
Assembler Arrays

Declaring an array

An array is declared as shown below, with the values listed, separated by commas.

arr dword 5, 7, 19

You could also declare the array elements as individual items:

arr dword 5
 dword 7
 dword 19

Notice that only the first item in the array has a name attached. How can we refer to the remaining
items? We can use the offset, which is the distance of each element, in bytes, from the beginning of the
array.

arr
+0 +4 +8

5 7 19

We address an array element using square brackets around an address calculation: [arr+4].

We could sum the array using these values:

 sub eax,eax
 add eax,[arr+0]
 add eax,[arr+4]
 add eax,[arr+8]

The problem with this is that we can't use a loop. How can we change the code to use a loop?

Using an index register to process an array

To process an array in a loop, we can put the offset into a register. The register we use to hold an offset
is called an index register. Traditionally the registers used for this purpose are esi or edi. The 'I' stands
for "index."

 To initialize an index register, zero it out:

 sub esi,esi ; index register

Then use the register in place of the constant: add eax,[arr+esi].
This line of code can be reused in a loop by changing the value of esi:

To process an array using an index register, start with initializing a loop counter: to do that, put the
number of values in the array into ecx. Also initialize the index register to 0. In the loop, increment the
index register by the size of each array element, which is 4 for a doubleword.

In this example, we'll sum the 4 values in the arr array; that means we must also set sum (eax) to 0 and
add each array value into eax:

 mov ecx, 3 ; loop counter
 sub esi,esi ; index register
 sub eax,eax ; sum = 0
 top: add eax,[arr+esi]
 add esi,4 ; increment index
 loop top

Using a base register to process an array

Another way to process an array is to use a base register. While the index register holds the offset of the

array from the beginning of the array, the base register holds the address of the array from the

beginning of the data segment:

Suppose the data segment looks like the following (the left column is the offset of each item from the

beginning of the data segment, measured in bytes).

 .data
0000 x dword 10
0004 arr dword 5, 7, 19
0010 n dword 3

If we were to list all the elements individually, the address of each element would be clearer:

 .data

0000 x dword 10

0004 arr dword 5

0008 dword 7

000C dword 19

0010 n dword 3

arr
+0 +4 +8 <-- index register contents

5 7 19

0004 0008 000C <-- base register contents

To process an array using a base register, you must put the address of the first element of the array into

a base register. Traditionally the base register is ebx.

The instruction to put the address of an array into a register is lea, or load effective address:

 lea ebx,arr

Using the example above, this puts 0004 into ebx.

Base register notation is the following: [ebx]

To move the first value from the array into eax, write the following:

 mov eax,[ebx]

To change to the next value in the array, increment ebx by the size of each array element; in an array of

dwords, this is 4:

 add ebx,4

To process an array using a base register, start with initializing a loop counter Also initialize the index

register to 0. In the loop, increment the base register by the size of each array element, which is 4 for a

doubleword:

To process an array using a base register, start by initializing a loop counter. Also initialize the base

register to the initial address of the array. In the loop, increment the base register by the size of each

array element, which is 4 for a doubleword.

In this example, we'll sum the 4 values in the arr array; that means we must also set sum (eax) to 0 and

add each array value into eax:

 mov ecx,3 ; loop counter

 lea ebx, arr ; base register

 sub eax,eax ; sum = 0

 top: add eax,[ebx]

 add ebx,4 ; increment base register

 loop top

Passing an array as a parameter
Between index register and base register notation, index register notation is clearer and easier to read.
However, it is necessary to use base register notation when sending an array as a parameter to a
procedure. A procedure can't refer to any variables declared in main, and the array is declared in main.

 .data
0000 x dword 10
0004 arr dword 5, 7, 19
0010 n dword 4

To send an array as a parameter to a procedure, you must pass the base address of the array. It is most
efficient to pass the address in ebx. In addition, you must pass the number of filled positions in the
array; this is not passed by address or reference, but by value: you put the value of n into a register. It is
most efficient to put that value into ecx, which Is where it will be used.

To pass an array arr and n as parameters to the function addup, do the following. The function will
return the sum in eax:
 lea ebx,arr
 mov ecx,n
 call addup
 mov sum,eax ; store return value

Inside the function, you can begin to process the array directly using base address notation, since the
address is already in ebx, and the loop counter is already in ecx.

 addup proc
 sub eax, eax ; sum = 0
 addtop: add eax,[ebx]
 add ebx,4
 loop addtop
 ret
addup endp

What's wrong with this? We haven't pushed and popped registers that are changed but that are not
used to return a value. Those would be ebx and ecx, so we modify the code as follows:

 addup proc
 push ebx
 push ecx
 sub eax, eax ; sum = 0
 addtop: add eax,[ebx]
 add ebx,4
 loop addtop
 pop ecx
 pop ebx
 ret
addup endp

Reference parameters

As you learned in C++, an array is passed by reference. That's what is happening when we pass the
address of an array to a procedure. Any change to the array inside the procedure will be reflected upon
return to main.

To pass a scalar (individual) value by reference, put its address in the register.
Use the lea instruction:

 .data
num dword 9
 .code

 lea ebx,num
 mov eax,6
 call change_num

change_num proc
 sub [ebx], eax
 ret
change_num endp

This example (silly, of course) shows how to change num inside the procedure. Upon entry, num has the
value 9, from which the function subtracts 6. Upon return to main, num has the value 3.

I passed the 6 as a parameter because of a the problem with using a base address and a literal.

 sub [ebx],6

Machine can't tell from either operand the size of the operands. Solution:

 sub dword ptr[ebx],6

dword ptr is necessary to provide the size of the operands. More on this later.

Another example using a local variable

 lea ebx,arr
 mov ecx,n
 call lessthan10

;count number of values in array
;that are less than 10
lessthan10 proc
 .data

val dword 10
 .code
 push ebx
 push ecx
 push edx
 sub eax,eax ; counter
 mov edx,val
 cmptop: cmp [ebx],edx
 jge outt
 inc eax ; special case
 add ebx,4 ; all cases
 loop cmptop
 outt: pop edx
 pop ecx
 pop ebx
 ret
 lessthan10 endp

