Control Architectur

Unit E Control Architectures

Exploring Robotics
Spring, 2013

Control

Automated Systems Goals

Goals

Control Architectures World Model

Representation

Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture Behavior-based Control

Behavior-based Cor Emergence

RoboLab

Loops and Jumps
Conditional Branches

Joel Kammet Brooklyn College CUNY

Control Systems

Control theory:

a branch of engineering involving the mathematical study of automated control systems.

Automated control systems include

- industrial processes (assembly lines, etc.)
- airplanes
- nuclear power plants
- robots

Control Architectur

Control Automated Systems

Gnale

Feedback

Control Architectures World Model

Representation Deliberative Control

Intractibility Reactive Control

Subsumption Architecture Behavior-based Control

Emergence

Robol ab

Goal States

A goal state is

- the desired state of the system
- where, or in what condition, the system wants to be

Goal states include

- achievement goals
- maintenance goals

Control Architectur

Control

Automated Systems

Goals

Feedback

Control Architectures

World Model
Representation
Deliberative Control
Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control Emergence

RoboLab

Achievement and Maintenance Goals

Achievement goals:

- attain some measure of performance
- arrive at a destination
- complete a task

Maintenance goals:

- keep some parameter (measure of performance) within a predetermined allowable range
- stay on road
- remain upright and balanced

Control Architectur

Control

Automated Systems

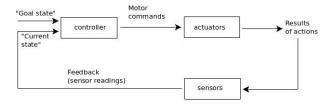
Gnale

Feedback

Control Architectures World Model

Representation Deliberative Control

Intractibility Reactive Control


Subsumption Architecture Rehavior-based Control

Emergence

Robol ab

Feedback Control

A closed-loop control system:

Control Architectur

Control

Automated Systems Goals

Feedback

CCGDGGK

Control Architectures World Model

Representation
Deliberative Control
Intractibility

Reactive Control
Subsumption Architecture

Behavior-based Control Emergence

RoboLab

Types of Feedback Control

Output signals (motor commands) are adjusted based on the difference (error) between current state and goal state.

- proportional control
 - output is adjusted in proportion to the amount of error
 - the bigger the error, the greater the adjustment
 - $o(t) = K_p e(t)$
- derivative control
 - output is adjusted in proportion to the rate of change of error
 - · if error is decreasing rapidly, reduce the adjustment
 - $o(t) = K_d \frac{d}{dt} e(t)$
- integral control
 - output is adjusted in proportion to the duration of error
 - if error persists for a long time, increase the adjustment
 - $o(t) = K_i \int_0^t e(\tau) d\tau$

Control Architectur

Control

Automated Systems Goals

Control Architectures

World Model
Representation
Deliberative Control
Intractibility
Reactive Control

Subsumption Architecture Behavior-based Control Emergence

RoboLab

Loops and Jumps Conditional Branches

Combining Feedback Control Signals

- PD Control
 - Combines proportional and derivative control
 - $o(t) = K_p e(t) + K_d \frac{d}{dt} e(t)$
- PID Control
 - Combines proportional, integral and derivative control
 - $o(t) = K_{\rho}e(t) + K_{i} \int_{0}^{t} e(\tau)d\tau + K_{d}\frac{d}{dt}e(t)$

Control Architectur

Control

Automated Systems Goals

Feedback

Control Architectures

World Model Representation Deliberative Control

Intractibility Reactive Control

Subsumption Architecture Behavior-based Control

Emergence

RoboLab

Feedforward Control

Control Architectur

Control

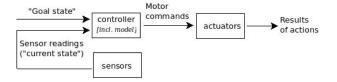
Automated Systems Goals

Feedback

Control Architectures World Model Representation

Deliberative Control Intractibility

Reactive Control


Subsumption Architecture Behavior-based Control

Emergence

RoboLab

Loops and Jumps
Conditional Branches

An open-loop control system:

Control Architectures

A control architecture is

the set of principles (i.e., tools, rules, styles, guidelines ...) for organizing a control system

Categories of robot control architectures:

- Deliberative control
- Reactive control
- Hybrid control
- Behavior-based control

Control Architectur

Control

Automated Systems Goals

Control Architecture

World Model Representation Deliberative Control Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control Emergence

Robol ab

oboLab

Differences Among Control Architectures

Control Architectur

Modularity

how control program is broken down

- Time-scale immediate real-time response vs. long-range plan
- Representation how robot "envisions" its world

Control

Automated Systems Goals Feedback

Control Architectures

World Model
Representation
Deliberative Control
Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control Emergence

Robol ab

Considerations for Choice of Architecture

- sensor noise
- actuator noise
- static or dynamic environment
- fully- or partially-observable environment
- speed at which sensors react
- speed at which controller and effectors react
- need to remember past events/conditions
- need to predict future events/conditions
- need to learn (to improve behavior)

Control Architectur

Control

Automated Systems Goals

Control Architectures

World Model
Representation
Deliberative Control
Intractibility
Reactive Control

Subsumption Architecture

Behavior-based Cor Emergence

Robol ab

World Model

A world model is

a simplified, abstract description of its environment:

- "map" of the world
- its own possible actions
- expected or possible consequences of actions
- expected or possible changes in environment
- its tasks or goals
- physical "laws"
- sensor readings/motor commands (sensorimotor state)
- contents of its memory
 - values of variables
 - remembered facts
 - predictions

Control Architectur

Control

Automated Systems Goals Feedback

Control Architectures

World Model

Representation
Deliberative Control
Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control Emergence

Robol ab

Loops and Jumps

Conditional Branches

Representation

Representation is

what information is stored and how it is encoded

- detailed measurements/"pictures"
- landmarks
- sensor readings
- history of events, actions, consequences

Control Architectur

Control

Automated Systems Goals Feedback

Control Architectures

World Model

Representation

Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture

Behavior-based Control Emergence

Robol ab

RODOLAD

Representation

Control Architectur

Representation is

what information is stored and how it is encoded

- detailed measurements/"pictures"
- landmarks
- sensor readings
- history of events, actions, consequences
- lookup tables of transition rules
- graph illustrating transition rules

Control

Automated Systems Goals Feedback

Control Architectures World Model

Representation

Deliberative Control

Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control
Emergence

RoboLab

RoboLab

Any questions?

Control Architectur

Control

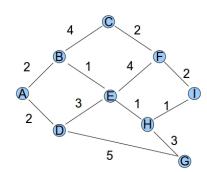
Automated Systems Goals Feedback

Control Architectures World Model

Representation

Deliberative Control Intractibility Reactive Control

Subsumption Architecture Behavior-based Control


Emergence

RoboLab

Loops and Jumps
Conditional Branches

Two different representations of a map

Α	В	С
D	Е	F
G	Н	1

Representation is

- · what information is stored
- how it is encoded

Control Architectur

Control

Automated Systems
Goals
Feedback
Control Architectures
World Model

Representation Deliberative Control

Intractibility
Reactive Control
Subsumption Architecture
Behavior-based Control

Emergence RoboLab

Loops and Jumps Conditional Branches

Next time...

Control Architectus

Control

Automated Systems Gnale Feedback

Control Architectures

World Model

Representation

Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture

Behavior-based Control Emergence

Robol ab

Loops and Jumps Conditional Branches

How a world model and representation are used in actual control architectures:

- Deliberative control (chapter 13)
- Reactive control (chapter 14)

Conditionals

Control Architectur

Control

Automated Systems Goals Feedback

Control Architectures

World Model

Representation Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture

Emergence

RoboLab

Loops and Jumps Conditional Branches

A boolean expression is

an expression that has only two possible values: **true** or **false**

A conditional statement is

a statement in the form

"if [predicate] then [consequent]"

(The predicate is a boolean expression.)

Deliberative Control

Control Architectus

- Sense, model, plan, act
- Search through alternative possible sequences of actions for
 - success
 - optimality
 - approximation/compromise

Control

Automated Systems Gnale

Feedback Control Architectures

World Model Representation

Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture

Behavior-based Control Emergence

Robol ab

Planning: Requirements

- time
- space
- information
- plan must remain accurate
- must maintain awareness of state
- · accuracy of effectors

Control Architectur

Control

Automated Systems Goals

Feedback

Control Architectures World Model

Representation

Deliberative Control

Intractibility

Reactive Control

Cuboumotion Archite

Subsumption Architecture

Behavior-based Control Emergence

RoboLab

Intractability

Intractable means

highly complex; difficult to solve.

(Sensor/state space grows exponentially.)

Other obstacles:

- · dynamic environment
- not fully observable
- noise

Control Architectur

Control

Automated Systems Goals Feedback Control Architectures

World Model Representation Deliberative Control

Intractibility

Reactive Control
Subsumption Architecture
Behavior-based Control

Emergence

RoboLab

Reactive Control

Control Architectus

Control Automated Systems

Gnale Feedback Control Architectures World Model Representation Deliberative Control

Subsumption Architecture Behavior-based Control

Emergence

Robol ab

- Reflex action
- Sense → act
- Action selection
 - Mutually exclusive conditions
 - Command arbitration (choose one out of several commands)
 - Command fusion (combine multiple commands into one)

Reactive Control Examples

Example (RCX line-following)

- threshold 1 = 41
- threshold 2 = 37
- rule 1: sensor reading ≤ threshold 1 stop right motor, fwd left motor
- rule 2: sensor reading ≤ threshold 2 reverse right motor, fwd left motor
- rule 3: otherwise stop left motor, fwd right motor

Control Architectur

Control

Automated Systems
Goals
Feedback
Control Architectures
World Model
Representation
Deliberative Control

Reactive Control

Subsumption Architecture Behavior-based Control

Emergence

RoboLab

Intractibility

Reactive Control Examples

Control Architectur

Example (simple navigation)

- rule 1: facing red wall turn right
- rule 2: facing blue wall turn left
- rule 3: facing treasure stop
- rule 4: otherwise go straight ahead

Control

Automated Systems Goals Feedback Control Architectures World Model Representation

Deliberative Control Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control Emergence

Bobol ab

Loops and Jumps

Subsumption Architecture

Subsume (according to Merriam-Webster) means:

to include or place within something larger or more comprehensive; encompass as a subordinate or component element. e.g.: Red, green, and yellow are subsumed under the term "color".

Subsumption Architecture (Rodney Brooks, 1985)

- "layered", bottom-up design
- capabilities added incrementally
- inspired by biology
- higher layers use lower layers to help achieve their goals
- higher layers can suppress or inhibit lower layers

Control Architectur

Control

Automated Systems

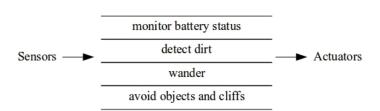
Gnale

Feedback Control Architectures

World Model

Representation

Deliberative Control


Intractibility Reactive Control

Subsumption Architecture

Rehavior-based Control

Emergence Robol ab

Subsumption Architecture - Example

Control Architectur

Control

Automated Systems Goals Feedback Control Architectures World Model Representation Deliberative Control Intractibility

Reactive Control Subsumption Architecture

Behavior-based Control

Emergence RoboLab

Loops and Jumps Conditional Branches

Behavior-Based Control

- layered design similar to that of reactive control but:
- modules of a reactive control architecture produce simple actions whereas
- modules of a behavior-based control architecture produce behaviors

Control Architectus

Control

Automated Systems Gnale

Feedback

Control Architectures World Model

Representation Deliberative Control

Intractibility Reactive Control

Subsumption Architecture

Behavior-based Control

Emergence

Robol ab

Behavior

Control Architectur

Characteristics of behaviors:

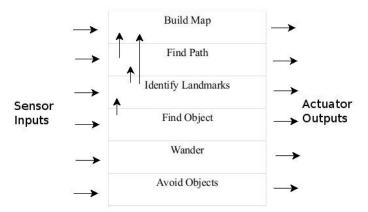
- more complex than the simple actions of reactive control
- behaviors maintain or achieve specific goals
- behaviors are time-extended
- behaviors can take input not only from sensors but also from other behaviors
- behaviors can send output to other behaviors as well as to actuators

Control

Automated Systems Gnale Feedback

Control Architectures

World Model Representation Deliberative Control Intractibility


Reactive Control Subsumption Architecture

Behavior-based Control

Emergence

Robol ab

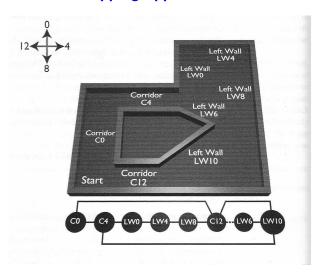
Behavior-based Architecture - Example

Control Architectur

Control

Automated Systems Goals Feedback Control Architectures

Control Architectures
World Model
Representation
Deliberative Control
Intractibility


Reactive Control Subsumption Architecture

Behavior-based Control

Emergence

${\sf RoboLab}$

Behavior-based Mapping Application

Toto's environment

Control Architectur

Control

Automated Systems Goals Feedback

Feedback

Control Architectures World Model

Representation
Deliberative Control
Intractibility

Reactive Control

Subsumption Architecture

Behavior-based Control

Emergence

RoboLab

Loops and Jumps Conditional Branches

Behavior-based Mapping Application (cont'd)

Toto's Mapping Behavior Attributes (Variables)

- Behavior-type
- Compass-direction
- Approximate-location
- Approximate-length
- Active-status (true/false)
- Goal-status (true/false)
- Most-recent-message-distance
- Most-recent-message-source

Control Architectur

Control

Automated Systems Goals

Control Architectures

World Model
Representation

Deliberative Control Intractibility Reactive Control

Subsumption Architecture

Behavior-based Control

Emergence

Robol ab

RoboLab

What Is Emergent Behavior?

"The whole is greater than the sum of its parts."

A "naive" definition

Unexpected behavior that results from interaction between the system and its environment.

A better definition

Emergent behavior is a pattern of behavior that results from interaction between the system and its environment and is apparent from an observer's viewpoint but not from the from the controller's (internal) viewpoint.

Control Architectur

Control

Automated Systems Goals Feedback Control Architectures World Model Representation Deliberative Control Intractibility

Subsumption Architecture Behavior-based Control

Emergence Bobol ab

Reactive Control

HODOLAD

Emergent Behavior - Examples

- wall following (with no model of a "wall")
- flocking (with no model of a "flock")
- ants' paths converging towards food

Control Architectus

Control

Automated Systems Gnale Feedback

Control Architectures

World Model

Representation Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture Behavior-based Control

Emergence

Robol ab

Emergence and Surprise

Can you think of other examples of emergence in nature?

Can surprise be predictable?

Is surprise necessary for emergence?

Control Architectur

Control

Automated Systems

Feedback

Control Architectures

World Model

Representation

Deliberative Control

Intractibility

Reactive Control

Subsumption Architecture

Behavior-based Control

Emergence

Robol ab

loboLab

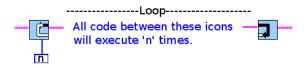
Autonomous Mental Development

DIFFERENCES BETWEEN ROBOT PROGRAMS

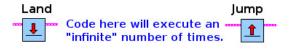
Properties	Traditional	Developmental
Not task specific	No	Yes
Tasks are unknown	No	Yes
Generates a representation of an unknown task	No	Yes
Animal-like online learning	No	Yes
Open-ended learning	No	Yes

Control Architectur

Control


Automated Systems
Goals
Feedback
Control Architectures
World Model
Representation
Deliberative Control
Intractibility
Reactive Control
Subsumption Architecture

Behavior-based Control Emergence


RoboLab

Loops and Jumps

Conditional:

Unconditional:

Control Architectur

Control

Automated Systems Goals Feedback

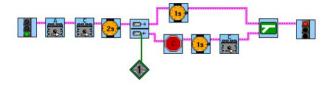
Control Architectures

World Model
Representation
Deliberative Control
Intractibility

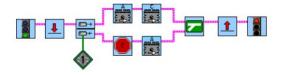
Reactive Control Subsumption Architecture

Behavior-based Control Emergence

Robol ab


HODOLAD

Loops and Jumps


Conditional Branches

Conditional Branch: Touch Sensor Fork

Not so useful:

Much better:

Control Architectur

Control

Automated Systems Goals

Feedback

Control Architectures World Model

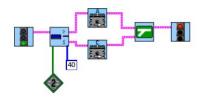
Representation
Deliberative Control

Intractibility
Reactive Control

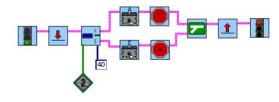
Subsumption Architecture

Behavior-based Control Emergence

RoboLab


HODOLAD

Loops and Jumps


Conditional Branches

Conditional Branch: Light Sensor Fork

Not so useful:

Much better:

Control Architectur

Control

Automated Systems Goals Feedback

Control Architectures

World Model Representation Deliberative Control

Intractibility
Reactive Control

Subsumption Architecture

Behavior-based Control Emergence

RoboLab

Loops and Jumps

Conditional Branches