
CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu October 24, 2003

Concurrency: Deadlock and Starvation

1 The conditions for deadlock

We have seen many examples that may result in deadlock, which may be defined as the perma-
nent blocking of a set of processes that either compete for system resources or communicate
with each other.

Take two processes, P and Q, as an example. Both processes require resources, A and B. They
execute respectively in the following ways:

Process P:

...

Get A

Get B

...

do_something()

...

Release A

Release B

...

Process Q:

...

Get B

Get A

...

do_something_else()

...

Release B

Release A

...

Clearly, if P obtains A at the same time Q obtains B, a deadlock occurs since neither of them
can proceed to obtain the other resource they need.

If we examine this example and many others, we may find the following conditions that must
be present for a deadlock to be possible:

1. Mutual exclusion. Only one process may use the shared resource at a time.

2. Hold and wait. More than one resource is involved and they are to be obtained one
by one. That is processes may hold allocated resources while awaiting assignment of
others.

3. No preemption. Once a resource is held by a process, it cannot be forcibly removed
from the process.

1

Note that strictly speaking these are not absolutely necessities, since a deadlock may also
occur when no resource is even involved. We have mentioned an example before in which
two processes make RPC requests to each other before they receive the requests, then they
will both be blocked waiting for response from the other. In the situation, no progress could
be made and a deadlock is resulted in, however no resource is required in the environment.
We would rather to view the above conditions are necessary in the sense that resource sharing
is the most common case that leads to deadlocks.

These conditions are said necessary but no sufficient for a deadlock to happen. To make sure
a deadlock will happen or did happen, a fourth condition is required:

4. Circular wait. A closed chain of processes exists, such that each process holds at least
one resource needed by the next process in the chain. In terms of graph theory, there
is a directed circuit, in which processes and resources alternate exactly one by one, as
Figure 1 depicts.

Ø»´¼ ¾§
Î»­±«®½»

Þ

Î»¯«»­¬­

Î»¯«»­¬­ Ø»´¼ ¾§

Ð®±½»­­
Ðï

Ð®±½»­­
Ðî

Î»­±«®½»
ß

Figure 1: Circular wait

The fourth condition is actually a potential consequence of the first three. If related concurrent
processes are coded in a specific way like the first example we gave above, then circular
waiting may happen. Once circular wait occurs, a deadlock is obvious unavoidable.

2 Deadlock prevention

A deadlock is of course not desirable, so naturally we need some methods to prevent dead-
locks. A simple strategy is to prevent the occurrence of one of the above four conditions.

Mutual exclusion

2

In general, this condition cannot be disallowed. For example, it is not realistic for two
processes to print on a same sheet of paper at the same time.

Hold and wait

This condition is preventable since a process may request for the resources it needs
all at once. If its need can be met, then the operating system just does it, otherwise
blocks the process until all the resources are available. However this method raises
two problems:

• Processes may need some resources for part of their lives. It is inefficient for
them to own all the resources all the time.

• In some cases, it is impossible for a process to know in advance what resources
it will need during its execution.

In a modular application, it is unimaginable for a programmer to put all the code
making requests for resources in main() instead of the various modules where those
requests are supposed to be made.

No preemption

This condition can be prevented in two ways. First, if a process is denied a further
request while it has already held some resources, it must release all them and request
them again together with the additional resources. Alternatively, if a process requests
a resource that is currently held by another process, the operating system may pre-
empt the resource from the second process and allocate it to the first one. Note that
this approach is practical only when the resource of concern could be in some way
restored to its original state.

Circular wait

This condition is also preventable. Let’s go back to the first example, but change the
code of process Q a little bit as follows:

3

Process P:

...

Get A

Get B

...

do_something()

...

Release A

Release B

...

Process Q:

...

Get A

Get B

...

do_something_else()

...

Release B

Release A

...

That is all processes request for the resources in the same order, thus the one who
succeeds at the first step will be allocated all the resources first. Other processes have
no chance until those resource are released.

In a systematic way, we may assign an index to each resource in the system, and all
the processes are required to request for the resources in the order of increasing index.
However again this method may be inefficient. For example, a process may need to
manipulate a resource with a larger index far before another resource associated with
a smaller index is needed. To comply with this hold-and-wait prevention strategy,
the second resource will have to be requested first, thus be held without utilization
for a long time.

3 Deadlock avoidance

Different from deadlock prevention, where one of the four necessary conditions is pre-
vented in some way, deadlock avoidance takes another approach, which is the progress
of resource allocation in the operating system is monitored dynamically and when-
ever a deadlock is going to happen, some measure is taken to avoid it. Thus an
evaluation process should be performed, when a resource allocation is requested, to
make sure a deadlock will not happen.

3.1 Resource allocation model

To do such an evaluation, if there are totally n processes and m different types of
resources in the system, then the availability of the resources and the processes’ needs
for resources may are presented in the following vectors and matrices, where Cij is
the requirement of process i for resource j and Aij the current allocation of resource j

to process i:

4

Resources = (R1, R2, . . . , Rm) total amount of each resource in the system
Available resources = (V1, V2, . . . , Vm) total amount of each resource not allocated to a

process

Claims =


C11 C12 · · · C1m

C21 C22 · · · C2m

...
...

. . .
...

Cn1 Cn2 · · · Cnm

 requirement of each process for each resource

Allocations =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

An1 An2 · · · Anm

 current allocations

The following relationships can be observed easily:

1. Ri = Vi +
∑n

k=1 Aki, for all i: All resources are either available or allocated.

2. Cki ≤ Ri, for all k: No process can claim more than the total amount of resource
in the system.

3. Aki ≤ Cki, for all k, i: No process is allocated more resources of any type than
the process originally claimed to need.

3.2 The banker’s algorithm

Based on the above vectors and matrices, we introduce an algorithm of deadlock
avoidance, called the banker’s algorithm, that was first proposed Dijkstra in 1960s. It is
named in such a way because in a bank a same situation exists where the bank has
to skillfully satisfy customers’ request for loan at the same time keeping itself from
bankruptcy.

Terms

We define the state of the system the current allocation of resources to processes, thus
the state may be fully defined by the above two vectors and two matrices. A safe
state is one in which there is at least one sequence that does not result in a deadlock
(i.e., all of the processes can run to completion finally). An unsafe state is of course a
state that is not safe.

Note that by definition, a system may still reach a deadlock from a safe state by fol-
lowing some sequence, since a safe state merely needs one safe case and does not care

5

what may be led to in other cases. But it is sufficient to avoid deadlock if all the states
of the system are guaranteed to be safe.

Examples

The idea of the algorithm may be illustrated by examples as follows. Suppose there
are 4 processes, P1, P2, P3, and P4, and 3 types of resources, R1, R2, and R3, whose
amounts are respectively 9, 3, and 6. Figure 2 (a) depicts a state in which 1 unit of R2

and 1 unit of R3 are still available.

Îï Îî Îí
Ðï í î î
Ðî ê ï í
Ðí í ï ì
Ðì ì î î

Ý´¿·³ Ó¿¬®·¨

Îï Îî Îí
Ðï ï ð ð
Ðî ê ï î
Ðí î ï ï
Ðì ð ð î

ß´´±½¿¬·±² Ó¿¬®·¨

ø¿÷ ×²·¬·¿´ ­¬¿¬»

Îï Îî Îí
ç í ê

Î»­±«®½» Ê»½¬±®

Îï Îî Îí
ð ï ï

ßª¿·´¿¾´» Ê»½¬±®

Îï Îî Îí
Ðï í î î
Ðî ð ð ð
Ðí í ï ì
Ðì ì î î

Ý´¿·³ Ó¿¬®·¨

Îï Îî Îí
Ðï ï ð ð
Ðî ð ð ð
Ðí î ï ï
Ðì ð ð î

ß´´±½¿¬·±² Ó¿¬®·¨

Îï Îî Îí
ê î í

ßª¿·´¿¾´» Ê»½¬±®

ø¾÷ Ðî ®«²­ ¬± ½±³°´»¬·±²

Îï Îî Îí
Ðï ð ð ð
Ðî ð ð ð
Ðí í ï ì
Ðì ì î î

Ý´¿·³ Ó¿¬®·¨

Îï Îî Îí
Ðï ð ð ð
Ðî ð ð ð
Ðí î ï ï
Ðì ð ð î

ß´´±½¿¬·±² Ó¿¬®·¨

Îï Îî Îí
é î í

ßª¿·´¿¾´» Ê»½¬±®

ø½÷ Ðï ®«²­ ¬± ½±³°´»¬·±²

Îï Îî Îí
Ðï ð ð ð
Ðî ð ð ð
Ðí ð ð ð
Ðì ì î î

Ý´¿·³ Ó¿¬®·¨

Îï Îî Îí
Ðï ð ð ð
Ðî ð ð ð
Ðí ð ð ð
Ðì ð ð î

ß´´±½¿¬·±² Ó¿¬®·¨

Îï Îî Îí
ç í ì

ßª¿·´¿¾´» Ê»½¬±®

ø¼÷ Ðí ®«²­ ¬± ½±³°´»¬·±²

Figure 2: Determination of a safe state

Before we determine if further request for resources should be satisfied at the initial

6

state, we need first answer whether it is safe or not. To obtain the answer, we need to
examine if any of the four processes be run to completion with the resources available.

Clearly, P1 cannot be satisfied since it requires 2 more units of R1 but none available.
On the contrary, P2 can run to completion after allocated 1 more unit of R3. Suppose
that this is accomplished, then we have the resulting state depicted in Figure 2 (b).
Now we again need to answer if all the processes can be completed (i.e., if the result-
ing state is safe). In this case, each of the remaining processes could be completed.
Suppose we choose P1 to run first until its completion, then we arrive at the state
shown in Figure 2 (c). Then we may choose P3, resulting respectively in the state of
Figure 2 (d). Finally we can complete P4. Thus we have actually found a sequence
that leads to the completion of all the processes. So the state of Figure 2 (a) is a safe
one.

Let us consider the state of Figure 3, which may be viewed as one preceding the
state of Figure 2 (a) before 1 unit of R1 and 1 unit of R3 are allocated to P2. If at
this state, P2 does make the request, obviously it is safe to satisfy the request since
the resulting state is safe. But let us consider alternatively that P1 requests for an
additional unit each of R1 and R3. If we grant the request, the state of Figure 3 (b) is
obtained. Obviously at this point, no process can run to completion since each will
need at least one unit of R1, and there are none available. Thus, the request by P1

should be denied, and P1 be blocked.

The strategy we use above is: When a process makes a request for a set of resources,
assume first that the request is granted and update the system state accordingly, then
determine if the result is a safe state. If so, grant the request; otherwise block the
process until it is safe to grant the request.

Note that the requirement of this strategy is over strict since we assume that processes
will hold the allocated resources to completion. Actually they may release some of
their resources in the middle of their execution for other processes’ use. So an unsafe
state may even be safe. Our strategy is simply sufficient for avoiding deadlock though
probably more than necessary.

The following gives the skeleton of the banker’s algorithm:

struct state {

int resource[m];

int available[m];

int claim[n][m];

int allocation[n][m];

};

7

Îï Îî Îí

Ðï í î î

Ðî ê ï í

Ðí í ï ì

Ðì ì î î

Ý´¿·³ Ó¿¬®·¨

Îï Îî Îí

Ðï ï ð ð

Ðî ë ï ï

Ðí î ï ï

Ðì ð ð î

ß´´±½¿¬·±² Ó¿¬®·¨

ø¿÷ ×²·¬·¿´ ­¬¿¬»

Îï Îî Îí
ç í ê

Î»­±«®½» Ê»½¬±®

Îï Îî Îí

ï ï î

ßª¿·´¿¾´» Ê»½¬±®

Îï Îî Îí

Ðï í î î

Ðî ê ï í

Ðí í ï ì

Ðì ì î î

Ý´¿·³ Ó¿¬®·¨

Îï Îî Îí

Ðï î ð ï

Ðî ë ï ï

Ðí î ï ï

Ðì ð ð î

ß´´±½¿¬·±² Ó¿¬®·¨

Îï Îî Îí

ð ï ï

ßª¿·´¿¾´» Ê»½¬±®

ø¾÷ Ðï ®»¯«»­¬­ ±²» «²·¬ »¿½¸ ±º Îï ¿²¼ Îí

Figure 3: Determination of an unsafe state

/**

* i: the index of the requesting process.

* request: a vector expressing a resource request by Pi.

*/

boolean allocate(int i, int request[*]) {

boolean safe = true;

if (allocation[i, *] + request[*] > claim[i, *])

<error>;

return false;

else if (request[*] > available[*])

<block process Pi>

return false;

else {

<define newstate by

allocation[i, *] = allocation[i, *] + request[*];

available[i, *] = available[i, *] - request[*];

>;

}

if (safe(newstate))

<carry out the allocation>;

return true;

else {

<restore original state>;

<block process Pi>;

8

return false;

}

}

boolean safe(state S) {

int currentavail[m];

process rest[<number of processes>];

currentavail = available;

rest = {all processes};

possible = true;

while (possible) {

find a Pk in rest such that

claim[k, *] - allocation[k, *] <= currentavail;

if (found) {

currentavail = currentavail + alloc[k, *];

rest = rest - {Pk};

} else

possible = false;

}

return (rest == null);

}

Although deadlock avoidance has the advantage that it is not necessary to preempt
and rollback processes, as in deadlock detection that we will cover, and is less restric-
tive than deadlock prevention, it has a number of disadvantages:

• The maximum resource requirement for each process can hardly be determined
in advance.

• The resources involved should remain static. For example, a resource available
cannot become unavailable suddenly due to some reason.

• The processes under consideration must be independent. That is if some pro-
cesses need to communicate with each other, the banker’s algorithm cannot
guarantee a deadlock will be avoided.

4 Deadlock detection

It is possible to attack deadlock even after a deadlock has happened. The deadlock
detection approach is quite different from deadlock prevention in the sense that it
does not limit resource access or restrict process actions. What is needed is that the

9

operation system performs an algorithm periodically that detects the existence of cir-
cular wait.

4.1 Deadlock detection algorithm

Suppose a request matrix, Q, is defined such that Qij represents the amount of re-
sources of type j requested by process i, and the Allocation matrix, A, and Available
vector, V , presented above are also defined. Then a deadlock detection algorithm,
which marks processes that are not deadlocked, goes as follows:

1. Mark each process that has a row of all zeros in the Allocation matrix, A.

2. Initialize a temporary vector W , to equal V .

3. Find a process, Pi, such that it is currently unmarked and the ith row of Q is less
than or equal to W . That is Qik ≤ Wk, for 1 ≤ k ≤ m. If no such row is found,
terminate the algorithm.

4. If such a row if found, mark Pi and add the corresponding row of the allocation
matrix to W . That is, set Wk = Wk + Aik, for 1 ≤ k ≤ m. Return to step 3.

Clearly a deadlock exists if and only if there are unmarked processes at the end of
the algorithm. Each of them is deadlocked. The strategy of this algorithm is to check
all the processes whether they may run to completion one by one if their requests
are granted. If there is a way, then all the processes will be marked and no deadlock
is detected. Take the state of Figure ?? as an example. Then P4, P3 will be marked
sequentially, but P1 and P2 not, which shows the latter two are deadlocked.

Note that actually Q may be used instead in step 1 of the algorithm, or equivalently
the whole step may be omitted (Why? What is the difference between the original
version and the revised one?).

4.2 Recovery

Once a deadlock is detected, some strategy is needed for recovery. The possible ap-
proaches are:

1. Abort all deadlocked processes.

10

2. Rollback each deadlocked process to some previously defined checkpoint where
no deadlock was detected, and restart them. Though the processes may execute
in the same sequence as before and result in a deadlock again, the nondeter-
minism of concurrent processing may probably lead to another sequence and
involve no deadlock.

3. Successively abort deadlocked processes until deadlock no longer exists. The
processes should be selected to abort on the basis of minimum cost.

4. Successively rollback deadlocked processes by preempting resources from them
until deadlock no longer exists. A cost-based selection should also be used.

Many factors may be considered to minimize the abortion or rollback cost: process
priority, time that has been consumed by a process, time that will be needed by a
process, etc.

5 A classic example: dining philosophers problem

The dining philosophers problem is another classic problem besides the producer / con-
sumer problem. As Figure 4 shows, five philosophers meet together to think about

Figure 4: Dining arrangement for philosophers

what you have mutual interests on and eat spaghetti. They may be busy thinking or
busy eating, and nothing else. When they feel hungry, they may feel free to eat by us-
ing the two forks respectively on the left and on the right; after completion, the forks
are replaced on the table. Two adjacent philosophers share the fork between them on
the table.

11

This problem is of interest since every philosopher may be viewed as a concurrent
process and they share global resources - forks. The first solution to this problem is
given in Figure 5. In the algorithm, every philosopher picks up first the fork on the
left and then the fork on the right. It unfortunately leads to deadlock: If all of the
philosophers are hungry at the same time, they all pick up the fork on their left, and
then they all reach out for the other fork, which is not there. Thus all philosophers
starve in this case.

/* program dining philosophers */

semaphore fork[5] = {1};

/**

* i: 0 .. 4

*/

void philosopher(int i) {

while (true) {

think();

wait(fork[i]);

wait(fork[(i+1) mod 5];

eat();

signal(fork[(i+1) mod 5];

signal(fork[i]);

}

}

void main() {

parbegin(philosopher(0), philosopher(1), philosopher(2),

philosopher(3), philosopher(4));

}

Figure 5: A first solution to Dining philosophers problem

To overcome the risk of deadlock, we could allow only at most four philosophers at a
time to begin to eat, thus at least one philosopher will have two forks. Figure 6 shows
the solution, which is free of deadlock and starvation.

12

/* program dining philosophers */

semaphore fork[5] = {1};

semaphore token = {4};

void philosopher(int i) {

while (true) {

think();

wait(token);

wait(fork[i]);

wait(fork[(i+1) mod 5];

eat();

signal(fork[(i+1) mod 5];

signal(fork[i]);

signal(token);

}

}

void main() {

parbegin(philosopher(0), philosopher(1), philosopher(2),

philosopher(3), philosopher(4));

}

Figure 6: A second solution to Dining philosophers problem

13

	1 The conditions for deadlock
	2 Deadlock prevention
	3 Deadlock avoidance
	3.1 Resource allocation model
	3.2 The banker's algorithm

	4 Deadlock detection
	4.1 Deadlock detection algorithm
	4.2 Recovery

	5 A classic example: dining philosophers problem

