(CS5c33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu December 10, 2003

Review

1 Overview

1.1 The definition, objectives and evolution of operating system

An operating system exploits and manages all kinds of computer hardware to provide a set of
services directly or indirectly to the users. The definition gives two objectives of an operating
system:

e managing efficiently all kinds of resources

e providing a friendly interface to the end-users

To better understand the requirements for an operating system, it is useful to consider how
operating systems have evolved over the years, from serial processing systems involving many
manual operations to automatic multiprogramming batch processing systems and time-sharing sys-
tems.

1.2 Computer hardware

All the hardware components in a computer system may fall into several categories: micro-
processor, main memory, I/O modules and system bus.

For exchanging data to or from the main memory and various I/O modules and computation,
the microprocessor contains all kinds of registers, including data registers, address registers,
control and status registers.

¢ Different address registers may use different addressing schemes, including segmented
addressing and stack addressing based on push and pop operations.

e The program counter register (PC) contains the address of an instruction to be fetched
from main memory and the instruction register (IR) contains the instruction most recently
fetched.



o A register called program status word (PSW) otherwise records the condition codes as
part of the result of computations and other status information as well.

The dynamic side of the microprocessor is how it executes instructions. For the execution
of each single instruction, there are two cycles, the first of which is called fetch cycle and the
second execute cycle. They together makes an instruction cycle. The microprocessor repeats
instruction cycles until it halts.

1.3 1/O communication techniques

There are three common I/O device access techniques: Programmed 1/O, Interrupt-driven I/O,
and DMA and the latters are developed to avoid problems in the former approaches.

Interrupt is a mechanism by which computer components may interrupt the normal process-
ing of the processor and request the processor to perform a specific action. Whenever the
execution of an instruction is finished, the processor will check the availability of any inter-
rupt signal.

1.4 Memory hierarchy

Storage components all have some kinds of advantages and disadvantages. It is possible to
combine them hierarchically so as to enjoy high speed, large capacity and low price. Typically
a cache may be used between the processor and the main memory to have a speedup based
on the principle of locality.

2 Process management

2.1 The definition of process

A process is an execution of a program. The term is coined to refer to an instance of a program

ina multiprogramming environment.

Each process contains data, code, and its own stack. The operating system allocates a process
control block to record various attributes of each process. All the above together make the
process image.



2.2 State transition

The state transition model is used to describe the dynamic behavior of a single process, and
the process queue model may depict the structure of the process management subsystem in the

operating system.

3 Thread

3.1 The introduction of thread

The characteristics of processes actually fall into two categories:
e Resource ownership: Processes may be allocated control or ownership of various re-
sources.
e Scheduling/execution: Processes may execute and move from one state to another.
The two categories are independent in fact and thus may be treated separately. Multiple flows
of control may coexist within one single process, each called a thread.

Similar to process, each thread is associated with execution state and various data structures,
including a thread control block containing thread context, a stack and space for local variables.

3.2 Benefits of multithreading
Multithreading has the following advantages over multiprogramming;:

o It takes far less time to create and terminate a thread, and do control switching between
threads.

e It is easier to accomplish the communication among execution traces.

e It helps to reflect the real world in a straightforward way.

Two examples, a web server and RPC service, clearly shows the above benefits of multithread-
ing.



3.3 Implementation of thread
Threads may be supported in two different ways:

o At the user-level: All thread management work is done by the user application, and the
operating system is not aware of the existence of threads and typically a thread library
is available providing routines for manipulating threads and communication between
threads as well.

o At the kernel-level: The operating system kernel provides direct support for thread man-
agement. Both approaches have their advantages and disadvantages.

4 Concurrency

4.1 Mutual exclusion and synchronization
41.1 Introduction

Besides offering benefits, multiprogramming and multithreading also mean more efforts to
deal with the interaction among processes, including mutual exclusion and synchronization,
which are required by processes either competing for or cooperating with each other by

shared resources or communications.

Mutual exclusion has four requirements:

Only one process at a time is allowed into its critical section, among the processes that
have critical sections for the same resource or shared object.

When no process is in a critical section, any process that requests entry to its critical
section must be permitted to enter without delay.

A process remains inside its critical section for a finite time only.

No assumptions should be made about relative process speeds or number of processors.

4.1.2 Software approaches

Based on the assumption that only one access to a memory location can be made at a time,
Dekker’s algorithm and Peterson’s algorithm were developed, so that a user program may
implement mutual exclusion and synchronization itself without any support from the oper-
ating system or programming languages.



4.1.3 Hardware approaches

Since it is interrupts that lead to the interleaving execution of multiple processes, mutual
exclusion can be enforced by disabling interrupt temporarily.

Some special machine instructions, which combines two memory accesses, may meet the
requirement, such as test and set instruction and exchange instruction.

4.1.4 Programming languages or operating system support

Since either software or hardware approaches have all kinds of disadvantages, e.g. high com-
plexity for the former and busy waiting for the latter, some advanced facilities supporting

mutual exclusion and synchronization have been developed:

e Semaphores

A semaphore can be viewed as an integer variable, whose initial value indicates the
number of resources of concern available. Processes may invoke two atomic primitives:
wait and signal. And each semaphore is associated with a queue, which is used to hold
processes waiting on the semaphore.

The implementation of semaphores has to be based on either software approaches or
hardware approaches, but semaphores provide an easier interface to the programmers.
e Monitors
The monitor method is proposed based on the development of structural programming
and object orientation theory. A monitor is actually a software module consisting of:
— Local data: the shared resources or the access points leading to those resources

— Procedures: the interface to the above local data, which is invisible to any external
procedure

— Initialization: code to initialize local data

At any time, at most one process is allowed to own the monitor and invoke one of its proce-
dures, thus mutual exclusion is enforced. Condition variables and two primitives, cwait() and
csignal(), may be used inside monitor procedures to provide synchronization support.

4.1.5 Message passing

Message passing, common for processes that communicate with each other, may also be used
to support mutual exclusion and synchronization.

5



Message passing is actually similar to semaphore signaling except that a mailbox is used for
relaying messages.

4.2 Deadlock

In a multiprogramming environment, a deadlock may happen if and only if:

o Mutual exclusion: Only one process may use the shared resource at a time.

e Hold and wait: More than one resource is involved and they are to be obtained one
by one. That is processes may hold allocated resources while awaiting assignment of
others.

e No preemption: Once a resource is held by a process, it cannot be forcibly removed from
the process.

o Circular wait: A closed chain of processes exists, such that each process holds at least
one resource needed by the next process in the chain. In terms of graph theory, there is
a directed circuit, in which processes and resources alternate exactly one by one.

Deadlock problems may be solved in various ways:

e Prevention: The occurrence of one of the above four conditions is prevented in advance.

e Avoidance: The progress of resource allocation in the operating system is monitored dy-
namically and whenever a deadlock is going to happen, some measure is taken to avoid
it. The banker’s algorithm may be used for determining the possibility of a deadlock.

o Detection and recovery: Instead of avoiding a deadlock, the operation system may per-
forms an algorithm periodically to detect the existence of circular wait. If a deadlock
has indeed occurred, effort may be taken for recovery.

5 Memory management

Each process is associated with two address spaces: a logical address space and a physical address
space. The former can be translated into the latter in different ways, either in compile time,
load time, or execution time.

Besides satisfying the address mapping, memory management subsystem also need to pro-
vide protection and sharing support, and facilitate application organization.

Memory may be allocated to processes in the forms of partitions, pages, or/and segments:

6



e Partitioning may be fixed or dynamic, and internal and external fragments may be caused
respectively.

e Process spaces and the main memory may be divided into fixed-size blocks, called pages
or frames so that a process image may reside in uncontiguous sections of memory space.
A page table helps to track the location of each section and do the address translation in

run-time.

e A process may be organized in form of segments as well and a segment table is used
instead.

6 Virtual memory

Virtual memory is needed to support the execution of a program whose size is beyond the
capacity of the main memory so that only part of a process instead the whole thing may be
physically reside in the main memory for execution.

To support virtual memory, additional information is needed for either paging or segmen-
tation mechanisms. The two methods may be also combined to benefit the advantages of
both.

With virtual memory where paging is involved, various policies should be considered: fetch
policy, placement policy, replacement policy, and cleaning policy. Various replacement policies,
including optimal, LRU, FIFO and clock, have been discussed to reduce the occurrence of page
faults.

7 Uniprocessor scheduling

Three types of scheduling are involved in an operating system: long-term scheduling, medium-
term scheduling, and short-term scheduling. The last one is the most common use of scheduling.

With short-term scheduling, various policies, FCFS, round robin, shortest process next, shortest
remaining time, highest response ratio next, and feedback, may be used to meet criteria including
turnaround time, response time, throughput, processor utilization, and fairness.

8 I/0O management

The diversity of I/O devices makes the I/O management the messiest part in an operating
system, however it is still possible to deal with the various I/O devices in a uniform way by

7



organizing the I/O routines hierarchically.

To improve the efficiency of the I/O subsystem in general, the buffering mechanism may be
used so that the level of parallelism will be increased and swapping will not be interfered any
more.

Disks, as the most often used peripheral devices, may be dealt with elegantly by deploying
various scheduling algorithms for disk I/O requests, including FIFO, shortest service time first,
SCAN, and C-SCAN.



	1 Overview
	1.1 The definition, objectives and evolution of operating system
	1.2 Computer hardware
	1.3 I/O communication techniques
	1.4 Memory hierarchy

	2 Process management
	2.1 The definition of process
	2.2 State transition

	3 Thread
	3.1 The introduction of thread
	3.2 Benefits of multithreading
	3.3 Implementation of thread

	4 Concurrency
	4.1 Mutual exclusion and synchronization
	4.1.1 Introduction
	4.1.2 Software approaches
	4.1.3 Hardware approaches
	4.1.4 Programming languages or operating system support
	4.1.5 Message passing

	4.2 Deadlock

	5 Memory management
	6 Virtual memory
	7 Uniprocessor scheduling
	8 I/O management

