Revisiting Novice Programmer Errors

Danny Kopec, Gavriel Yarmish
Brooklyn College, Department of Computer and Information Science
2900 Bedford Ave, Brooklyn, New York, 11210
kopec@sci.brooklyn.cuny.edu yarmish@sci.brooklyn.cuny.edu
Abstract. To date there has been considerable investigation into the study of novice programmer errors. The research has analyzed both syntactic and semantic errors. In this paper we talk about an expansion of the types of errors focused on in previous research. In particular problems which require the use of more difficult program constructs such as nested loops, arrays, recursion and functions have been somewhat neglected. We hope this paper will spur others to continue and further analyze the types of misunderstandings advanced novice programmers make.

Keywords: Programmer errors; Semantic Analysis; plans and goals; Advanced Novice Programmers; Intermediate Programmers
1. Introduction
James Spohrer, Elliot Soloway and Edgar Pope [4] are considered pioneers in the study of novice programmer errors since the 1980’s. They developed a scheme called GAP (Goals and Plans) Trees, which they used to analyze the nature of errors that novice programmers make. In this paper we continue the study of programmer errors. We expand the focus to the next level, the “advanced novice student programmer.”

We define an “advanced novice level student programmer” as someone who no longer makes the basic novice errors such as missing guards or input/output statements. Advanced novice level student programmers struggle with more advanced constructs such as nested loops, arrays, recursion and functions.

Section 2 gives some background and previous research, Section 3 defines some new terminology and definitions. It also introduces a revised taxonomy that we use in our study. Section 4 details the main results of our study. Finally, Section 5 is a conclusion and offers areas of future study.

2. Previous Research

There has been a substantial amount of research on the programmer errors. The research can be divided into the analysis of student programs, surveys of programmers and a study of programming environments and tools. This research has spanned the age of computers. We focus on the first of these.

A number of survey papers on the topic of programmer errors have been conducted. Soloway and Spohrer [3] is a collection of research papers on novice programming errors. More recently there have been additional survey papers that provide an excellent resource. Amongst them are Kirsti [1] and Robins et. al.[2].

3. Review of GAP trees
A programming plan is an approach or strategy for implementing a goal. A plan may lead to a number of sub-goals. A GAP (Goal and Plan) tree is a pictorial way of showing different possible algorithms leading to the solution of a particular problem. One can look at a complete GAP tree and visualize a subtree that has one particular set of plans that can be used to achieve the goals of the problem. The idea of programming plans and goals is shown in Figure 1. In this figure the problem solution has three main goals. Each goal has two possible plans that represent two different ways of achieving the same goal. Each of these plans, in turn, has three sub-goals. Two of those sub-goals have a choice of plans. This GAP tree pictorially represents 10 distinct algorithms for solving a problem.

[image: image1.png]PROBLEM
SoLuToN

Goal

Plan

Goal

Plan

Plan

Goal

Plan

Plan

Goal
Gosl
Goal

Goal
Gosl
Goal

Goal
Gosl
Goal

Goal

Gosl
Goal

Goal

— Plen

— i

——Plen

Plan

Gosl
Goal

Goal
Gosl
Goal

—pen

Figure 1

In order to do the analysis seven basic components that may occur within a simple plan were identified [4]. These components are the basic structures of most programming languages and are the components novice programmers are required to master. They include Input, Output, Initialization, Assignment, Conditionals, simple syntax errors and finally a catch-all component, when the student simply doesn’t understand how to solve a problem. Each of these components can be missing, malformed, spurious or misplaced within a program.

4. Advanced Novice Programmers
We begin by identifying a few of the programming concepts that advanced novices have trouble with, which include:
· Recursion

· Nested loops

· Function parameters and

· Two-dimensional arrays

Following Soloway’s example we define the following taxonomy to categorize errors in more advanced topics:

1. Program Concepts - this is variable and depends on the problem

2. Novice Errors

3. Plan

4. Problem comprehension

The first element, ‘Program concepts,’ will vary based on the problem being analyzed.

The second element, novice errors, includes any of the basic novice-type errors that are still being made by an advanced novice level student. The sixth category, ‘plan’ is similar to the one developed by Soloway. This keeps track of students who did not understand how to go about solving the problem. The last component, ‘problem comprehension’, is a new category to keep track of students who seem to misunderstand the problem itself. This can either be due to a question formulated in a confusing way or due to student language issues. For example, at Brooklyn College we have many international students for whom English is not a native language.
Soloway listed four ways that a novice student might err. Any necessary component might be missing, malformed, spurious or misplaced within a program. These four ways can also be applied to advanced novice concepts.
We hope that this research will help broaden the understanding of programmer errors to include students that are beyond novice and thus be beneficial to educators and researchers alike.

5. Data Collection and Analysis

Below, we list eight problems that we used to semantically analyze programming errors. For each of the problem sets we provide:

a. the problem

b. a table summarizing student errors and finally

c. a discussion and interpretation of results.

The following two problems are on questions that analyzed nested loops.
Problem 1 tests for a 2-D array declaration, loops with simple function calls.

Problem 1:
a) Declare a two dimensional array to store 5 weeks (7 days in each week) of high temperature readings.

b) Write two functions. The first should be passed the array and a week number (int) and return the average high temperature for that week. The second function takes the same parameters but returns the average high temperature for that day number.

c) Use both functions and write the code needed to print the averages by week AND then by Day.

	Table 1:
	
	
	

	
	Novice errors- Computation
	Nested Loop
	Novice errors-Iterations

	Malformed
	2
	
	

	Misplaced
	
	
	

	Missing
	2
	
	2

	Spurious
	
	4
	

Total Students

12
Did not Attempt

 2
16%
Misunderstood Problem
Correctly Solved

 3
25%
 (Full credit)
Discussion:
Although this problem did not require the use of nested loops it was very instructive because it showed that many students did not understand when to apply nested loops. Students used nested loops simply because there was a 2-D array in the problem.

Students used nesting as if the question asked for the average of the whole month (in which case nesting would be warranted). The students understood the problem because they did not attempt to calculate the monthly average. They incorrectly attempted to use the nested loop to calculate the weekly and daily averages.

Problem 2 requires a nested structure definition, knowledge of a sorting algorithm which includes the use of a nested loop.

Problem 2:
a) Declare an employee structure that contains a name, an address, and a salary.

b) Declare company struct that contains a company name, company address, and a table of 100 employees (using structure from (a)).

c) Write the code needed to sort all the employees in a company by name.

	Table 2:
	
	
	

	
	Novice errors-

Statement/ Condition
	Nested Loop
	Novice errors-

Computation

	Malformed
	2
	1
	

	Misplaced
	
	
	

	Missing
	
	2
	

	Spurious
	
	
	1

Total Students

12

Did not Attempt

 0
0%

Misunderstood Problem

 1
Correctly Solved

 5
41.6%
 (Full credit)

This problem is similar to the last one in demonstrating that students often don’t know when to apply nested loops. In addition three students made novice-level errors and one student misunderstood the problem.

Problem 3 is about file I/O. It required students to read data from a file into a structure. They then had to process the data and write output to another file.

Problem 3:
Write a program that reads a text database (table) from a file into a structure, Each line in the file (record) is put into a structure object. The file has 6 fields per line separated from each other by one or more spaces. The first two fields contain the first and last names. The last four fields contain four test scores. The program calculates the average of each group of 4 tests. It puts 3 fields into an output file: first and last names and the average score. There should be one function that takes a structure reference as input and updates the average. (The average should be taken using this function.)
Use command-line arguments to get the both the input and output file names.
Comment this program for partial credit.

Sample input and output file:

	First Name
	Last Name
	Test #1
	Test #2
	Test #3
	Test #4

	Joe
	Smith
	90
	80
	77
	75

	Jim
	Doe
	44
	78
	77
	80

	…
	…
	…
	…
	…
	…

	First Name
	Last Name
	Average

	Joe
	Smith
	80.50

	Jim
	Doe
	69.75

	…
	…
	…

	Table 3:
	
	
	
	
	

	
	File Open
	File Close
	File Pointer
	File End
	File Read

	Malformed
	3
	1
	4
	5
	

	Misplaced
	
	
	
	
	

	Missing
	1
	3
	4
	11
	1

	Spurious
	
	
	
	
	

Total Students

33

Did not Attempt

 7
4.7%

Misunderstood Problem

 1
Correctly Solved-

 0
0%
 (full credit)

Students seemed to misunderstand the purpose of the End of File marker at the end of the input file. Some of them treated the input file as an object of fixed size similar to a 2-D array when in fact it’s a continuous stream
Problems 4 through 8 test knowledge of recursion and are very similar. We were therefore able to combine the analysis into one table. A total of 70 students, evenly divided, answered these problems

Problem 4:

Write a recursive function that returns the maximum element in an array of integers.
(Extra credit: your recursive function should return the maximum odd number in an array of integers.
If there are no odd numbers in the array, then the function returns -1)

Problem 5:
Write: int Kdigit(int n, int k) that returns k'th digit of a number n (from the right). Example: Kdigit(415,0) returns the right most digit 5 and Kdigit(415,2) returns the 4.

Kdigit(int n, int k)

{

}

Problem 6:
Write the function int sumSquares(int i, int n) that sums up the squares of all the numbers i through and inclusive of n.
EX: sumSquares(2,4)=22+32+42=29

int sumSquares(int i int n)
{

}

Problem 7:
Write the function int add(int x, int y) that returns the sum of x and y. You may not use the + operator at all in this function. You may ONLY use an ‘if’ statement, a recursive call and operator ++ and -- to implement this function.

int add(int x, int y)
{

}

Problem 8:

Trace (show stack at each point) and print the output of the following recursive program:
main() {
trace(1,1); }

trace(int a, int b) {
if(b>=100) return;
trace(a+1,b+20);
printf("%d%d\n",a,b); }

	Table 4 (problems 4-8)

	
	Recursion
	Novice errors

	
	Basic
	Stack (Scope)
	Statement Condition
	Iter- ation
	Comp- utation

	Malformed
	8
	11
	2
	1
	4

	Misplaced
	
	
	
	
	

	Missing
	1
	3
	3
	
	

	Spurious
	
	
	3
	1
	

Misunderstood Problem
 4
Total Students

70
Did not attempt

18
25.7%
Correctly Solved
15
21.4%
The majority of students made errors while ending the recursive function (a statement which tests a condition and must return “false” in order to come out of the recursive loop). Some of the students also made errors in the computation/check condition which led the recursive function to present the wrong output.

6. Conclusion
In this paper we have introduced a new taxonomy for the analysis of advanced novice and non-novice programmer errors. This taxonomy is flexible and is therefore useful not only in our analysis but also for all future work in studying programming errors that are beyond the novice level.

We have also applied and tested this taxonomy together with the theory of GAP trees to the semantic error analysis of a few advanced novice-level student C programs.

A few simple observations can be made at this point.

When teaching nested loops teachers should focus on student recognition of problems where nested loops should be used. One natural idea is to provide many sample problem situations and to have students identify for each whether or not use of a nested loop would be appropriate.

When dealing with file I/O care should be taken not to overlook the ‘End of File’ marker. Make sure that the students understand that the file is a ‘continuous stream’ as opposed to a set size as is the case for an array whether of one or two dimensions.

We also found out that misunderstanding of the problem due to language is not as major issue as we suspected it might be. We believe this may be due to the universal language of math and computers. Had the questions contained paragraphs of English that required comprehension the results might have been different. The questions used contained code segments and clearly numbered tasks which did not seem to be a source of confusion.

It is noteworthy that problems that required recursion had the highest percentage of students misunderstanding the problem. Their major misunderstanding seemed to be the proper statement for expressing when a boundary condition was reached.

When teaching recursion care should be taken to clearly explain the role of the recursive stack. We found that many students misunderstand the nature of the stack and as a result scope of the local function variables are not either understood. A useful technique is for instructors to trace a recursive problem while simultaneously demonstrating the pushing and popping of the stack.

One additional technique we used to help us in the analysis was to use a number of slightly different problems all addressing the same topic. Problems 4-8 were all problems testing recursion. Problem 8, in distinction to the other problems was a tracing problem and turned out to be very helpful in clarifying where students were having problems. The combination of these techniques allowed us to pinpoint what was discussed as a problem in the previous paragraph.

Our work is only a first step. We hope that our initial work in classifying and testing programs written by advanced novice-level programmers will spur additional research. This would be an invaluable aid to instructors in all programming courses that extend beyond the level of the novice programmer.

Acknowledgements
We would like to acknowledge the following students who have been involved in our study of programmer errors and have both written and shared valuable insights:

Vivek Bhandari, Patrick Cheung, Altin Hoxha, David Minzer and Stan Segelman.
References

1. Kirsti Ala-Mutka, Problem in Learning and Teaching Programming, Literature Study Codewitz www.cs.tut.fi/~codewitz/literature_study.pdf, November 2003.

2. Robins, A., J. Rountree, and N. Rountree. Learning and Teaching Programming: A Review and Discussion, Computer Science Education, Vol. 13 No. 2, pp. 137-172, 2003.

3. Soloway, E. and J. Spohrer, Studying the Novice Programmer, Lawrence Erlbaum Associates, Hillsdale, New Jersey. 504 pages, 1989.

4. Spohrer, J.C, E. Soloway, and E. A. Pope, A Goal/Plan Analysis of Buggy Pascal Programs. Human-Computer Interaction, Vol. 1, No. 2, pp. 163-207, February 1985.

Danny Kopec, Gavriel Yarmish, “Revisiting Novice Programmer Errors” �Submitted to ACM SIGCSE Bulletin

- 2 -

