
A WEB-BASED EXPERT SYSTEM FOR VEHICLE REGISTRATION

Alan T. Demmin and Du Zhang
Department of Computer Science

California State University
Sacramento, CA 95819-6021

ardemmin@innercite.com, zhangd@ecs.csus.edu

Abstract. In order to satisfy an increasing need to respond
rapidly to changing business requirements and knowledge,
and to reduce implementation cosfs. the mainstream
business world is progressively relying on the experf
sysfems technology. In addition, recenf e-business
iniriatives are requiring companies to provide “web-
enabled” systems in order to maintain a competitive edge
in their marketplace. In this paper, we describe our
experience in capturing the business logic and
implementing a web-based expert system for vehicle
registration fee compufafion af California Deparrmerif of
Motor Vehicles. The system has been implemented using
the Blaze Advisor rules engine and has been deployed to
Sun’s JZEE Reference Implemenfafion of a Java
application server. Our work has shown that using expert
system technology to implement a web-based, business-
driven solution is certainly a viable and promising option.
Deployment of the rule service as an Enterprise JavaBean
exposes the rulebase to various @pes of business clients,
andprovides a consistent and adaptable implementation of
the business domain.

Keywords: business rules, web-based expert systems, Java
technology, vehicle registration.

1. INTRODUCTION
Business rules are declarative statements that define or

constrain a business domain and are often implicitly
defined within the manual and automated processes of a
company. “Business rules are directives intended to guide
or influence business behavior” [lo]. The business rules
for a company may or may not be formally documented
and may only be available as leamed or perceived
knowledge of the business personnel. Over the last decade,
companies across all industries have shown an expanding
interest in formally defining and documenting their
business rules and establishing them as official artifacts for
the company. In fact, definition and documentation of
business rules have proven to help clarify business
objectives, streamline business processes, and even
improve a company’s definition of new or changing
business requirements. This helps when justifying business
decisions, training new business personnel, and can even

reduce the time necessary to deliver software
modifications to the production environment.

While there are distinct advantages in simply
documenting business rules, the eventual expectation leads
to an implementation of the business rules into an
automated solution and to make them available to all
business processes. In particular, recent e-business
initiatives have shown that companies need to rapidly
implement changes in order to maintain a competitive edge
within the marketplace. This is setting the stage for the
integration of expert system technology and intelligent
agents within existing business infrastructures.

The purpose of this study is to investigate the
feasibility of utilizing an inference capability to administer
the business logic for an enterprise within a web-based
architecture. A subset of the business domain for vehicle
registration fee computation at the state of Califomia
Department of Motor Vehicles (DMV) is selected for this
study, in particular, the fee computation logic for vessel
vehicle types is chosen for the prototype implementation.
The business rules for this domain were gathered,
organized, and codified. Blaze Advisor rules engine 1261 is
utilized for the expert system development. The rules
service was then deployed to a Java 2 Enterprise Edition
(JSEE) web application server and a web browser interface
was developed to allow users to inquire about registration
fees that are assigned for various transactions.

There are several reasons behind our choice of the
DMV project. The first author works as a consultant at
DMV and has an intimate knowledge of the problem
domain. The current fee processing systems at Califomia
DMV were first developed in the 1970’s and have been
modified many times over the past three decades. The
online system used at the local field offices was
implemented using the Event Driven Language (EDL),
which is the assembly language of the IBM Seriesll
machines. The headquarters batch system, which
processed the daily transactions and updated the main
database during the nightly batch cycle, was implemented
in the Cobol for IBM mainframe running the Multiple
Virmal Storage (MVS) operating system. Because separate
teams at the DMV maintain the two systems, a single
change in legislation or business policy can contain
different interpretations. Over the years, the hvo systems
have diverged significantly and can sometimes produce

0-7803-8242-01031 $17.00 Q 2003 IEEE 420

mailto:ardemmin@innercite.com
mailto:zhangd@ecs.csus.edu

inconsistent results. In addition to the potential
inconsistency in the two fee computation systems, there is
also a significant need for a more modem web-based
solution.

The results of this study indicate that using expert
systems technology to implement a web-based, business-
driven solution is certainly a viable and promising option.
The ease of this implementation relies heavily on the
supporting tools that are supplied with the development
environment. The prototype system we developed allows
multiple platform deployment, distributed object access,
and graphical or model-driven maintenance of its rule
base.

The remainder of this paper is organized as follows.
Section 2 briefly describes related work that is cul~ently
being pursued in the area of business rule methodology
and expert systems technology. Section 3 discusses the
design strategy for the project. Section 4 deals with some
of the implementation issues. Performance evaluation of
the web based expert system through some common use
cases for vehicle registration is the focus of Section 5 .
Comparison with an altemative approach (JESS, Java
Expert System Shell [33]) is provided in Section 6. Finally,
in Section 7 we conclude the paper with remarks on
possible future work,

2. RELATED WORK

2.1. Business Rule Methodology

Business Rule Solutions, LLC is a leading company
that focuses on business rule solutions and methodology
[25]. The concept of a fact-model has been introduced
within the business rule methodology called Proteus'M
[25]. A fact model is a way of modeling the business terms
and their relationships and is similar to the entity-
relationship diagramming that is used for relational
database design.

Knowledge Partners Incorporated (WI) is another
leader in the business rules approach [30]. A formal
methodology called the STEP principles (for Separating,
Tracing, Externalizing, Positioning rules for change) is
proposed in [I I].

The Business Rules Forum is an annual conference for
the business rule solutions and methodologies. This
conference has grown substantially over its five-year
history and continues to attract organizations in all
industries, both in local and federal govemments as well as
the private sector. The focus is primarily on the discussion
of business rules as true artifacts for organizations and the
importance of following a formal business rule
methodology when defining the rules for an enterprise.

2.2. Rules Engine Technology

Blaze Advisor is an industry-leading decision building
system that employs rules engine technology to deliver
automated business solutions 1261. The platform is 100%
Java-based and offers deployment capabilities to most

platforms available today. It includes many interfacing
capabilities to allow integration with virtually all modem
and legacy systems and employs the use of XML. Blaze
Advisor supports both forward and backward chaining.
There are tools for analyzing the rulebase to locate
inconsistencies, rule conflicts, and even circular logic. We
use the Blaze Advisor rules engine to develop our
prototype system.

ILOG JRules is also a 100% Java-based rules engine,
geared toward providing business-driven solutions. [28]
Similar to Blaze Advisor, JRules is a product that includes
graphical user interfaces for building and modifying rule
bases. It also includes capabilities to deploy the automated
solution to various platforms and with differing interfaces.

JESS (Java Expert System Shell) is a scientific Java-
based expert system shell that is an extension to the CLIPS
system developed by NASA in 1984 [33]. Since E S S
makes the CLIPS system Java-compatible, it has opened
the door to providing many of the multiple platform and
multiple interface capabilities of the business driven
solutions.

ZBM CommonRules. IBM started the Intelligent
Agents Project at IBM T.J. Watson Research Center in
1994 to create intelligent agent fechnology that would be
highly reusable, extensible, and easily integrated into a
variety of distributed applications [IS]. In 1997, this
project divided into a few sub-projects, one called
Business Rules for Electronic Commerce, which included
an investigation into rule based technology for business
processes involving both business-to-consumer (B2C) and
business-to-business (B2B) e-Commerce. This research
was particularly concerned with the creation of a core rules
technology that could be reused with various
heterogeneous applications to share common rules
information. The resulting technology is known as IBM
CommonRules [19], which is a Java library of classes to be
used as a development platform for rule-based applications
and includes a data interchange format defined as an XML
schema called Business Rules Markup Language (BRML)

2.3. Rule Standards and Specifications

Business Rules Group. The Business Rules Group [23]
is an organization of practitioners in the field of systems
and business analysis dedicated to defining and supporting
the specifications on business rules and how they are
related to enterprise organization and systems integration.
This group was initially a project within GUIDE
(Guidance of the Users of Integrated Data-processing
Equipment) International [27] and now exists as its own
organization.

OMG Business Rules Working Group (OMG BRWG).
The Object Management Group (OMG) [31] is an
organization established in 1989, dedicated to the
establishment of formal specifications for the software
industry that are vendor independent and are directed at the
standardization and interoperability of object oriented

1181.

42 1

technologies. The Business Rules Working Group (or
Business Rules Special Interest Group) is a sub-committee
of the OMG Architecture Board, working to establish
formal specifications on business rules and/or rules engine
technology. The BRWG recently issued a Request for
Information (RFI) on Business Rules Expression.

Java Communig Process - JSR94. The Java
Community Process (JCP) is an open organization of Java
developers and licensees whose goal is to expand and
enhance the Java technology platform and its associated
specifications [29]. JSR094 is a specification request to
define a formal interface for a Java Rule Engine API to be
used as a standard interface for both a Java 2 Standard
Edition application and within a J2EE application server.
This specification is a first step in standardizing the
interface to a rules engine within the Java platform and
includes high-level classes within the j avax. r u l e s
package structure and defines classes for a Rule Service
Provider, a Rule Runtime, and a Rule Session, among
others.

Rule Markup Initiative. The Rule Markup Initiative as
another open network of individuals from both the
business and academic world, dedicated to establishing a
formal XML schema for a Rule Markup Language that can
be shared among rules engine vendors [32]. This will
produce a standard set of XML tags to be used for rules
representation, translation, and interaction between
heterogeneous rule processing systems. As the formal
specifications from the OMG and JCP work to provide
standards for object management and the Java platform
specifically, a formal rule markup will provide a standard
way for businesses to share rules and for vendors to
provide a consistent representation for rules interchange.

Java 2 Enteprise Edition (J2EE)). It is also important
to mention the deployment environment that has been
chosen for this project. The J2EE specification [34]
provides for a standard platform that supports component
architectures, with consistent application programming
interfaces used to interact with the various application
services. The J2EE specification is becoming the industry-
leading model for application servers based on the Java
platform and will most likely be the industry standard for
all object oriented enterprise applications in the future.

3. DESIGN

The design of our rule based solution for the DMV
application requires a thorough definition of all terms,
facts, and rules that comprised the knowledge base. In
addition, the underlying infrastructure and platform that
would support the enterprise system are also considered
carefully during the design stage.

3.1. Object Modeling and Term Definition

This system has been designed using the principles of
object-oriented programming and relies on the use of
model-driven architectures. UML class diagrams were

developed for the input/out object model and the high-
level interface design. This object model was then used
for the term definitions within the rulebase.

One of the first design considerations of any software
system is the identification of data elements that will be
used as input to the system, and similarly, the data
elements that will be returned or updated by the system.
When designing rule-based systems, these data elements
are the terms and facts that are part of the knowledge base.
The first step in designing a rulebase is to identify all of
the data elements or terms within the knowledge and
assign appropriate term names. The importance of this
effort must not be overlooked. A term name can make a
significant difference in the comprehension of the rules
that utilize these terms.

It was important to first develop a list of terms and/or
object attributes that would be used to develop the initial
fact list for the rulebase. After interviews with the business
users and analysis of existing programs, the input data
elements were grouped into the following objects:

FeeTransaction - the type of transaction being
requested
Feevehicle - the vehicle that is involved in the
transaction

0 FeeOwner - the owner of the vehicle that is involved
in the transaction

The information would be processed through the fee
computation rules to determine a list of fees for the
transaction being requested. In addition, some related
fields are also returned as part of the solution. This
information was grouped into the following object:

FeeResult - the resulting fee list and related
information for the transaction

After gathering all of the necessary information for
each object type and gaining formal acceptance on all
attribute and term names, a UML class diagram was
developed to represent the object model. Since the fee
computation system was being developed as a
request/response system, the FeeRequest and FeeResponse
classes were defined to encapsulate all of the functionality
necessary to translate data between a serialized and de-
serialized format, to match requests with responses, and to
designate which rule service will be accessed within the
rules engine. FeeRequest and FeeResponse are composite
objects which contain all of the sub-objects used as input
and output data within the rule base.

3.2. Business Rulebase Design

Once the terms and object model were defined, a
formal methodology was employed to define the business
rules. We chose the STEPTM process [I l l to separate,
trace, externalize, and position rules for changing business
requirements. This process began by interviewing business
users and business analysts to gather facts and rules about
vessel registration fee computation. The process also

422

included the use of rule mining techniques to extract
business rules from the existing legacy programs.

This methodology led to a better understanding and
formal definition of the fee computation business process.
When a business process can be formally defined with a
series of tasks and sub-processes, this can he represented
within a rulebase as a ruleflow. A ruleflow governs the
business process and organizes sections of the knowledge
base into logical partitions or processing steps. When
working with the Advisor Builder product, the ruleflow is
created and maintained using a graphical editor, much like
creating a data flow diagram or the structure chart of a
computer program.

When designing the ruleflow for the business process,
two main aspects of the business were carefully considered
in order to provide a well-organized system:
1. logical separation of vehicle types
2. logical separation of fee types

Once the object model and business process were
defined, the rules within the process tasks were created. As
knowledge of the fee computation process grew, ruleflows
were enhanced and refined logically, term names were
improved to represent their true business meaning, and the
object model was modified for clarity and efficiency. Due
to space limitations, we skip the details of following the
STEPTM approach. Interested readers may refer to [35].

For rule acquisition, two main pieces of business
documentation specific to fee computation include:
1. State of California Vehicle Code
2. California Department of Motor Vehicles Registration

Manual
Rule acquisition also involved the use of a technique

called rule mining [20]. Rule mining is a process by which
an existing procedural program is analyzed and the
business rules are discovered, extracted, and documented.
An effective method is to identify program output data and
perform searches within the program for statements that
modify this data. In turn, any interim data elements that are
used in the modification of the output data are also
researched. Eventually, the statements are traced back to
the input object model. The resulting list of statements
contains all of the program code that is used to develop a
single output field. This process is called “program
slicing” and was used to help start the process of rule
gathering. After program slicing was performed, the
business users are often able to help determine the true
business meaning that supports the implementation in the
corresponding program code.

The deliverables from this stage of the design are
business rule design documents which include the ruleflow
and design diagrams along with the rules organized into
rulesets and documented in natural business language.

3.3. Technical Interface Design

The business logic for the fee computation application
has been designed as an Enterprise Java Bean (EJB) on the

server side of a multi-tier environment, and is to be offered
as a service within a J2EE application server [34]. This
service is accessible from various clients, including HTML
web browsers, Java Apples, Java Servlets, Java
Applications using the Java Remote Method Invocation
(RMI) protocol, and other JZEE Clients (including
wireless, hand-held devices). Since Blaze Advisor comes
pre-packaged with deployment capabilities that turn any
rule service into an EJB service, we choose Blaze
Advisor’s deployment model for the project.

The Blaze Advisor deployment positions the rulebase
for changing business requirements by allowing an update
of the rulebase to OCCUI in a separate repository within its
own component of the application. In fact, an update to
the rulebase can occur without any changes to the client
application, servlet, or EJB. The rulebase is stored in a
repository file that gets loaded when the EIB is initialized.
Advisor Builder and Advisor Innovator are two tools that
allow direct update and deployment of the rulebase. XML
has been used to communicate the response information
returned from the FeeController servlet back to the web
browser. In addition, Blaze Advisor uses XML for its
internal representation of the rulebase. A formal XML
schema has been developed for the FeeRequest and
FeeResponse objects. These schemas will he used when
the data is serialized into XML documents. The
documents are then easily processed by Java components
using a Java XML parser.

4. IMPLEMENTATION

4.1. Object Model Creation

A JavaBean is a class that follows a specific set of
implementation constraints in order to provide consistent
functionality as a Java component that can then be easily
manipulated by other systems. Specifically, a JavaBean
has the following properties [I]: (a) It is a public class, (b)
It contains a public constmctor with no arguments (self-
initialization), and (c) It contains public access methods
(getXXX and setXXX) for each property.

The Blaze Advisor rules engine utilizes JavaBeans to
interact with data that will he manipulated outside of the
rules engine. For instance, all objects that are passed from
a Java application into the rules engine, are passed as
JavaBeans, so that the rules engine can manipulate the data
using the public accessor methods. Similarly, all output
data that will he returned back to the calling application,
will also be passed back as JavaBeans. In order to create
the object model for the application, a Java package
structure was first defined as follows.

edu.csus.ejb.feeserv - fee computation server
(Enterprise JavaBean)
edu.csus.feecomp- fee computation objects
(JavaBeans)
edu.csus.feetest
edu.csus.servlet - fee controller servlet
edu.csus.uti1 - utility classes

- fee computation test clients

423

Since the fee computation system is designed as a
requesthesponse system, the FeeRequest and FeeResponse
classes are defined as composite objects that will hold all
of the data objects for input and output respectively. The
data objects are implemented as JavaBeans and can be
manipulated within the rulebase.

edu.csus.feecomp.FeeRequest (composite input class)
- edu.csus.feecomp.FeeTransaction
- edu.csus.feecomp.FeeVehicle
- edu.csus.feecomp.Fee0wner

edu.csus.feecomp.FeeResponse (composite output
class)

- edu.csus.feecomp.FeeResu1t
- edu.csus.feecomp.Fee (list of fees)

Java classes are imported into the Advisor project
using the Advisor Builder graphical user interface. In order
to begin development of the fee computation rulebase, an
Advisor project was created using Advisor Builder. When
a project is initially defined, it contains no rules or other
entities. From this point forward, a project can be
manipulated using the graphical interface to add and edit
classes, objects, ruleflows, rulesets, rules, functions,
variables, and patterns. In addition to the imported classes,
it was necessary to define internal classes for use within
the rulebase.

4.2. Rulebase Implementation

The Blaze Advisor rules engine development
environment uses its own proprietary programming
language called Structured Rule Language (SRL) to define
the rulebase. The Advisor Builder tool allows the rules
engineer to work with the rulebase in a graphical manner,
which automatically generates the SRL code. The
engineer can also work directly with the SRL source code.

A rulebase is implemented within Advisor Builder in
much the same manner as the design work discussed in the
previous section. First, the order of tasks in the business
process is defined as a ruleflow, Rulesets and functions are
then implemented for the tasks in the ruleflow. Rnlesets
are a group of related rules that will be evaluated,
scheduled, and fired by the Rete algorithm. The Rete
algorithm has been implemented within Blaze Advisor as a
set of Java classes which is not explicitly exposed to the
users of the product.

When a test of the rulebase is performed (see Section
5) , execution begins at the start of the ruleflow. As tasks in
the ruleflow are encountered, the implementation of a task
is performed. If the task implementation is a function, it is
executed in the same manner as a procedural function or
sub-routine. If the task implementation is a ruleset, the
working memory and pattern network for the Rete
algorithm is created with the elements and pattems that
exist within the ruleset. The evaluation stage is performed
and rules are added to the agenda. AAer evaluation is
complete, a selected rule is fired and the knowledge base is
updated. This process continues until the agenda is clear

for the current ruleset. Processing then continues with the
next task in the ruleflow. When the entire ruleflow has
been processed, the results can be displayed to the user or
returned to the calling module. Figure 1 illustrates sections
of the fee computation ruleflows and rulesets within the
Advisor Builder project.

Figure 1. Vehicle Registration Fee Ruleflow.

4.3. Interface Implementation

To integrate the rules engine as part of an enterprise
solution, the rulebase must be deployed into a Java
application environment. There are a few ways to develop
a runtime version of the rulebase and here we choose to
deploy the fee computation rulebase as an EJB in a JZEE
Application Server. This is done through a package called
Advisor Server in the Blaze Advisor suite of tools, which
is a deployment runtime system to expose the rulebase to
Java application clients and has support for multiple
threading and concurrency control through the concept of a
“Rule Agent”.

5. PERFORMANCE E V A L U A T I O N

Three test transactions have been executed each using
a different environment (the Advisor Testing environment,
the web application client, and the Java application client).
The performance evaluation of each test transaction is
described in the subsections below.

5.1. Advisor Builder Testing

The Advisor Builder development platform not only
provides a graphical user interface for designing and
building a rulebase, but also includes the ability to run test
transactions, and even a full suite of debugging capabilities
that are common with most programming language
development tools. This includes defining input test
objects, stepping through rules execution, watching term
values, setting breakpoints, and printing output to the
screen.

The Advisor Builder development platform also
provides some reporting and monitoring tools to help

424

determine the correctness, completeness, and performance
of the rulebase. Information is generated for every
ruleflow, ruleset, function, object, and variable within the
project and how they relate to each other. A conflict
analysis is also generated to show potential errors within
the rulebase. The performance reports will display
statistical information for the following static and dynamic
categories: number of rules, number of entities considered
in the rules, maximum depth of ruleflows, total number of
properties tested in the rules, total number of rules fired,
and total number of predicates evaluated.

5.2. Web Application Client

The web-based deployment of the fee computation
rulebase was the main goal of this project and it has been
successfully implemented within Sun Microsystem’s J2EE
Reference Implementation, a Java application server. The
JZEE server was installed to a desktop machine running
Microsoti Windows XP. The fee application was installed
into the server and a URL was created for public access
through the web server. Figure 2 displays the results.

I-.-+.--. -- .-
‘ Y

” &...-.-.>
I .. ”I-_- (. .

Figure 2. Web Application Output Display.

The performance of the web application has a
response time within one second. The rules engine itself
consumes two hundred to three hundred milliseconds, and
the network traffic can affect the final response time.

There is a startup cost associated with the rules engine
in the form of loading external and internal table
information and setting up the Rete network. This
generally takes about fifteen seconds during the first
invocation of the EJB. Once the EJB is initialized, it
remains in memory for the EJB container to process future
requests.

5.3. Java Application Client

The Java application client was an extra
implementation component for this project that shows the
advantages of deploying an application as an EJB. The
web application provides a user interface to the rules
application, while the Java application provides a batch or
program interface to the same rules application. This
allows the deployment of a business solution to be

accessible and consistent through many different means of
communication. To demonstrate this type of client, a Java
class was written that would read the request data from an
external file, invoke the rules application, and write the
response data back to an output file.

The Java client can achieve a better performance than
the web application, since it performs a direct access to the
EJB and bypasses the FeeController servlet. Again, this
client application could be used to interface with other
areas of an existing system and provide access to the same
rulebase that is used over the Internet.

6. COMPARISON TO JESS
IMPLEMENTATION

As part of the study, we compare the Blaze Advisor
rules engine implementation with the JESS
implementation in the following three aspects: rule base
development, interface development, and testing and
deployment. Through the comparison, we obtained some
useful conclusions. The following subsections summarize
some of the results. Interested readers may refer to [35] for
details.

6.1. Rulebase Development

Since both Blaze Advisor and JESS are Java-based
implementations of the Rete Algorithm, the interfaces and
deployment possibilities are similar. However, the rules
syntax for the Advisor is based on their own proprietary
language (SRL), while JESS accepts the syntax of the
CLIPS expert system shell. These two languages are
actually very different in their approach to representing
declarative rules and assertindretracting facts as the
inference engine executes its processes.

One of the issues to address in the translation from the
Advisor to JESS was to determine how extemal Java
objects would be integrated or interfaced with the expert
system. Java classes that are defined outside of the rules,
are imported into the Advisor Builder using features within
the tool. Once imported, their public members may then be
referenced directly within the rules in the same fashion that
internal classes and objects are referenced.

For JESS, the process for linking external classes into
the expert system is called “binding”. A local or global
variable is bound to a class instance and all class members
are available using specially defined constructs for JESS.
However, in order to use these objects within the rulebase
in the same manner as other objects, variables, and atoms,
a special construct called “definstance” must be used,
which will generate a template for a fact within the
knowledge base that links the external object to the fact.
This is the only way to gain the ability to use members of
an object in the antecedent of a rule.

Another important feature of the Advisor rulebase that
needed to be converted to JESS, was the creation of
internal objects that assist with fee computation. In
particular, the FeeTable is an object that stores fee

425

amounts, descriptions, and effective dates for the specific
fee codes used by vehicle registration. During the process
of fee computation, if a certain fee qualifies for
assignment, the proper amount must be determined from
the FeeTable. For the Advisor implementation, this table
was easily setup as an association table, which is similar to
a Java hash table. When a fee code qualifies for
assignment, a function is used to examine the FeeTable
object and return the appropriate fee. For the JESS
implementation, it was easier to define the entire table as a
set of rules that are pattem matched by fee code. The
appropriate FeeTable entry is found by using the inference
engine, instead of a function call.

6.2. Interface Development

Once again, with both the Advisor and JESS being
Java-based implementations of the Rete Algorithm, the
interfaces to the rules are very similar, and in fact,
identical in places. For the Advisor implementation, two
application interfaces were developed as mentioned in
Section 5. For the JESS implementation, the HTML pages,
the Java Servlet, and the Java client use the same source
code. Only the business method of the EJB requires
modification for the JESS rulebase execution.

Advisor Builder supports the ability to generate much
of the deployment code necessary for installation of the
rulebase as an EX3 within a JZEE application server.

The loading of the Advisor rules file is specified
within the deployment descriptor and is automatically
loaded through the environment variable
ndconf i q . server. However, this functionality needed
to be explicitly created for JESS, by loading the rules files
during initialization of the bean using the “bload”
construct.

6.3. Testing and Deployment

Some final conclusions on the comparison between
the Advisor and JESS involve the ease of testing and
deployment using the Advisor development environment
versus the manual effort needed to perform the same
functions using JESS.

The automated deployment generation that offers
many options for Advisor could also be implemented for
JESS, however none of it exists today. Businesses require
the ability to deploy their solutions to varying platforms
and tier structures and with different interface
requirements. Some additional work could be pursued to
provide these different deployment options as a standard
set of library classes within the JESS package. This would
allow for a quicker implementation of tested methods for
loading rulebase files, interacting with XML data, creation
of Stateful and Stateless session beans, and integration
with standard messaging API’s. In fact, all of the standard
J2EE interfaces could be offered along with the newly
proposed JSR-94 specification for a standard rules engine
API.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we describe our experience in capturing

the business logic and implementing a web-based expert
system for vehicle registration fee computation at
Califomia Department of Motor Vehicles. The system has
been implemented using the Blaze Advisor rules engine
and has been deployed to Sun’s JZEE Reference
Implementation of a Java application server. Our results
have shown that using expert system technology to
implement a web-based, business-driven solution is
certainly a viable and promising option. Deployment of the
rule service as an EJB exposes the rulebase to various
types of business clients, and provides a consistent and
adaptable implementation of the business domain.

There are several lessons leamed. First, the
methodology of discovering, defining, and organizing the
business rules became extremely important. By not
applying a business rule approach, it is possible to
implement a rulebase that is not easily adaptable to a
changing business world and will not accurately represent
the true business domain. By following a formal business-
driven methodology, the rulebase organization was easier
to develop and the rules were easily traced to existing
business documentation. Reducing the time spent
translating the legislation and policies that govern a
business into the automated system that runs the business,
is a key benefit of creating an effective rule-based system.
This will allow a company to rapidly respond to changing
business requirements and maintain a competitive edge in
the marketplace.

The second lesson is that a new set of rules
engineering skills is needed for business analysts and
technical specialists working in the field of web-based
business solutions through expert system technology. Such
skills include: a mastery of the English (or chosen)
language, the ability to translate business documentation
into sets of well-defined rules, the ability to reduce rules to
their atomic state (singular purpose or constraint),
communication skills with both business and technical
personnel, and an understanding of declarative
programming paradigm.

Lesson three is the need of tools and development
environments that are geared toward multiple
communication or interface strategies and for legacy
systems integration. Tools need to be graphical or model-
driven, have complete testing and debugging environments
and conflict and performance analysis facilities, support
automated deployment, and have the ability to generate
rules maintenance applications that can be exposed to
business users over the Internet.

Lesson four is the creation of a process for drafting,
defining, and accepting formal standards and
specifications. The success of Open Systems Architectures
(OSA) relies heavily on the participation of industry
leading experts to propose and refine standards and to

426

ensure that the vendor population will provide compliant
solutions.

Possible future work includes: a system for complete
vehicle registration. This project focused on a sub-section
(vessels) of the complete business application for
generating the appropriate fees for vehicle registration. A
natural extension would be to include developing the
rulebase for all vehicle types (automobiles, motorcycles,
commercial vehicles, trailers, off highway vehicles, and
special equipment).

Some more general issues for hture work include:
development of business rule maintenance capability that
is accessible through the Intemet, a standard XML schema
for business rule representation, and a web-based "rule
service'' that receives both a rulebase definition and a
rulebase query, and retums the results of the service back
to the user, over the Intemet.

REFERENCES
[l] Rahim Adatia, et al. Professional EJB, Wrox Press

Ltd., Birmingham, AL, 2001.
[2] Scott Ambler, Tyler Jewell, and Ed Roman. Mastering

Enterprise JavaBeans, John Wiley & Sons, Inc., New
York, NY, 2002.

[3] Danny Ayers, et al. Professional Java Server
Programming. Wrox Press Ltd., Birmingham, AL,
1999.

[4] Kurt Cagle, et al. Professional XSL, Wrox Press Ltd.,
Birmingham, AL, 2001.

[SI Andrea Chiarelli, et al. Professional JavaScript, Wrox
Press Ltd., Birmingham, AL, 1999.

[6] Joseph Giarratano and Gary Riley. Expert Systems:
Principles and Programming, PWS Publishing
Company, Boston, MA, 1994.

[7] Tom Myers and Alexander Nakhimovsky.
Professional Java XML Programming, Wrox Press
Ltd., Birmingham, AL, 1999.

[SI Stuart J. Russell and Peter Norvig, Artificial
Intelligence: A Modern Approach, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1995.

[9] Ronald G. Ross, Business Rule Concepts, Business
Rules Solutions, LLC, Houston, TX, 1998.

[IO]Ronald G. Ross, Principles of the Business Rules
Approach, Addison-Wesley, Boston, MA, 2003.

[l I] Barbara von Halle, Business Rules Applied, John
Wiley & Sons, Inc., New York, NY, 2002.

[121 Carole Ann Berlioz and Colleen McClintock.
"Implementing Business Rules in Java: Part I" Java
Developers Journal May 2000, pp 8-16.

[13]Charles L. Forgy, "Rete: A Fast Algorithm for the
Many Panem / Many Object Pattem Matching
Problem" Artificial Intelligence 19 1982, pp 17-37.

[14]Colleen McClintock, and Chris Roberts.
"Implementing Business Rules in Java: Part 2" Java
Developers Journal July 2000, pp 8-14.

[IS] Ken Molay, "Business Rule Representations of Java
Objects" Java Developers Journal Feb. 2001, pp 62-
68.

[16] Steve Ross-Talbot, "Java Rules in J2EE" Java
Developers Journal Sept. 2001, pp 12-16.

[17]Ernest J. Friedman-Hill, "Jess, The Rule Engine for
the Java Platform" Online posting. 9 Apr. 2003.
Sandia National Laboratories.
http:/iherzberg.ca.sandia.gov/jess/docs/6 1

[18] Benjamin Grosof, et al. "Business Rules for Electronic
Commerce" Online posting. 1999. IBM Research
Project at IBM T. J. Watson Research.
http://www.research.ibm.comJrules/home.htmI

[I91 Benjamin Grosof, et al. "IBM Release CommonRules
1.0: Business Rules for the Web" Online posting.
1999. Overview of IBM CommonRules 1.0.
http://www.research.ibm.co~mles/conunonN~es-
overview.html

[20]Art Moore, et al. "Discovering Rules Through
Business Rule Mining" Online posting. 2001.
Knowledge Partners, Inc.
http://www.kpiusa.com/BRBookiBusinessRules.htm

[21]Margaret Thorpe, "Business Rules Exchange - The
Next XML Wave" Online posting. May 2001. XML

http://www.gca.org/papers/xmleurope2OO 1 lpapersihtm
l/s 15-2.html

[22] Margaret Thorpe, "Simple Rule Markup Language"
Online posting. 17 May 2001. Cover Pages: Hosted by
Oasis. http://xml.coverpages.org/s~ml.html

http://www.businessrulesgroup.org/brghome.htm
[24] Business Rules Journal.

http://www.brcommunity.com

http://www.brsolutions.com

Europe 2001.

[23] Business Rules Group.

[25] Business Rules Solutions, LLC.

[26] Fair Isaac, Inc. http://www.fairisaac.com
[27] GUIDE Intemational Corporation.

[28] ILOG, Inc. http://www.ilog.com
[29] Java Community Process.

[30] Knowledge Partners, Inc. http://www.kpiusa.com
[3l]Object Management Group. http://www.omg.org
[32] The Rule Markup Initiative. http://www.dfki.uni-

kl.de/ruleml
1331 Sandia National Laboratories, Java Expert System

Shell. http:/iherzberg.ca.sandia.gov/jess
[34]Sun Microsystems, Java Technology.

http://java.sun.com
[35] Alan Demmin, A Web-based Expert System for

Vehicle Registration, Mater degree project,
Department of Computer Science, California State
University, Sacramento, May 2003.

http://www.cbi.umn.edu/collections/inv/guide84.htm

http://www.jcp.org/en/home/index

421

http:/iherzberg.ca.sandia.gov/jess/docs/6
http://www.research.ibm.comJrules/home.htmI
http://www.kpiusa.com/BRBookiBusinessRules.htm
http://www.gca.org/papers/xmleurope2OO
http://www.businessrulesgroup.org/brghome.htm
http://www.brcommunity.com
http://www.brsolutions.com
http://www.fairisaac.com
http://www.ilog.com
http://www.kpiusa.com
http://www.omg.org
http://www.dfki.uni
http:/iherzberg.ca.sandia.gov/jess
http://java.sun.com
http://www.cbi.umn.edu/collections/inv/guide84.htm
http://www.jcp.org/en/home/index

