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Abstract

Deshpande et al. presented a k(lnR + 1) approximation bound for Stochastic
Submodular Cover, where k is the state set size, R is the maximum utility value of
a single item, and the utility function is integer-valued. Since R ≤ Q, this bound
is similar to the (lnQ/η + 1) bound of Golovin and Krause, whose analysis was
recently found to have an error. We revisit the proof of the k(lnR+ 1) bound, fill
in crucial missing details in the proof of a key lemma, and prove two bounds whcih
apply even when the utility function is not integer-valued: k(lnR/η1 + 1) where
η1 is the smallest increase in utility of a single item, and (lnR/ηE + 1) where ηE
is the smallest expected increase in utility of a single item. Our bounds apply only
to the stochastic setting with independent states.

1 Introduction

Golovin and Krause introduced the Stochastic Submodular Cover (StSuC) problem [7]. They
presented a proof showing that the Adaptive Greedy algorithm is a (ln Q

η + 1)-approximation
algorithm, for a class of adaptive submodular cover problems that includes the StSuC problem. Here
Q is the “goal value”, and η is the minimum gap between Q and any attainable utility value Q′ < Q.

Subsequently, Deshpande et al. used an LP-based analysis to show that Adaptive Greedy is a
k(lnR + 1)-approximation algorithm for the StSuC problem, assuming an integer-valued utility
function [5]. Here k is the (constant) size of the state set, and R is the maximum utility of a single
item, so R ≤ Q. For integer-valued utility functions, η = 1, so (ln Q

η + 1) ≤ (lnQ+ 1).

Recently, Nan and Saligrama discovered an error in Golovin and Krause’s analysis of Adaptive
Greedy [11]. The error invalidates the (ln Q

η + 1) bound for the StSuC problem. The k(lnR + 1)

bound of Deshpande et al. is now important as a replacement. Because of this, we were motivated to
revisit this bound. To our knowledge, no similar replacement bound exists for the StSuC problem.
Deshpande et al. proved a different bound on the StSuC problem using their Adaptive Dual Greedy
algorithm, but it is incomparable. Bounds for other state-dependent submodular cover problems are
not useful in bounding the StSuC problem (e.g. [9]).

By tightening the analysis and using a different technical result of Wolsey, we prove two variants of
the bound of Deshpande et al., removing the assumption that the utility function is integer valued:
k(ln R

η1
+ 1) and (ln R

ηE
+ 1). Here η1 is the smallest non-zero increase in utility attainable from a

single item and ηE is the smallest non-zero expected increase in utility attainable from a single item.
These bounds are similar to the (ln Q

η + 1) bound claimed by Golovin and Krause.

One of the key lemmas of Deshpande et al. lacked a convincing proof. The proof said the lemma
“follows directly by linearity of expectation” from a previous result, but linearity of expectation is not
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sufficient. We need this lemma for our improved bound and provide a complete proof in the extended
version of this paper.

There are previous results, for other problems, that relied on the claimed bound of Golovin and
Krause for the StSuC problem. Examples include many of the results on the Stochastic Boolean
Function Evaluation (SBFE) problem (e.g. [5, 1]) and the (lnn + 1) approximation bound on the
Stochastic Set Coverage problem [7]. These results still hold, up to constant factors, by substituting
the k(ln R

η1
+ 1) bound here (or the bound of Deshpande et al.) for the claimed (ln Q

η + 1) bound.

In fact, we note that ηE ≥ η1 when the following property holds: whenever an item j yields non-zero
utility in one state, it yields non-zero utility in its other states. This property holds in Stochastic
Boolean Function evaluation, because whenever an input variable xi of Boolean function f is relevant
to that function, discovering that the variable is either 0 or 1 must contribute non-zero utility (by
submodularity). It also holds in the pipelined filter ordering problem considered in Liu et al. [10],
which is a special case of Stochastic Set Coverage. Therefore, for those problems, the bound of
( lnR
η1

+ 1) follows from the ( lnR
ηE

+ 1) bound. However, there are problems for which the quantity
ηE can be less than η1: in the general Stochastic Set Coverage problem, it is possible for an item to
contribute zero utility in one state and non-zero utility in another. For example, a sensor may cover
something or nothing, depending on whether its state is working or broken.

The bounds shown in this paper do not extend beyond the StSuC problem to the more general class
of adaptive submodular cover problems. The proof of these bounds requires that item states be
independent, and that the utility function be “pointwise” submodular. As a result, the bounds do not
apply to previous work where Adaptive Greedy was used to solve Equivalence Class Determination,
Decision Region Identification, or Scenario (sample-based) Submodular Cover (e.g., [2, 3, 8]). We
note that there are now other algorithms for solving these particular problems, achieving better
approximation bounds1 The most recent is the algorithm of Kambadur et al. which uses just one
simple greedy rule, and solves a more general class of problems [9].

It remains an interesting question whether an alternative proof can be found to show that Adaptive
Greedy achieves something like the claimed bound of (ln Q

η + 1) for the general class of adaptive
submodular cover problems considered by Golovin and Krause.

2 Definitions and Background

LetN = {1, . . . , n} be a set of items. LetO be a finite collection of states. For simplicity we assume
O = {0, 1}, but our proof extends easily to state spaces of constant size k. A state vector x ∈ {0, 1}n
is an assignment of states to items, where xi is the state of item i. A partial assignment b ∈ {0, 1, ∗}n
represents partial information about a state assignment, with bi = ∗ if the state of i is unknown. For
b ∈ {0, 1, ∗}n, i ∈ N , and ` ∈ {0, 1}, bi←` is the assignment produced from b by setting bi to `. For
a, b ∈ {0, 1, ∗}n, we say a is an extension of b, written a � b, if ai = bi for all i with bi 6= ∗. We use
? to denote the assignment (∗, . . . , ∗).

Following Deshpande et al., we define a (state dependent) utility function to be a function g :
{0, 1, ∗}n → R≥0. For b ∈ {0, 1, ∗}n, g(b) is the “utility” of the information in b; in other words,
it is the utility of the items in {j|bj 6= ∗} when they are in the states indicated by b. For fixed g,
we define the function G : 2N × {0, 1, ∗}n → R≥0, where G(S, x) = g(b) for the b ∈ {0, 1, ∗}n
satisfying bj = xj for j ∈ S, and b = ∗ otherwise.

Let pi be the probability that item i is in state 1 and qi = (1− pi) be the probability it is in state 0.
Let Dp denote the product distribution defined by the pi. Let P (b) be the joint probability of the
known states in b, so P (b) = (

∏
i:bi=1 pi)(

∏
i:bi=0 qi).

For S ⊆ N , b ∈ {0, 1, ∗}n, and j ∈ N such that bj 6= ∗, let GS,b(j) = G(S ∪ {j}, b) − G(S, b).
For ` ∈ {0, 1} and j such that bj = ∗, let GS,b(j, `) = G(S ∪ {j}, bj←`)−G(S, b). Similarly, for
b ∈ {0, 1, ∗}n and j such that bj = ∗, let gb(j, `) = g(bj←`)− g(b).

1The paper of Grammel et al. had 2 algorithms for solving Scenario Submodular Cover. The analysis of
the second algorithm relied on the problematic result of Golovin and Krause, and is no longer valid. The first
algorithm was independent of that work and its bound still holds.
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Function g is monotone if for all a, b ∈ {0, 1, ∗} with a � b, we have g(a) ≥ g(b). Function g is
submodular if for all a, b ∈ {0, 1, ∗}n where a � b, j ∈ N such that aj = bj = ∗, and ` ∈ {0, 1}, we
have g(ai←`)− g(a) ≤ g(bi←`)− g(b). (Golovin and Krause call this “pointwise” submodularity.)

In the StSuC problem, we need to choose items sequentially from N . Each item has an initially
unknown state, which is a value ` in O = {0, 1}. We continue choosing items from N until the
chosen items achieve a certain goal utility Q, as measured by a given monotone submodular function
g : {0, 1, ∗}n → R≥0. Choosing item j incurs a known cost cj . We cannot see the state of an item j
until after we choose it, and incur its cost. Each item can be chosen only once.

The state of each item j is an independent random variable. We are given the distribution of states
for each item j. The problem is to determine the order in which to choose items, so as to minimize
expected cost. The choice of the next item can depend on the states of the previously chosen items.

Formally, the inputs to the StSuC problem are as follows: itemsetN , the probabilities pj , the costs cj ,
and a monotone submodular utility function g : {0, 1, ∗}n → R≥0 (given by an oracle). For j ∈ N ,
0 < pj < 1 and cj ∈ R+, g has the following property: there exists a value Q ∈ R≥0 such that for
all full assignments x ∈ {0, 1}n, g(x) = Q. This ensures that utility value Q can always be attained.
We call Q the goal value of g. For x ∈ {0, 1}n, we say that S ⊆ N is a cover for x if G(S, x) = Q.

We assume without loss of generality that for each j ∈ N , there exists ` ∈ {0, 1} such that
g?(j, `) > 0. Otherwise, by submodularity, choosing j can never increase utility.

A (feasible) solution to the StSuC problem is an adaptive strategy for choosing a sequence of items,
until they have utility Q, as measured by g. The strategy corresponds to a decision tree τ , although we
do not require the tree to be output explicitly (it may have exponential size). Each internal node of τ is
labeled with an item j, and has a child for each of the possible states of j. Each x ∈ {0, 1}n results in
following a particular root-leaf path in the tree τ . We call the items on that path the cover constructed
by τ on x. The expected cost incurred by τ is

∑
x∈{0,1}n P (x) cost(τ, x), where cost(τ, x) is the

sum of the costs of the items in the cover constructed by τ on x. The strategy corresponding to τ is
an optimal solution if it incurs the minimum possible expected cost.

The Adaptive Greedy algorithm of Golovin and Krause solves the StSuC problem using the greedy
rule that chooses the item with the smallest cost per expected unit of utility to be gained. We give
pseudocode in Figure 1, where we use xj to denote the random state of item j.

b← (∗, ∗ . . . , ∗)
F ← ∅ //F is set of items j chosen so far
while g(b) < Q do

for j 6∈ F do
∆(j)←

∑
`∈{0,1}(Prob[xj = `]) gb(j, `) // expected increase in utility if j is chosen next

end for
j∗ ← arg min

j 6∈F

cj
∆(j)

`← the state of j∗ // observe state of j∗
F ← F ∪ {j∗}
bj∗ ← ` // update b to include state of j∗

end while
return b

Algorithm 1: Adaptive Greedy

We use R to denote maxj∈N ,`∈{0,1} g?(j, `). Parameter η1 equals the minimum value of gb(j, `),
for any b ∈ {0, 1, ∗}n where bj = ∗, and ` ∈ {0, 1}. Parameter ηE is the minimum value of
pjgb(j, `) + qjgb(j, `), for any b ∈ {0, 1, ∗}n with bj = ∗.

3 Proof of the (ln R
ηE

+ 1) bound

The starting point of the analysis is the definition of a special LP whose optimal value lower bounds
the optimal expected cost for the StSuC problem. The LP is based on the Neighbor Property. This
LP and its dual are used only in the analysis of Adaptive Greedy. They do not play any role in the
Adaptive Greedy algorithm itself.
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Let W ⊆ {0, 1, ∗}n be the set of partial assignments that have exactly one ∗. For w ∈W , let J(w)
denote the j such that wj = ∗. For ` ∈ {0, 1}, let w(`) = wJ(w)←`. For j ∈ N and a ∈ {0, 1}n, let
aj = aj←∗. Given w ∈W , consider its two extensions w(0) and w(1). Let τ be a strategy (decision
tree) solving the StSuC instance. Consider the paths taken in τ on w(0) and w(1). Either they are
identical, meaning no node on them was labeled with J(w), or they diverge at a node labeled with
J(w). This proves the Neighbor Property, which states that for each w ∈W , the covers constructed
by τ for w(0) and w(1) either both contain J(w), or neither does.

We present the LP in Figure 1. It is related to an IP used by Wolsey to obtain an approximation bound
for deterministic Submodular Cover [12]. It has n2n−1 variables zw, one for each w ∈W .

Intuitively, a 0,1 assignment Z to the variables zw associates a subset F (a) with each a ∈ {0, 1}n as
follows: F (a) = {j ∈ N | for w = aj , zw = 1}. If Z satisfies the LP constraints, then for each a,
F (a) is a cover for a (this follows directly from Wolsey’s analysis). Further, the value of the objective
function on Z equals the expected cost of cover F (a) for a ∼ Dp.

If we further constrain the variables of the LP so that each zw must be in {0, 1}, the resulting IP asks
for a cover for each a, such that the covers satisfy the Neighbor Property, and the expected cost of the
cover on a random a ∼ Dp is minimized. These observations imply the following lemma.

Lemma 1. [4] The optimal value of the LP in Figure 1 lower bounds the expected cost of the optimal
strategy solving the associated StSuC instance.

Take each constraint of the LP that is associated with a pair S, a, and multiply both sides of that
constraint by P (a). This does not change the optimal value of the LP. Taking the dual of the resulting
LP, we get the Dual LP of Figure 2. By strong duality, its optimal value is equal to the optimal value
of the primal, and thus also lower bounds the expected cost of the optimal strategy.

Minimize
∑
w∈W cJ(w)P (w) zw

s.t. ∑
j∈N GS,a(j) zaj ≥ Q−G(S, a) ∀a ∈ {0, 1}n, S ⊆ N

zw ≥ 0 ∀w ∈W
Figure 1: Primal LP

Maximize
∑
a∈{0,1}n

∑
S⊆N P (a) (Q−G(S, a)) yS,a

s.t. ∑
S⊆N

∑
`∈{0,1}(Prob[xj = `]) GS,w(`)(j) yS,w(`) ≤ cj ∀w, j s.t. w ∈W , j = J(w)

yS,a ≥ 0 ∀S ⊆ N, a ∈ {0, 1}n

Figure 2: Dual LP

The basic idea of the analysis is to describe an assignment Y to the dual variables yS,a that corresponds
to information about the running of Adaptive Greedy on the different possible state vectors a. For
any fixed a, the variables yS,a are associated with the results of running Adaptive Greedy on state
vector a (i.e., when each item j is in state aj). Our analysis diverges from that of Deshpande et al. in
the proofs of two key lemmas, Lemma 2 and Lemma 4, below.

In Lemma 2, we show that the value of the objective function of Dual LP, on assignment Y , equals
the expected cost incurred by Adaptive Greedy. This is the lemma presented by Deshpande et al.
without adequate proof. In Lemma 4, we show that Y exceeds the right hand side of the constraints
of Dual LP by a factor of at most (lnR/ηE + 1).

As in Deshpande et al., we combine the above lemmas to complete the analysis, Let OPTDT be
the expected cost of the optimal strategy, and OPTDLP be the optimal value of Dual LP. Let
AGCOST be the expected cost of Adaptive Greedy and let q(y) denote the objective function of
Dual LP. By Lemma 1, OPTDLP ≤ OPTDT. By Lemma 4, if we divide Y by (lnR/ηE + 1),
the resulting assignment is a feasible solution to Dual LP. Call that assignment Y ′. Since Y ′ is
a feasible solution of Dual LP, q(Y ′) ≤ OPTDLP ≤ OPTDT. Since q() is a linear function,
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q(Y ) ≤ (lnR/ηE + 1)OPTDT. Finally, by Lemma 2, q(Y ) is the expected cost of Adaptive Greedy,
which is therefore at most (lnR/ηE + 1)OPTDT.

3.1 The Two Lemmas

It remains to describe assignment Y and to prove the two key lemmas. Consider execution of
Adaptive Greedy on a state vector x. Number the iterations of the while loop starting from 1. Let T x
be the total number of iterations. Let btx, F tx, and ∆t

x(j) be the values of b, F , and ∆(j) at the end
of iteration t. So |F tx| = t, and btx represents the states of items in F tx. Set θtx = cj/∆

t
x(j) where j

is the value of j∗ chosen in iteration t. Thus θtx is the rate in iteration t (cost per expected unit of
utility). Let jtx be the item chosen in iteration t.

Define Y be the assignment to the variables in the dual LP such that for all x ∈ {0, 1}n, yF 0,x = θ1
x,

yF t,x = (θt+1
x − θtx) for t ∈ {1 . . . T x − 1}, and yS,x = 0 for all other S.

Let qx(Y ) =
∑
S⊂N (Q−G(S, x))yS,x.

In the proof of Deshpande et al., Lemma 2 was claimed to follow directly from a result of Wolsey by
linearity of expectation [4]. This would be the case if state vector x was given at the start of Adaptive
Greedy, and item j chosen in loop iteration t was the minimizer of the quantity cj/GF,x(j), whose
denominator is the guaranteed increase in utility from choosing j with known x.

However, Adaptive Greedy chooses the item j that minimizes cj/∆(j), whose denominator is the
expected increase in utility from choosing j. Linearity of expectation is not sufficient here. We
modify Wolsey’s analysis by “averaging” the expected value ∆(j) over the two different possible
states of j, to obtain a full and correct proof.

Lemma 2. The expected cost of the cover constructed by Adaptive Greedy is equal to q(Y ).

Proof. For each fixed x ∈ {0, 1}n, we have the following (omitting the subscripts and superscript x
on θ, F , q, and T for readability):

qx(Y )
=

∑
S⊂N (Q−G(S, x))yS,x by definition of q

=
∑T
t=1(Q−G(F t−1, x))yF t−1,x since yS,x = 0 for S 6∈ {F 0, . . . , FT−1}

= (Q−G(F 0, x))θ1 +
∑T
t=2(Q−G(F t−1, x))(θt − θt−1) by definition of Y

= (Q−G(FT−1, x))θT +
∑T−1
t=1 (G(F t, x)−G(F t−1, x))θt grouping by multiples of θt

=
∑T
t=1(G(F t, x)−G(F t−1, x))θt because Q = G(FT )

Therefore (restoring subscripts and superscript x):

E[qx(Y )] =
∑

x∈{0,1}n

Tx∑
t=1

P (x)[G(F tx, x)−G(F t−1
x , x)]θtx (1)

Consider the decision tree τ corresponding to Adaptive Greedy. Running Adaptive Greedy on input
x corresponds to following a path in τ from the root to a leaf. For each internal node v of τ , let j(v)
denote the item tested in that node. Let X = {(x, t) | x ∈ {0, 1}∗, 1 ≤ t ≤ T x}. Let Xv denote the
set of (x, t) ∈ X such that v is node number t on the root-leaf path that is followed in τ on state
vector x (with the root as node number 1 on that path). Thus for x ∈ {0, 1}n and 1 ≤ t ≤ T x,
the pair (x, t) belongs to exactly one set Xv, and the Xv form a partition of X . Clearly each pair
(x, t) ∈ Xv has the same value for t, which is the number of nodes on the path from the root of τ to
node v.

Let v be a node in τ , and let i = j(v) be the item labeling v. We define pv = pi and qv = qi. We
define Xv

1 = {(x, t) ∈ Xv|xi = 1}, and Xv
0 = {(x, t) ∈ Xv|xi = 0}. Each (x, t) ∈ Xv

1 has
a corresponding “neighbor” (x′, t) ∈ Xv

0 , where x differs from x′ only in position i. Therefore,
Xv = Xv

1 ∪ Xv
0 and there is a bijection between Xv

1 and Xv
0 mapping each (x, t) ∈ Xv

1 to
(x′, t) ∈ Xv

0 .
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Let Sv denote the set of items labeling the nodes on the path from the root down to node v, not
including the item labeling node v. Let bv denote the partial assignment indicating the outcomes of
the tests in Sv , corresponding to the path down to (but not including) node v.

For (x, t) ∈ Xv , F t−1
x = Sv and F tx = Sv ∪ {j(v)}. Also,

G(F tx, x)−G(F t−1
x , x) = G(Sv ∪ {j(v)}, x)−G(Sv, x) (2)

For ` ∈ {0, 1}, let gv(`) be the increase in utility obtained at node v, if the element in that node is in
state `. That is, gv(`) = gbv (j(v), `).

We define ∆(v) =
∑
`∈{0,1}(Prob[xi = `]) gv(`). Thus ∆(v) is the expected increase in utility at

node v. We have
∆(v) = pvgv(1) + qvgv(0) (3)

Clearly, P (bv) =
∑

(x,t)∈Xv P (x) and pvP (bv) =
∑

(x,t)∈Xv
1
P (x). Recall that for x ∈ {0, 1}n

and i ∈ N , xi denotes the partial assignment that is produced from x by setting bit i to ∗. Since for
(x, t) ∈ Xv

1 , P (xj(v)) = 1
pv
P (x), it follows that

∑
(x,t)∈Xv

1
P (x(j)) = P (bv) and hence∑

(x,t)∈Xv
1

P (xj(v)) =
∑

(x,t)∈Xv

P (x) (4)

Let θv = cj(v)/∆(v). Then for each (x, t) ∈ Xv , θtx = θv .

Thus,
E[qx(Y x)]

=
∑
x∈{0,1}n

∑Tx

t=1 P (x)[G(F tx, x)−G(F t−1
x , x)]θtx by (1)

=
∑
v

∑
(x,t)∈Xv P (x)[G(Sv ∪ {j(v)}, x)−G(Sv, x)]θv by (2) since the Xv partition the (x, t)

=
∑
v θ

v
(∑

(x,t)∈Xv P (x)[G(Sv ∪ {j(v)}, x)−G(Sv, x)]
)

moving θv forward

=
∑
v θ

v
(∑

(x,t)∈Xv P (x)[gv(xj(v))]
)

by definition of gv(`)

=
∑
v θ

v
(∑

(x,t)∈Xv
1
P (x)[gv(1)] +

∑
(x,t)∈Xv

0
P (x)[gv(0)]

)
separating Xv into Xv

0 and Xv
1

=
∑
v θ

v
(∑

(x,t)∈Xv
1
P (xj(v))pv[gv(1)] +

∑
(x,t)∈Xv

0
P (xj(v))qv[gv(0)]

)
since for i ∈ N , P (x) = P (xi)pi if x ∈ Xv

1 and P (x) = P (xi)qi if x ∈ Xv
0

=
∑
v θ

v
(∑

(x,t)∈Xv
1
P (xj(v))[pvgv(1) + qvgv(0)]

)
pairing (x, t) ∈ Xv

1 with (x′, t) ∈ Xv
0

=
∑
v θ

v
(∑

(x,t)∈Xv
1
P (xj(v))∆(v)

)
by (3)

=
∑
v cj(v)

(∑
(x,t)∈Xv

1
P (xj(v))

)
by definition of θ(v)

=
∑
v

∑
(x,t)∈Xv cj(v)P (x) by (4)

=
∑
x∈{0,1}n

∑Tx

t=1 cjtxP (x) since the Xv partition the (x, t)

The final expression is equal to the expected cost of the cover constructed by Adaptive Greedy.

For w ∈W , let h′w(Y ) denote the function of the variables yS,a, computed in the left hand side of
the constraint for w, in Dual LP. We will bound h′w(Y ).

The analysis of Deshpande et al. relied on a bound given in a technical lemma of Wolsey, as quoted
by Fujito [6]. We use a different bound of Wolsey, given in that same technical lemma [12].
Lemma 3. [12] Given two sequences of real numbers, 0 < α(1) ≤ α(2) ≤ . . . ≤ α(T ) and
β(1) ≥ β(2) ≥ . . . ≥ β(T ) > 0, the following holds:

α(1)β(1) + (α(2) − α(1))β(2) + . . .+ (α(T ) − α(T−1))β(T ) ≤ ( max
1≤t≤T

α(t)β(t))

[
ln
β(1)

β(T )
+ 1

]
Lemma 4 upper bounds the left hand side of the constraints for the w ∈ W , when evaluated at Y .
Deshpande et al. proved an upper bound of kcjH(R) for integer-valued utility functions, where
H(m) is the mth harmonic number. We prove a bound of cj(lnR/ηE + 1).
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Lemma 4. For every x ∈ {0, 1}n and j ∈ N , h′xj (Y ) ≤ cj(ln R
ηE

+ 1).

Proof. Fix x ∈ {0, 1}n and j ∈ N . Let x′ be obtained from x by complementing xj . Assume
xj = 1 (and x′j = 0). Let w = xj , that is, w = xj←∗. Thus w(1) = x and w(0) = x′. Consider Y .

Let τ be the decision tree corresponding to Adaptive Greedy. Consider the root-leaf paths of τ taken
on x and x′. If j does not appear on these paths, then the paths are the same. Otherwise, they diverge
on a node containing j. We consider these two cases separately.

In the first case, the paths are identical and yS,x = yS,x′ for all S ⊂ N , Further, T x = T x
′
, F tx = F tx′

for all t with 0 ≤ t ≤ T x, and unless S = F tx for some t with 0 ≤ t ≤ T x − 1, yS,x = yS,x′ = 0.

Therefore, we have

h′w(Y ) =
∑
S⊆N [pj GS,w(1)(j) yS,w(1) + qj GS,w(0)(j) yS,w(0) ]

=
∑Tx−1
t=0 yF t

x,x

[
pj GF t

x,w
(j, 1) + qj GF t

x,w
(j, 0)

]
=

∑Tx−1
t=0 yF t

x,x
∆t+1
x (j) by the definition of ∆t

x

In the second case, the paths diverge at a node labeled j. Let v be the node. Numbering the nodes
on the path from the root to v, starting at 1, let t∗ be the number of v. Then for 0 ≤ t ≤ t∗ − 1,
F tx = F tx′ , and for 1 ≤ t ≤ t∗, and θtx = θtx′ . For t∗ ≤ t ≤ T x, j ∈ F t∗x , so GF t

x,x
(j) = 0 and

hence GF t
x,x

(j) yS,x = 0. If S 6∈ {F 0
x , . . . , F

Tx−1
x }, then yS,x = 0. Thus if GS,x(j) yS,x 6= 0, then

S = F tx for some t where 0 ≤ t ≤ t∗ − 1. Similarly, if GS,x′(j) yS,x′ 6= 0, S = F t
∗

x for some t
where 1 ≤ t ≤ t∗ − 1. Therefore, analogous to the other case, we have

h′w(Y ) =

t∗−1∑
t=0

yF t
x,x

∆t+1
x (j)

Recall that ∆t
x(j) is the expected increase in utility during iteration t, on input x, if j were chosen in

that iteration. By the assumption in the definition of the StSuC problem, there exists ` ∈ {0, 1} such
that g?(j, `) > 0, for ? = (∗, . . . , ∗). Therefore, ∆1

x(j) > 0.

In the first case above, let T̂ be the the maximum value of t such that 1 ≤ t ≤ T x and ∆t
x(j) > 0. In

the second, let T̂ be the maximum value of t such that 1 ≤ t ≤ t∗ and ∆t
x(j) > 0. In both cases, the

first T̂ nodes of the paths for x and x′ in τ are identical, so ∆t
x(j) = ∆t

x′(j) for 1 ≤ t ≤ T̂ .

By the submodularity of g and the greedy rule used by Adaptive Greedy, the rate paid during
each iteration of Adaptive Greedy, on input x, cannot decrease in subsequent iterations. Therefore,
0 < θ1

x ≤ . . . ≤ θt̂x. By the submodularity of g, ∆1
x(j) ≥ . . . ≥ ∆T̂

x (j) > 0.

Thus Lemma 3 applies to the non-decreasing subsequence θ1
x, θ

2
x, . . . , θ

T̂
x and the non-increasing

subsequence ∆1
x(j),∆2

x(j), . . . ,∆T̂
x (j). Suppressing the subscript x on F t, θ , and ∆ for readability,

and using our assumption that w = xj , we have

h′w(Y ) =
∑T̂
t=0 yF t,x∆t+1(j)

= θ1∆1(j) + ΣT̂t=2(θt − θt−1)∆t(j)

≤ (max1≤t≤T̂ θ
t∆t(j))

[
ln ∆1(j)

∆T̂ (j)
+ 1
]

by Lemma 3

≤ cj [ln
∆1(j)

∆T̂ (j)
+ 1] since θtx ≤ cj/∆t

x(j) by the Adaptive Greedy choice

≤ cj [ln(R/∆T̂
x ) + 1] by the definition of R

≤ cj [ln(R/ηE) + 1] by the definition of ηE

In fact, by the above analysis, the lemma (and the theorem below) still holds if R is redefined to be
the largest expected increase in utility attainable from a single item.

By the lemmas above, and the previous analysis, we have the following theorem.

7



Theorem 1. For the Stochastic Submodular Cover problem, the expected cost incurred by Adaptive
Greedy is at most (ln R

ηE
+ 1) times the expected cost incurred by the optimal strategy.

4 Generalizing the Deshpande et al. bound to real-valued utility functions

We can also prove an approximation bound of k(lnR/η1 + 1) for Adaptive Greedy, where k is the
size of the state space. This generalizes the bound of Deshpande et al. to utility functions that are
not necessarily integer-valued. The proof is essentially the same as the proof in the previous section,
except that it relies on a different upper bound on h′xj (y). To obtain this upper bound, we use the
same argument as that in Deshpande et al., but apply a different bound of Wolsey (the one given in
Lemma 3, above). We state the upper bound here, and give a full proof for completeness.

Lemma 5. For every x ∈ {0, 1}n and j ∈ {1, . . . , N}, h′xj (Y ) ≤ kcj(ln
R
η1

+ 1), where k is the
size of the state space.

Proof. As above, we give the proof for the state space {0, 1} (i.e., where k = 2) but the proof easily
generalizes to constant k > 2.

Fix x ∈ {0, 1}n and j ∈ N . Let x′ be the assignment obtained from x by complementing xj . Without
loss of generality, assume that xj = 1 (and x′j = 0).

Let qj = 1− pj . Let Dt
x(j) denote the amount of additional utility that would have been attained in

iteration t of Adaptive Greedy, on input x, if item j had been chosen (rather than jxt ). Let Dt
x′(j) be

the analogous value for x′.

Therefore, Dt
x(j) = GF t

x,x
(j), Dt

x′(j) = GF t
x′ ,x

′(j), and we have

∆t
x(j) = pj(D

t
x(j)) + qj(D

t
x′(j)). (5)

Let κ be the value of t that maximizes (θtx)(Dt
x(j)). Similarly, let κ′ be the value of t that maximizes

(θtx′)(D
t
x′(j)).

We have θ1
x ≤ θ2

x . . . ≤ θT
x

x . By the submodularity of g, D1
x(j) ≥ D2

x(j) ≥ . . . ≥ DTx

x (j).

Also, by the definitions of η1 and R, DTx

x (j) ≥ η1 and D1
x(j) = g?(j, 1) ≤ R. Thus by Lemma 3,

θ1
x(D1

x(j)) + ΣT
x

t=2(θix − θt−1
x )(Dt

x(j)) ≤ θκx(Dκ
x(j))(ln

R

η1
+ 1) (6)

By an analogous argument:

θ1
x(D1

0(j)) + ΣT
x′

t=2(θtx′ − θt−1
x′ )(Dt

0(j)) ≤ θκ
′

x′ (D
κ
x′(j))(ln

R

η1
+ 1) (7)

Then:
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h′xj (Y )

=
∑
S⊆N [pjGS,x(j)yS,x + qjGS,x′(j)yS,x′ ]

=
pj [θ

1
x(D1

x(j)) + ΣT
x

t=2(θtx − θi−1
x )(Dt

x(j))]+

qj [θ
1
x′(D

1
x′(j)) + ΣT

x′

t=2(θtx′ − θ
t−1
x′ )(Dt

x′(j))]

≤ pjθ
κ
x(Dκ

x′(j))(ln
R
η1

+ 1) + qjθ
κ′

x′ (D
κ′

x′ (j))(ln
R
η1

+ 1) by (6) and (7)

≤ (ln R
η1

+ 1)[pjθ
κ
x(Dκ

x(j)) + qjθ
κ′

x′ (D
κ′

x′ (j))]

≤
(ln R

η1
+ 1)[pjθ

κ
x(Dκ

x(j)) + qjθ
κ
x(Dκ

x(j))+

pjθ
κ′

x′ (D
κ′

x′ (j)) + qjθ
κ′

x′ (D
κ′

x′ (j))]
since this just adds extra non-negative terms

= (ln R
η1

+ 1)(θκx∆κ
x(j) + θκ

′

x′∆
κ′

x′(j)) factoring out the θs and using (5)

≤ (ln R
η1

+ 1)(cj + cj) due to the greedy choices of Algorithm 1

≤ 2cj(ln
R
η1

+ 1) by submodularity and the definition of R

The 2 in the bound is replaced by k when there are k states.

The bound on Adaptive Greedy then follows immediately from the arguments in the previous section.
Theorem 2. For the Stochastic Submodular Cover problem, the expected cost incurred by Adaptive
Greedy is at most k(ln R

η1
+ 1) times the expected cost incurred by the optimal strategy, where k is

the size of the state set.
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