
 LISP

Everything in a computer is a string of binary digits, ones and zeros, which everyone calls bits.

From one perspective, sequences of bits can be interpreted as a code for ordinary decimal digits,

but from another perspective, sequences of bits can be interpreted as a code for real world like

objects and sentences like objects.

· In LISP , the fundamental things formed from bits are world like objects called atoms.

· Groups of atoms form sentence like objects called lists. Lists themselves can be grouped

together to form higher-level lists.

· Atoms and lists collectively are called symbolic expressions, or expressions. Working

with symbolic expressions is what symbol manipulation using LISP about.

Basic LISP Primitives.

In LISP, the prompt is an asterisk: *. The words beyond the semicolon are comments inserted for

explanation-a semicolon makes the remainder of the words on a line invisible to LISP.

Suppose for example, that we want some help adding numbers. The proper way of doing is, once

LISP displayed the prompt, is as follows

*(+3.14 2.71)

LISP responds as follows:

5.85

This is a simple example of LISP’s ability to handle arithmetic. When left and right parentheses

 1

surround something, we call the result a list and speak of its elements. In our first example, the list

(+3.14 2.71) has three elements, +, 3.14, and 2.71, separated by spaces. + is standing before the

two things to be added, rather than between them, as in ordinary arithmetic notation . In LISP the

name of the thing to do, the procedure, is always specified first, followed then by the things that the

procedure is to work with, the arguments. FIRST and REST take lists apart. For example

*(first ‘(fast computers are nice))

FAST

*(rest ‘(fast computers are nice))

COMPUTERS ARE NICE

Also, when REST is applied to a list with only one element, it returns the empty list, which we can

denote by either () or NIL.

*(rest ‘(nice))

NIL

To assign values to symbols is to use SETF. This primitive causes the value of its second

argument to be assigned to its first argument. Consider this:

*(setf ab-list ‘(a b))

When we type :

*ab-list

(A B)

 2

 While FIRST and REST take things apart, CONS, APPEND, and LIST. CONS takes expression

and a list and returns a new list whose first element is the expression and whose remaining

elements are those of the old list:

*(cons ‘a’(b c))

This will display : A B C . The template for cons is (cons <new first element> <a list>). APPEND

combines the elements of all lists supplied as arguments. For example:

*(setf ab-list ‘(a b)

 xy-list ‘(x y))

*(append ab-list xy-list)

(A B X Y)

A LIST makes a list out of its arguments. Each argument becomes an element of the new list:

*(setf front ‘a middle ‘b back’c)

*(list front middle back)

(A B C)

NTHCDR trims off n elements, not just one, with the first argument determining the exact number:

*(setf abc-list ‘(a b d))

*(nthcdr 2 abc-list)

(D)

BUTLAST is similar to NTHCDR, but trims off the last n elements, rather than the first.

*(setf abc-list ‘(a b d))

 3

*(butlast abc-list 2)

(A)

LAST returns a list with all but the last element of a list trimmed off:

*(setf abc-list ‘(a b d) ab-cd-list ‘((a b) (d e)))

*(last abc-list)

(D)

The LENGTH primitive counts the number of top-level elements in a list. REVERSE reverses the

order of the top-level elements of a list.

*(setf ab-list ‘(a b))

*(length ab-list)

2

*(reverse ab-list)

(B A)

The ASSOC primitive is especially tailored to work with a particular kind of association-recording

expression called an association list. The first element of each sublist is used as a key for

recovering the entire sublist.

*(setf sarah ‘((height .54) (weight 4.4)))

*(assoc ‘weight sarah)

(WEIGHT 4.4)

 4

LISP also has other very important mathematical functions. Round function rounds the number to

the nearest integer.

*(round (/22 7))

3 :The nearest integer

1/7 : The remainder

MAX and MIN find maxima and minima. EXPT calculates powers; it raises its first argument to

its second. SQRT takes the square root, and finally ABS computes the absolute value.

*(MAX 2 4 3)

4

*(MIN 2 4 3)

2

*(expt 2 3)

8

*(sqrt 9)

3

*(abs -5)

5

Procedure Definition and Binding

DEFUN is LISP’s Procedure-Definition Primitive For example:

 5

*(setf whole-list ‘(breakfast lunch tea dinner))

(defun both-ends

 (whole -list)

 (cons (first whole-list)

 (last whole-list)

LET forms bind parameters to initial value.

*(setf whole-list ‘(breakfast lunch tea dinner))

*(let ((element (first whole-list)) ‘Bind ELEMENT to initial value.

 (trailer (last whole-list)) ‘Bind TRAILER to initial value.

 (cons element trailer)) ‘Combine ELEMENT and TRAILER.

This will display BREAKFAST DINNER.

Predicates and Conditionals

A predicate is a procedure that returns true or false. For example :

*(equal (+2 2) 4)

T

*(equal(+2 3) 3)

NIL

Several predicates determine if their arguments are equal. They range from EQUAL, which is a

general purpose predicate, but computationally expensive, to EQL, EQ and =.

MEMBER Tests for List Membership. The MEMBER predicate tests to see if its first argument is

 6

an element of its second argument. MEMBER returns what is left of the list when the matching

symbol is encountered.

*(setf sentence ‘(tell me more about your mother please))

*(member ‘mother sentence)

(MOTHER PLEASE)

LISP has many predicates that test objects to see whether they belong to a particular data type.

Name

Purpose

atom

Is it an atom?

numberp

Is it a number?

symbolp

Is it a symbol?

listp

Is it a list?

null

Is the argument an empty list?

endp

Is the argument, which must be a list, an empty

list?

zerop

Is it zero?

plusp

Is it positive?

minusp

Is it negative?

 7

evenp Is it even?

oddp

Is it odd?

>

Are they in descending order?

<

Are they in ascending order?

Predicates help IF, WHEN, and UNLESS Choose among Alternatives.

*(if (sumbolp day-or-date) ‘day ‘date)

The result is the symbol DAY if the value of day-or-date is a symbol, and DATE otherwise. A

WHEN can be used instead of an IF whenever the false consequent in an equivalent IF form would

be NIL. An UNLESS can be used instead of an IF whenever the then form in an equivalent IF form

would be NIL. Predicates also help COND choose among alternatives. COND is particularly

useful when there are more than two cases to consider. In the following example, a probability

number between 0 and 1 is converted into one of four symbols:

*(setf p .6)

*(cond ((>p .75) ‘very-likely)

 ((>p .5) ‘likely)

 ((>p .25) ‘unlikely)

 (t ‘very-unlikely))

LIKELY

CASE checks the evaluated key form against the unevaluated keys using EQL. If the key is found,

the corresponding clause is triggered and all of the clause’s corresponding clause is triggered and

 8

all of the clause’s consequents are evaluated.

*(setf thing ‘ball r1)

*(case thing

 ((circle wheel) (*pi r r))

 ((sphere ball) (*4 pi r r))

 (Otherwise 0))

12.56637

Procedure Abstraction and Recursion

Procedure Abstraction Hides Details Behind Abstraction Boundaries. For Example:

*(setf l ‘(breakfast lunch tea dinner))

*(both-ends l)

(BREAKFAST DINNER)

To do its job, both-ends must do three things:

 · BOTH-ENDS must extract the first element.

 · It must extract the last element.

 · It must combine the two extracted elements.

Recursion allows procedures to use themselves. To calculate the nth power of some number, m,it

is sufficient to do the job for the (n-1)th power, because this result, multiplied by m, is the desired

result for the nth power:

(defun higher-level-expt (m n)

 (if (zerop n)

 9

 1 ‘If n=0, return 1.

 (* m ‘Otherwise, use a higher-level abstraction

 (higher-level-expt m(-n 1)))))

Data Abstraction

We can hide the details of how our data is represented by isolating that data behind a set of

constructor procedures that create data, reader procedures that retrieve data, and writer procedures

that change data. For example BOOK-AUTHOR is the reader procedure for retrieving a book’s

author. When we start out, BOOK-AUTHOR is defined as follows

(defun book-author (book) ;Data is in a simple list.

 (second book))

And here is an example of BOOK-AUTHOR in use

(setf book-example1

 ‘((Artificial Intelligence) ;Title

 (Patrick Henry Winston) ;Author

 (Technical AI))) ;Index terms.

*(book-author book-example-1)

(PATRICK HENRY WINSTON)

And this is how Constructor works

(defun make-book (title author classification)

 (list (list ‘title title)

 10

 (list ‘author author)

 (list ‘classification classification)))

The constructor creates a new book, given appropriate arguments.

* (setf book-example-4

 (make-book ‘(Common Lisp)

 ‘(Guy Steele)

 ‘(Technical Lisp)))

(TITLE (COMMON LISP))

(AUTHOR (GUY STEELE))

(CLASSIFICATION (TECHNICAL LISP)))

Loops

The DOTIMES primitive is popular because it provides a way to write simple counting-oriented

iteration procedures.

(defun dotimes-expt (m n)

 (let ((result 1)) ;Initialize result parameter.

 (dotimes (count n result) ;Evaluate body n times

 (setf result (*m result))))) ;Multiply by m again

The DOLIST primitive is similar to DOTIMES except that the elements of a list are assigned, one

after another, to the parameter. This is the general template.

(dolist (<element parameter> <list form> <result form>)

 <body>)

 11

The DO primitive can be used for iteration when DOLIST and DOTIMES are just not flexible

enough. Otherwise, we should avoid DO because it is harder to use.

(defun do-expt (m n)

 (do ((result 1) ;Bind parameters

 (exponent n)) ;Bind parameters

 ((zerop exponent) result) ;Test and return

 (setf result (* m result)) ;Body

 (setf exponent (- exponent 1)))) ;Body

Printing and Reading

For example

*(setf temperature 100)

*(print temperature)

100

When the primitive READ is encountered, LISP stops and waits for us to type an expression.

FORMAT formats the line while it is printing. For example

*(format t “~%Hello!”)

Hello! ;FORMAT prints Hello!

NIL

READ does not Evaluate Expressions, but EVAL evaluates twice

String manipulation is done by special primitives:

 12

length gives length of the string

reverse

reverses the string

elt

If the first argument in an elt form is an list, then elt returns the element

specified by the second argument, where 0 specifies the first element.

string=

To determine if two strings are the same(case sensitive)

string-equal

To determine if two strings are the same (is not case sensitive)

char=

To determine if two characters are the same (case sensitive)

char=equal

To determine if two characters are the same (is not case sensitive)

search

To determine if one string is contained in another.

read-line, read-char

Useful for reading strings and characters from a terminal or file

Properties, Methods, Structures,Classes

Get and Setf are the primitives that we use when we want to retrieve information of a property, or

assign to a value to the property. Methods are procedures selected from generic functions by

argument types.

(defmethod area ((figure rectangle)

 (*(rectangle-width figure)

 (Rectangle-height figure))) ;Method for rectangles

 13

User defined structure types facilitate data abstraction. Here is how they are used:

(defstruct person

 (sex nil) ;Default value is NIL

 (personality ‘nice)) ;Default value is NICE

Here is what is done by DEFSTRUCT forms:

· Creates a constructor procedure

· Creates reader procedures for getting things out of an instance’s fields.

· Generalizes setf, to serve a writer when used in combination with the readers

· Creates a predicate for testing objects to see if they are instances of the DEFSTRUCT

defined data type

Classes are usually arranged in hierarchies. When we can reach one class by walking up a series

of connections, the lower class is called a subclass of the upper one, and the upper one is called a

superclass of the lower one. The connections are called inheritance links because each class

inherits slots from its superclasses.

Encapsulation

Lambda is used when mapping is done. Lambda defines anonymous procedures. Encapsulation

enables the creation of sophisticated generators. The sophisticated way to create generators is to

encapsulate free variables in lambda definitions by embedding the lambda definition in a

parameter-containing form.

Reference: “LISP 3rd Edition” Patrick Henry Winston and Berthold Klaus Paul Horn

 14

 15

