
Teaching in Shifting Sands: Changes in CS2

Richard Close
United States Coast Guard Academy

New London, CT
rclose@cga.uscg.mil

Danny Kopec

Brooklyn College
Brooklyn, NY

kopec@sci.brooklyn.cuny.edu

Jim Aman
Columbus School for Girls

Columbus, OH
jimaman@acm.org

1. Abstract

At a time when the Curriculum 2001 committee is compiling their recommendations, it is
perhaps useful to look to the past and track the evolution of the CS2 course. As the computer science
curriculum has evolved through the years [4], more has been expected of students in lower-level courses.
This may be seen as a natural evolution; a sign of the maturity of the field. Changes in the curriculum,
particularly the breadth-first approach, have affected the content and delivery of every course. The net
result is that the first course in computer science is less concerned with teaching programming skills in a
single language, a burden now shifted to later courses. The CS2 course has become more important in
its effect on a student’s experience, knowledge, and outlook on the entire computer science major.

One of the most difficult questions for faculty is what precisely should be included in CS2?
Should we play to the audience and teach what a fairly large number of students seem to want (Java,
web-programming, Visual BASIC, etc.)? Or should we continue with the latest ACM/IEEE
recommendations and risk becoming extinct or irrelevant? This paper examines the reactions of three
very different institutions with very different constituencies to these questions.

2. Experience at Three Institutions: The Problem in Different Settings

2.1 The United States Coast Guard Academy

CS2 is a course, which has always been a moving target. CS2 was first introduced at the U. S. Coast
Guard Academy under the title Technical Programming almost 25 years ago. At that time, it had been
noticed that computer science majors really did not become proficient programmers in CS1 so a more
thorough grounding in programming concepts was offered along with a good dose of theory - data
structures and some algorithm analysis. Informally, the course was often known as "Baby Data
Structures." This indicated that much of the material would be repeated - albeit at a more sophisticated
level - in a subsequent course. The breadth of the first or “foundations” course has, we think, been an
important reason why students often enter CS2 with a deficiency in programming knowledge and

 1

experience.

The original language of the CS2 course was FORTRAN, which was replaced by Pascal in the mid-
80's. By the early 1990's C had been selected to replace Pascal. The prevalent feeling was that real
programmers didn't use Pascal and, in any case, a computer science major should know more than one
programming language. C turned out to be a little harder for students than Pascal, so some of the
theoretical material was dropped. The pervasive fascination with object-oriented concepts, which
continued through the 1990's, suggested that it would be an easy transition to C++. Again, the transition
was harder than originally forecast and the theoretical topics further diminished. Lately, Java and Visual
BASIC are gaining favor. The choice of a popular programming language has been credited with
making CS2 more attractive to non-majors, particularly engineers and majors in the information sciences.
However, reports from instructors in such courses indicate that the theoretical computer science content
is almost gone. In many ways, CS2 has become a programming course akin to what CS1 once was. This
possibly relates to the popularity of the supposedly practical rather than theoretical aspects of the
discipline. Many students (and faculty members) recognize that knowing Java and/or Visual BASIC
may make them more employable. Even in the Coast Guard, we are feeling the force of a booming
marketplace on our curricular decisions.

2.2 Wilmington College, Wilmington, Ohio

Unlike the U.S. Coast Guard Academy or Brooklyn College, the student body at Wilmington College
is a heterogeneous mixture of students from metropolitan and agricultural areas. The cultural mix is
evident both socially and educationally. Computer science classes reflect very different preparation and
experience as students from Cincinnati, Dayton, and Columbus work alongside students from small, rural
school districts and more used to helping on the family farm than dashing off to the shopping mall.

The CS2 course at Wilmington College is an intensive study of a high-level programming language.
C++ has been recently introduced after several years with Pascal. Besides the obvious need for
instruction in the specifics of the language, this course carries a strong emphasis on fundamental
algorithms and basic software engineering design techniques. Study of algorithm development is
continued from the strong basis constructed in the CS1 course.

Of particular concern for the design of CS2 is the selection of the most appropriate textbook – which
is no trivial task. Unlike CS1, there are no clear language independent candidates. Most texts are
carefully designed and well written, but they generally lack a particular characteristic, which in our
experience has been difficult to find: cohesion among problem sets. One example of a Pascal-based text
we found which advocates the case study approach is Designing Pascal Solutions: Case Studies with
Data Structures [3]. Local experience over the past decade suggests that students make more effective
conceptual leaps when the programming assignments represent progressive refinements to a few
problems.

The pervasive problem with the quest for effective case studies has been striking a balance between
good (or acceptable) problem sets and implementation-appropriateness. In our case this latter term
means having a book which deals with Turbo Pascal for Windows, rather than just Pascal. The book
also needs to place emphasis on the particular set of issues, techniques, and skills we consider most
appropriate. The search is never perfect, but it continues.

2.3 Brooklyn College, Brooklyn, New York

 2

In the introductory programming course (CS1), students learn the foundations of programming

through sound, structured, top-down techniques. But in CS2 (CIS 15: Advanced Programming
Techniques Using C) issues of how to best proceed with computer science programming instruction
arise.

Bigger, modular problems illustrating various themes fundamental to the design and use of
functional programming are posed. In addition to the Unix operating system, there are critical issues
centered around such topics as multi-file programs, data representation and conversion, program storage
structures, parameter passing, scope and recursion, internal representation of elementary data structures
and abstract data types. Along the way the elementary data structures (stacks, queues, and linked lists) as
well as typical searching and sorting techniques may be covered. The course is completed with the
study of pointers and file structures.

In CS1 and CS2 many instructors will assign diverse programming work of a theoretical nature.
Such assignments may do well to illustrate the difficulties for a particular language to handle certain I/O
constructs or to perform (or implement) operations on certain data structures. For example, in CS2
students may be asked to handle character manipulation or to perform operations on arrays, stacks, or
queues.

3. Lessons Learned

It seems that CS2 instructors should concentrate more on presenting programming problems of a
more practical value and of natural interest to students. This definitely would include problems which
need solutions to be programmed, as opposed to using one of the many applications available today (for
example, spreadsheets, databases, or standard financial and business packages). The assignments should
be selected carefully to illustrate the benefits derived from modular and object-oriented approaches.
Students’ efforts in solving such problems will accomplish many important goals:

1) They will derive personal satisfaction in using what is learned in the classroom for practical
application.

2) They will develop a hands-on insight for the issues involved in problem solving.
3) They will be able to consider the tradeoffs between a variety of possible programming

approaches and intelligently choose from amongst them.
4) They will be confronted with and will have to learn how to deal with language-specific issues

relevant to their programming problems.

Specific examples of assigned programming projects are available directly from the authors. Some
typical problems that have been used successfully are (1) a general purpose currency exchange program;
(2) a functional program which draws figures based on specification of rectangles; (3) a simulation of an
airline reservation program and (4) simulation of a popular, knowledge-based TV quiz show. Note that
these vary widely in difficulty. Some are potentially weekly homework exercises while the simulations
could be semester projects.

While content is of central importance to a course, some mention of new and novel delivery schemes
should be made. Currently, many courses have web sites associated with them. Beyond these static
pages, however, there are some web-based and other tools, which could revolutionize computer science
instruction [2]. For example, a system called "WebToTeach" has been developed for a variety of

 3

computer science courses including CS2. This system offers a web-based interactive programming
environment. It employs automatic program-checking software and is designed to be extremely easy to
use for faculty and students. Another feature is that it encourages sharing of exercises or parts of
exercises among faculty (and students). Instructors are able to specify programming problems and the
acceptable solutions to them. Hints are supplied and solutions can be fully accepted, partially accepted,
or rejected. The system is available to anyone with web access and is being used and tested at a number
of academic institutions. During the Winter-Spring 2000 semester, it was tested for comparison purposes
in two sections of CS2 taught by the same instructor at Brooklyn College. A complete evaluation of this
pilot study has not been completed at this point but preliminary results are encouraging.

Another important problem is to address the retention of students in the computer science major.
CS2 will often be the course where students will decide whether to stay in the major or seek other "more
facile majors." While content and delivery are of utmost importance, it could be that a novel
programming environment could help persuade students to persevere. Although a system like
WebToTeach does not represent a full intelligent tutoring system for teaching computer science, it does
appear to be a step in the right direction. In the future we might envisage a system which would embody
deep knowledge about its subject matter, which would be able to construct a model of the learner, and
which would have tutoring expertise, coupled with multimedia presentation skills. But maybe that's
overkill for CS2.

4. Acknowledgement

The authors wish to acknowledge Dr. Nosan Yanowsky of Brooklyn College for his assistance in
the preparation of this paper.

5. References

[1] Aman, J., Close, D., and Kopec, D. (1999) Panel presentation: "How Should Data Structures and

Algorithms Be Taught?" In Proceedings of the Conference on Innovation and Technology in
Computer Science Education, ITiCSE'99, Krakow, Poland.

[2] Arnow, D. and Barshay, O. (1999) WebToTeach: A Web-based Automated Program Checker.

Frontiers in Education (FIE ’99), San Juan, Puerto Rico (Nov., 1999).

[3] Clancy, W. and Linn, M., (1996) Designing Pascal solutions: Case studies with data structures.

W.H. Freeman and Company, NY.

[4] Tucker, A. (ed.), Barnes, B., Aiken, R., Barker, K., Bruce, K., Cain, J., Conry, S., Engel, G., Epstein,

R., Lidtke, D., Mulder, M., Rogers, J., Spafford, E., and Turner, A. (1991). Computing Curricula
1991, ACM/IEEE-CS Joint Curriculum Task Force, ACM Press and IEEE-CS Press, New York.

 4

	4. Acknowledgement

