of semaphores and their primitives in terms of variables
and procedures.
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Figure 1: A definition of semaphore primi-
tives
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Figure 2: A definition of binary semaphore
primitives

Sometimes, the number of the resources of our concern is 1, thus as shown in Figure 2, we
may have a more restricted version of semaphore, called binary semaphore. The binary
semaphore may only take on the values 0 and 1.

For both semaphores and binary semaphores, a queue is used to hold processes waiting on
the semaphore. Thus a question arises about how the blocked processes are removed from
the queue when resources become available. The fairest policy is first-in-first-out (FIFO). The
process that has been blocked the longest time is unblocked first. This strategy can surely
avoid the starvation of blocked processes.

Note that wait and signal are atomic; that is they cannot be interrupted and each of them can
be treated as an indivisible step. Actually, the semaphore itself is a critical resource and the
primitives are all critical sections, while they are used for controlling access to other shared
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resources. It seems we go back to the starting point since the implementation of the proposed
solution involves a problem that we are trying to solve!

This is partly true. On the one hand, this signaling mechanism cannot solve the mutual ex-
clusion problem itself and does need help from other facilities. On the other hand, if the
mechanism is available, we can see through the following examples that it does bring conve-
nience. Thus we may treat it as a wrapper around other awkward solutions.

1.2 Mutual exclusion

Figure 3 shows a straightforward solution to the mutual exclusion control problem using a
semaphore s.
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Figure 3: Mutual exclusion using semaphores

In the solution, the semaphore is initialized to 1. Thus the first process that executes a wait will
be able to enter the critical section immediately, setting the value of 0. Any other processes
attempting to enter the critical section will find it busy and will be blocked, setting the value
of s to -1. Any number of processes may attempt entry, each such unsuccessful attempt results
in a further decrement of the value of s. When the process that initially entered the critical
section departs, s is incremented, and one of the blocked processes (if any) is removed from
the queue of blocked processes associated with the semaphore and put in a Ready state. When
it is next scheduled by the operating system, it may enter the critical section.
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1.3 The producer/consumer problem

Now we consider one of the most classic problems in concurrent processing - the producer/consumer
problem. In this problem, there are two groups of entities, producers and consumers, as well as
a buffer between them. Producers produce products and store them in the buffer if there is
space left, while consumers fetch products from the buffer if there is any and consume them.
In this problem, the buffer acts as the shared resource. It is accessible to both producers and
consumers, but not at the same time.

Infinite buffer

Let us first consider the case in which the buffer is infinite. As illustrated in Figure 4,
two pointers, in and out, are used respectively indicating the next space for producers
to put a newly created product and the next product that is available for consumers
to consume.
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Figure 4: Infinite buffer for the producer/consumer problem

The behaviors of producers and consumers may be defined as below:

Producer:

while (true) {

/* produce item v */

buffer[in] = v;

in++;

}

Consumer:

while (true) {

while (in <= out)

/* do nothing */

w = buffer[out];

out++;

/* consume item w */

}

Thus the producers and consumers cooperate by the access to the buffer. Then how
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to use the semaphore method to control the exclusive access to the buffer at the same
time the cooperation relationship is maintained? That is we need to deal with both
competition and cooperation. The former refers to the access to the buffer, while the
latter is about the relationship between their activities. Figure 5 gives the first attempt.
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Figure 5: An incorrect solution to the infinite-
buffer producer/consumer problem using bi-
nary semaphores
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Figure 6: A correct solution to the infinite-
buffer producer/consumer problem using bi-
nary semaphores
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Instead of two pointers, in and out, an integer variable, n (= in − out), is used to
indicate the number of products available for consumption and a set of functions are
provided for convenience: produce(), consume(), append(), and take(). The semaphore
s is used to enforce the mutual exclusion; the semaphore delay is used to force the
consumer to wait if the buffer is empty.

It seems the solution is pretty straightforward, however there is a flaw in it. The
following lines guarantee that the consumer will be blocked if no product is available
in the buffer and will not be waked up until a new item is produced.

if (n == 0)

waitB(delay);

However, suppose we have two consumers in the system and they have used up all
the products in the buffer. And suppose the two consumers, either Ready or Running,
are just before the above lines.

If they proceed to do the checking on n, then they will surely be blocked by invok-
ing waitB(delay) . But let us consider another possible case. A producer is now
scheduled by the operating system, a new item is produced, and the value of n is
incremented to be 1. If immediately after this producer exits its critical section, the
operating system alternately schedules both consumer processes. Then surprisingly,
both will pass the checking on n, and thus are not blocked. If they continue to run,
then the value of n will possibly be decremented twice. That is the value of n becomes
-1. However, there is only one product available in the buffer previously, but now two
consumers have consumed ”successfully”. One of them has consumed an item from
the buffer that does not exist!

Can we simply move the if into the critical section? No, that will cause a deadlock,
in which a consumer may be blocked in the critical section waiting for a producer to
produce a new item while a product is blocked waiting for the consumer to exit from
the critical section so that it may proceed to produce.

A fix for the problem is to introduce an auxiliary variable that can be set in the con-
sumer’s critical section for use later on. This is shown in Figure 6.

Unfortunately, although the above correct solution is obtained finally, it is obviously
too subtle and error-prone. A much better solution is using general semaphores (also
called counting semaphores). As Figure 7 shows, n is now a semaphore. Its value still is
equal to the number of items in the buffer, but we don’t need any longer to update its
value explicitly in the user programs or put processes blocked when specific values
are confirmed.
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Figure 7: A solution to the infinite-buffer pro-
ducer/consumer problem using semaphores
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Figure 8: A solution to the bounded-
buffer producer/consumer problem using
semaphores

Compared with the infinite buffer, a finite buffer is more realistic. In this case, the
producers cannot append items to the buffer without restriction. Similar to the con-
sumers, the producers will be blocked when they try to append items to a full buffer.
The behaviors of producers and consumers in this case may be defined as follows:

Producer:

while (true) {

/* produce item v */

while ((in + 1) % n == out)

/* do nothing */

buffer[in] = v;

in = (in + 1) % n;

}
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Consumer:

while (true) {

while (in == out)

/* do nothing */

w = buffer[out];

out = (out + 1) % n;

/* consume item w */

}

Figure 8 shows a solution using general semaphores. The semaphore e has been
added to keep track of the number of empty spaces.

1.4 Implementation of semaphores

As we discussed above, the semaphore mechanism needs support from other solu-
tions to concurrency problems. We have covered both software approaches and hard-
ware approaches. Either may be used to meet our need. Figure 9 shows two possible
implementations of semaphores based on respectively the testset instruction and in-
terrupt disabling.
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Figure 9: Two possible implementations of semaphores
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2 Monitors

As we can see from the above example, semaphores provide a primitive yet power-
ful and flexible tool for mutual exclusion and cooperation. However it is also diffi-
cult to finish with a correct program since the wait and signal operations may scatter
throughout the program, which makes the possible cases intricate. Monitor is then
brought forward as a programming language construct with equivalent functionality
but easier to control.

2.1 Monitor with signal

A monitor, based on the idea of object orientation, is a software module consisting of:

• Local data: It may be the shared resources or the access points leading to those
resources.

• Procedures: The procedures make up of the interface to the above local data,
which is invisible to any external procedure.

• Initialization: The monitor may include code to initialize local data.

A monitor requires that only one process may be executing in the monitor at a time;
any other process that has invoked procedures of the monitor is suspended, waiting
for the monitor to become available. This requirement makes a monitor a mutual
exclusion facility for accessing the shared resources.

Besides mutual exclusion, a monitor also supports cooperation (or synchronization)
between concurrent processes by the use of condition variables, which like the local
data reside within the monitor and accessible only within the monitor. Two functions
operation on condition variables:

• cwait(c): Suspend execution of the calling process on condition c. To avoid cir-
cular waiting, the monitor is then made available for use by another process.

• csignal(c): Resume execution of some process suspended after a cwait on the
same condition. Different from semaphores’ signal(), csignal(c) will do nothing if
no such process.

Usually queues are used to contain processes that have been suspended due to either
waiting for accessing the monitor or waiting over a condition variable.
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Figure 10 shows an example of the use of a monitor to solve the bounded-buffer
producer/consumer problem.

/* program producer/consumer */

Monitor boundedbuffer {

/* local data */

char buffer[N];

int nextin, nextout;

int count;

/* condition variables */

cond notfull, notempty;

/* procedures */

void append(char x) {

if (count == N)

cwait(notfull);

buffer[nextin] = x;

count++;

csignal(notempty);

}

void take(char x) {

if (count == 0)

cwait(notempty);

x = buffer[nextout];

nextout = (nextout + 1) % N;

count++;

csignal(notempty);

}

/* initialization */

static {

nextin = 0;

nextout = 0;

count = 0;

}

}

void producer() {

char x;

while (true) {

produce(x);

boundedbuffer.append(x);

}

}

void consumer() {

char x;

while (true) {

boundedbuffer.take(x);

consume(x);

}

}

void main() {

parbegin(producer, consumer);

}

Figure 10: A solution to the bounded-buffer producer/consumer problem using a monitor

The advantage of monitors is that all procedures are confined to monitors themselves,
so once monitors have been correctly designed, the related processes may be easily
developed.

Nachos project #1 requires to implement condition variables based on semaphores.

2.2 Monitor with Notify and Broadcast

By definition, the above csignal(c) resumes the execution of one suspended process
if there is one. This puts an implicit requirement on the process scheduling: the re-
sumed process must be dispatched immediately otherwise other processes may enter
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the critical section and the condition under which the process was activated could
change.

Lampson and Redell, in 1974, improved the above approach by using cnotify instead
of csignal. cnotify is interpreted in the following way: When a process executing in
a monitor executes cnotify(x), it causes the x condition queue to be notified, but the
signaling process continues to execute. And the process at the head of the condition
queue will be resumed at some convenient future time when the monitor is available.
Accordingly, since there is no guarantee that some other process will not enter the
monitor before the waiting process, the waiting process must recheck the condition.
For example, the if statements in both append() and take() should be replaced with
while ones.

Another improvement is the introduction of the cbraodcast() primitive, which causes
all processes waiting on a condition to be placed in a Ready state. This is useful when
there is no way to know how may other processes should be reactivated. In Java,
notifyall is used instead.

3 Message passing

As we know, some concurrent processes share global resources without awareness of
the existence of each other, while some others interact with each other directly. In the
latter case, message passing is a common approach to enforce mutual exclusion and
communication. It is superior to the above approaches in the sense that it works in
distributed systems as well as in shared-memory multiprocessor and uniprocessor
systems.

The function of message passing is normally provided in the form of a pair of primi-
tives:

send(destination, message)

receive(source, message)

A process sends information in the form of a message to another process designated by
a destination. A process receives information by executing receive primitive, indicating
the source process and the message.

Many issues need to be considered regarding message passing and will be examined
in the following sections.
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3.1 Synchronization

The synchronization aspect of message passing is regarding the behavior of processes
that execute either of the two primitives. Two choices are available: blocking or non-
blocking.

Consider the receive primitive. When a process issues a receive primitive, there are two
possibilities:

1. If a message has previously been sent, the message is received and execution
continues.

2. If there is no waiting message, then either

• (blocking) the process is blocked until a message arrives, or

• (nonblocking) the process continues to execute, abandoning the attempt to
receive.

Thus both the sender and the receiver can be blocking or nonblocking. Theoretically
there are totally four combinations regarding the blocking issue, but the following
three are common:

• Blocking send, blocking receive: Both the sender and the receiver are blocked
until the message is delivered. This mode is also referred to as rendezvous.

• Nonblocking send, blocking receive: This is probably the most natural and
useful combination. For example, a server process typically waits until a request
comes in, and sends out the response later on.

• Nonblocking send, nonblocking receive: Neither party is required to wait.

3.2 Addressing

The parameters in the primitives, destination and source, raise the issue of addressing.
There are two categories of addressing: direct addressing and indirect addressing.

With direct addressing, a specific identifier is used to refer to a process. Sometimes
it is impossible for a receiver to specify the source of anticipated messages. In this
case, the source parameter of the receiver possesses a value returned when the receive
operation has been performed.
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With indirect addressing, as Figure 11 shows, messages are not sent directly from
sender to receiver but rather are sent to a shared data structure, called mailbox, con-
sisting of queues that can temporarily hold messages. The advantage of this mech-
anism is that decoupling the sender and the receiver brings greater flexibility in the
use of messages.
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Figure 11: Indirect message passing

A mailbox may be created by a process and then owned and associated with it, or by
the operating system on request of processes.

3.3 Message format

Based on the requirements of the applications, messages may take different formats.
Figure 12 depicts a typical format of a message:

• header: contains the addresses of the source and the intended destination, mes-
sage length, and some other fields for control purposes.

• body: contains the actual contents of the message.

Messages are typically stored in queues before they are delivered. The simplest dis-
patching scheme is FIFO. Sometimes different priorities may be assigned to messages
according to the context.
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Figure 12: General message format

3.4 Mutual exclusion

Figure 13 shows how message passing is used to support mutual exclusion. In the
example, a mailbox, mutex, is created first and initialized to contain a token message
for processes to access critical resources. Each process that is going to access has to
invoke receive first to obtain the token before moving on. If permitted, when it exits
the critical section, it again sends the token back to the mailbox.

Another example shown in Figure 14 is a solution to the bounded-buffer producer/consumer
problem using message passing. There are two mailboxes instead, mayproduce and
mayconsume. Every single location of the buffer is associated with two token mes-
sages, one for a producer to get permission to produce and the other for a consumer
to get permission to consume.

4 A Barbershop Problem

This problem is worth discussion due to its similarity to the real problems in the
operating systems.

The barbershop of concern has 3 chairs, 3 barbers, and a waiting area that can accom-
modate 4 customers on a sofa and that has standing room for additional customers, as
Figure 15 shows. And it is supposed that the maximal number of customers allowed
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Figure 13: Mutual exclusion using messages

to be in the barber shop is 20.

The customers’ actions include:

• Wait: the sofa, the standing area, and the outside.

• Haircut: the chairs

• Pay: the cash register

The barbers’ actions include:

• cut hair:

• accept payment:

• wait:

4.1 Analysis

Processes
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Figure 14: A solution to the bounded-buffer producer/consumer problem using messages

What processes should be created? Only customers? Or customers and barbers?
Actually barbers may be viewed as resources and only customer processes are used.
In this case, customers may have a barber and a barber chair as a combination for
service and release both resources after they finish.

Resources

Room capacity, sofa capacity, barber chair capacity, cashier capacity

Relationship
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Figure 15: The barbershop

• Mutual exclusion: capacity limits

– room capacity

– sofa capacity

– barber chair capacity

– cash register capacity: The program given in the textbook does not consider
the mutual exclusion of cash register capacity, which may lead to the mis-
take that receipts are given to the wrong customer if two customers have
paid and are waiting for receipts.

• synchronization:

– * barbers =⇒ customers: you may take chairs. (barber chair)

– customers =⇒barbers : I have take the chair and you may cut. (cust ready)

– barbers =⇒ customers: I have finished cutting and you may leave. (finished)

– customers =⇒ barbers: I have left the chair and you may proceed to do
whatever you want. (leave b chair)

– customers =⇒ barbers: Here is the money. (payment)

– barbers =⇒ customers: Here is the receipt. (receipt)
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Since the wait and signal do not guarantee the synchronized action is performed
right away, thus when the action is finished, another synchronization is needed
so that both parties know the action has indeed been done after it is given green
light.

Note that it is awkward to put the behaviors of barbers into two processes: barber()

and cashier() . Actually since a while loop is utilized in every process, once a pro-
cess is created, it will never exit, which make it impossible for a barber to cut hair for
a while and then to accept payment. A more proper approach is to merge them to-
gether into a barber process. However it seems there is lack of some query functions
(like top() for a stack object with pop() and push() ) for a barber to check if some
customer is waiting at the cash register or at a barber chair.

4.2 An unfair barbershop using semaphores

Figure 16 gives an implementation of the barbershop.

4.3 A fair barbershop

There are some problems with the above implementation. For example, the cus-
tomers who are sitting in the barber chairs, have all been waiting for finish signal.
Due to the queue organization, the first customer to have the chair will definitely re-
ceive the signal first. However the barbers may operate in different speeds, so it is not
always true that the first that comes will be finished first. Figure 17 made minor revi-
sions on the previous implementation and finishes with a fair barbershop. where cus-
tomers are distinguished from one another by each assigned a unique number. And
accordingly, new semaphores are used, one for each number. Thus when a customer
waits for the finish of haircut, he/she will wait over the corresponding semaphore.
And the barber will also signal to the process waiting over the semaphore.

For communication between the barbers and customers so that the former know the
number of the customer they will serve, a queue is used. Before a customer notifies
the barbers that he/she is ready for haircutting, he/she first places his/her number
into the queue; the barber that receives the signal will then obtain the customer num-
ber from the queue.

To make sure the customers are served strictly in the order they enqueue their num-
bers, another new semaphore is used as well.
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Figure 16: An unfair barbershop

Another method to avoid the unfairness is to number the barber chairs so that less
semaphores are needed, but how? Think about it!
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Figure 17: An fair barbershop
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