
An integrated approach for developing e-commerce applications

Francisco Garcı́a-Sánchez, Rafael Valencia-Garcı́a, Rodrigo Martı́nez-Béjar*

Departamento de Ingenierı́a de la Información y las Comunicaciones, Facultad de Informática, Universidad de Murcia, 30071 Espinardo (Murcia), Spain

Abstract

This paper presents a framework that merges various advanced information technologies for developing electronic commerce

(e-commerce) applications. The use of e-commerce utilities provides several advantages to businesses. Intelligent agents can be used to

facilitate some tasks from those that take place in a commercial transaction moving to a second generation of e-commerce applications. We

present a prototype which integrates a multiagent system (composed by buyer and seller agents) with a Web application.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Electronic commerce; Intelligent agents; Natural language processing; Ontologies
1. Introduction

Several definitions have been given to the term

‘e-commerce’ or ‘electronic commerce’. The one given by

the Electronic Commerce Association1 is: ‘electronic

commerce covers any form of business or administrative

transaction or information exchange that is executed using

any information and communication technology’. We limit

our approach to covering commercial activities conducted

on the Internet. E-commerce offers opportunities to

dramatically improve the way that businesses interact with

both their customers and their suppliers, that is, to make

business negotiations faster, cheaper, more personalized,

and/or more agile.

The number of web users who shop for or buy products

online is continuously increasing (Silverman, Bachann, &

Al-Akharas, 2001). However, searching and buying pro-

ducts via on-line can be frustrating due to the lack of help or

decision support given to the user. Nowadays e-commerce

applications are being improved from a first generation

stage where buyers are humans who browse through a

catalog of commodities (e.g. books, computer components,

films) and make purchases, often by means of a credit card

transaction, to a second generation with a greater degree of
0957-4174/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2004.10.004

* Corresponding author. Tel.: C34 968 364634; fax: C34 968 364151.

E-mail addresses: fgs2@alu.um.es (F. Garcı́a-Sánchez), valencia@

um.es (R. Valencia-Garcı́a), rodrigo@dif.um.es (R. Martı́nez-Béjar).
1 http://www.theeca.org/.
automation on both the buyer’s and the seller’s side

(Wooldridge, 2002).

The aim of this work was to develop a technology for

facilitating ‘Business-to-Consumer’ (B2C) and ‘Business-

to-Business’ (B2B) processes. For it, various methodologies

including (multi)agents (which allow for the interaction

among several manufacturers), decision support (used for

rating and differentiation processes between the products

found) and natural language processing (NLP) have been

used.

The previous objective can be decomposed into the

following sub-objectives: (1) generation of a (computer)

product ontology, (2) design of a database containing all

relevant information about the products in question, (3)

design and implementation of two agent models, one

playing a buyer’s role and another playing a seller’s role,

(4) integrating the agents into the Foundations for Intelligent

Physical Agents-Open Source (FIPA-OS) framework so that

communication among the agents registered at the platform

may take place, and (5) design and implementation of a Web

application that makes use of agents to offer e-commerce

services (this will be the prototype).

The solution described in this work is built on top of an

integrated system elaborated on topics belonging to a

number of disciplines, including knowledge management,

NLP, decision support theory and multiagent technology.

The experiments done with the system up to now make us to

believe that its future is promising in helping solve some

problems we can find in actual e-commerce applications.
Expert Systems with Applications 28 (2005) 223–235
www.elsevier.com/locate/eswa

http://www.elsevier.com/locate/eswa
http://www.theeca.org/

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235224
The structure of this paper is as follows. Section 2 offers

a brief description of the methodology applied. In Section 3,

the e-commerce framework used in this work is introduced.

Section 4 describes the system prototype developed making

use of the framework presented. The validation of the

system prototype is shown in Section 5. Finally, some

conclusions are put forward in Section 6.
2. Methodology

In this work, we have applied a methodology that

integrates different advanced information technologies with

the aim of building a framework for developing e-commerce

applications. These are: intelligent agents, which have been

used to represent the different entities we find in a

transaction process (buyers/sellers); decision support sys-

tems (DSSs) theory, applied to help buyers in some decision

processes; ontologies that establish a reusable, shareable

semantics for the terminology, so that different types of

agents are able to communicate among themselves; and

NLP, which permits to better determine the users desires

(since the users can use their own terminology). In the

following lines, a brief description of each of them is

realised.

2.1. Multiagent systems

A multiagent system is seen as a system that consists

of a group of agents that can potentially interact with

each other (Vlassis, 2003). The term agent is defined as

follows (Wooldridge, 2002): “an agent is a computer

system that is situated in some environment, and that is

capable of autonomous action in this environment in

order to meet its design objectives”. For this author, an

agent is intelligent if it fulfils the following properties:

reactivity (it responds in a timely fashion when needed),

pro-activeness (it satisfies internal goals; it takes actions

when it seems it will be useful) and social ability (it

interacts with other agents in order to satisfy goals). In

order to design and construct agents it will be necessary

to take the following points into account: (i) Agents

theory (formal specification that describes what properties

the agents must fulfil), (ii) Agent languages (tools for the

design and construction of agent-based systems, e.g.:

agent-oriented programming—Agent0—, concurrent

METATEM) and, (iii) Agent architectures (agents’

internal structure which can be logic-based, reactive,

Belief-Desire-Intention-based or layered).

Agents can be useful as stand-alone entities that are

delegated particular tasks on behalf of a user. However, in

the majority of cases agents exist in environments that

contain other agents. In these multiagent systems (MASs),

the global behaviour derives from the interaction among the

constituent agents. There are two main classes of MASs

(Wooldridge, 2002): distributed problem solving systems, in
which the component agents are explicitly designed to

cooperatively achieve a given goal; and open systems,

whose agents are not co-designed to share a common goal,

and have been possibly developed by different people to

achieve possibly different objectives. Moreover, the com-

position of the system can dynamically vary as agents enter

and leave the system.

When a group of individual agents form a MAS, the

presence of a mechanism to coordinate such a group as well

as a communication language becomes necessary. Among

the coordination mechanisms the cases of agents having

common objectives (and, therefore, they cooperate) can be

distinguished from those where agents are self-interested

and have conflictive objectives with other agents. For the

latter case we will need negotiation. The most usual

cooperation mechanisms are: organizational structures,

multiagent planning—centralized and distributed—, con-

tract nets and functionally exact cooperation. Among the

ones belonging to negotiation we may highlight coalitions

formation, market mechanism, the bargaining theory, vote,

auctions and task assignment between two agents.

Agent communication languages allow agents to interact

each other while they hide their internal work details by

exchanging information and knowledge. Examples of those

ones are KIF (Knowledge Interchange Format), KQML

(Knowledge Query and Manipulation Language) and FIPA-

ACL (Foundations for Intelligent Physical Agents-Agents

Communication Language).
2.1.1. Multiagent platforms

For this project, we have employed available implemen-

tations of agent platforms which conform to FIPA (The

Foundations for Intelligent Physical Agents) Specifications,

namely, a group of normative rules that permit an agent

society to operate among themselves. This model identifies

some necessary agent’s roles for the platform management:

the AMS (Agent Management System), the DF (Directory

Facilitator), the ACC (Agent Communication Channel), the

IPMT (Internal Platform Message Transport) and the IIOP

(Internet Interface Object Protocol) (FIPA-OS Developers

Guide, 2001).

The communication language among agents that FIPA

proposes is FIPA-ACL, which specifies a standard message

passing language, establishing codification, semantics and

message pragmatics.

Finally, FIPA Standard includes the non-agent software

integration specification, the agents mobility and security,

the ontology service, and the human-agent interaction.

Amongst the frameworks that satisfy the FIPA Standard,

the more popular are ZEUS, JADE and FIPA-OS. We have

selected this last one in this work. FIPA-OS is an agent

framework developed with the aim of building hetero-

geneous agent platforms, agents and services that adjust to

FIPA Standard. In addition to the advantage to be an open

system in terms of license of use and extensibility, like

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235 225
ZEUS and JADE, FIPA-OS presents some additional

advantages:
,
 Interoperability with other FIPA agents platforms not

developed with FIPA-OS.
,
 It allows for agents heterogeneity, that is, agents

implemented with different programming languages.
,
 It supports FIPA specification for agents management.
,
 It provides abstractions and application program inter-

faces (APIs) that permit extending and integrating an

agents’s platform with other already existent software

platforms.
2.1.2. Agents for electronic commerce

According to Wooldridge (2002) agents make it possible

the second-generation e-commerce systems, in which many

aspects of a consumer’s buying behaviour is automated.

One phased model that attempts to describe consumer-

buying behaviour is the following (Guttman, Moukas, &

Maes, 1998):
1.
 Need identification. This stage characterizes the con-

sumer becoming aware of some need that is not satisfied.
2.
 Product brokering. A would-be consumer obtains

information related to available products in order to

determine what product to buy.
3.
 Merchant brokering. The consumer selects the supplier.

This stage will typically involve examining offers from a

range of different merchants.
4.
 Negotiation. The terms of the transaction are agreed

between the would-be consumer and the would-be mer-

chant. In some markets, the negotiation stage is empty—

the terms of agreement are fixed and not negotiable.
5.
 Purchase and delivery. The transaction is actually

carried out, and the good delivered.
6.
 Product service and evaluation. The post-purchase stage

involves product service, customer service, etc.

Agents have been widely promoted as being able to

(partially) automate some of these stages.
2.2. Decision support systems (DSS)

“In the rush to open their website, e-commerce sites too

often fail to support buyer decision making and search,

resulting in a loss of sale and the customer’s repeat

business” (Silverman et al., 2001). DSSs cover a wide

variety of systems, tools and technologies that support

decision-making in semi-structured and unstructured situ-

ations where no one knows exactly how the decision should

be made. It provides information, models, and data

manipulation tools to solve the structured parts of the

problem and help isolating places where both judgment and

experience are required.

As Silverman remarks, in online shopping sites buyers

have decisions to work out and tasks to perform that can be
facilitated by means of DSS software. We help clients with

part of this process using a natural language system (based

on a morphological analysis) that allows the system to find

out the user’s desires. Besides, a sorting process helps

buyers to determine the most convenient product for them.

2.3. Ontologies

Defining a common vocabulary (apart from the com-

munication language selected) is necessary for the agents to

communicate with one another. Thus, the communication is

facilitated through one ontology that defines the concepts and

the relations between the concepts of a particular domain.

With all, an ontology is viewed in this work as a

specification of a domain knowledge conceptualisation

(Van Heijst, Schreiber, & Wielinga, 1997), and is

represented through a set of concepts, while concepts are

defined through sets of both attributes and interconceptual

relations. So, the main ontological entity in the system

developed is the concept but the use of the other ontological

entities such as attributes is also possible in the model in

order to provide the system with powerful representational

capabilities.

2.4. Natural language processing (NLP)

In the approach presented in this work, the methodology

presented in Valencia-Garcı́a, Ruiz-Sánchez, Vivancos-Vi-

cente, Fernández-Breis, and Martı́nez-Béjar (2004) has been

used to get knowledge from text. This methodology, which

uses ontologies and one incremental knowledge acquisition

technique termed MCRDR (Kang, 1996), is based on the

idea that relationships between concepts are usually

associated to verbs in natural language. This methodology

uses the mentioned technique and the grammar category of

the words in the current sentence to infer other knowledge

entities (e.g. concept, attributes and values) in order to

create an ontology from a text fragment.
3. A framework for developing e-commerce applications

3.1. Overview of the system

The system architecture, which is shown in Fig. 1, has

four principal interconnected components. The most

important component is the multiagent platform, where

two agent types have been implemented, namely a buyer

and a seller. These agents communicate with one another

by means of ACL (Agent Communication Language)

messages. These agents must register in the Agent

Platform (AP), which specifies several types of agents

that can facilitate the multiagent communication. In

particular, the two Agent Platform types that will be

necessary to get registered in are: the Directory Facil-

itator (DF), which provides a yellow pages service to

Fig. 1. Framework general structure.

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235226
the other agents, and the Agent Management System

(AMS), which provides platform-typical management

functions (such as life cycle monitoring, checking of all

the entities’ correct behaviour and ‘white pages’). The

buyer agent functions include to get external petitions,

process them and return the obtained results. The petition

processing may include NLP, product ontology matching,

planning, plan execution and answer composition. Regard-

ing the seller agent, this has been provided only with

communication services with the buyer agents, so that

agent is able to answer for two petitions types: questions

about a particular type of product and orders. It can also

communicate with a product database, which contains the

product catalog of a manufacturer.

The second system component is the database (one for

each seller agent), which can be shared by the agents. The

database can be acceded by the seller agents using the Data

Access Object (DAO) pattern. The database is composed by

the products a manufacturer wants to sell, so that the

database contents are ontology-dependent.

Another important component of the system is the

product ontology. The ontology is saved in an XML file and

represents the specific relevant domain knowledge we are

dealing with, establishing a common set of words that

allows different types of agents to communicate one

another.

The last main component is the Web application, which

employs the FIPA-OS platform together with the above-

referred agents. For the application design, we have made

use of the Struts framework and Java technology.

In the following paragraphs, all these components are

detailed more precisely.
3.2. FIPA-OS and intelligent agents

According to FIPA-OS Developers Guide (2001), FIPA-

OS is a component-orientated toolkit for constructing FIPA

compliant Agents using mandatory components (i.e.

components required by all FIPA-OS Agents to execute),

components with switchable implementations, and optional

components (i.e. components that a FIPA-OS Agent can

optionally use) (see Fig. 2).

Agent shell (FIPAOSAgent). It provides a shell for Agent

implementation to use by simply extending the FIPAOSA-

gent class. The FIPAOSAgent shell is responsible for

loading an agent’s profile, and initialising the other

components which the Agent is composed by.

Task manager. It provides the ability to split the

functionality of an agent into smaller, disjoint units of

work known as tasks. These can be defined as self-contained

pieces of code that carry out some task and (optionally)

return a result, have the ability to send and receive

messages, and have little or preferably no dependence on

the agent which they are executed within.

Conversation manager. It provides the ability to keep

track of the conversation state at the performative level, as

well as a mechanism for grouping messages of the same

conversation together.

Message transport service. It provides the ability to

send/receive messages to/from an agent implementation.
3.2.1. The buyer agent

The buyer agent’s target is to look for the products that a

customer requests for (starting from a sentence) as well as

asking for a concrete product.

Fig. 2. Components within FIPA-OS.

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235 227
Agent initialisation. It involves four main tasks. First, it is

needed to initialise the NLP tool. Second, the agent must be

registered in the FIPA Agent Platform (AMS and DF Agents).

Third, messages buffers must be activated before conversa-

tions take place. Finally, the agent has to get all products

categories from the ontology (main concepts, synonymous,

attributes, relationships,.); the agent will use this infor-

mation when that one communicates with other agents.

Products search. This process begins when a customer

(i.e. the application user) writes a sentence denoting the

product that (s)he wants to get, and finishes when the system

returns the products matching what the user wants. In order

to do this, it is necessary a planner that determines the steps

that the agent must follow. For it, we have used an STRIPS-

type planner and some operators (see Section 3.2.3 for

details).

When the system has the plan, it is necessary to execute

it, so that the possible steps then are the following:
,
 Sentence analysis. Through this step, the system obtains

the concepts underlying the sentence introduced by the

customer. For it, the sentences analyser referred to

before in this paper is used.
,
 Category obtaining. The system determines the product

categories that the customer is looking for. For this, the

system compares the concepts found in the sentence

with the categories extracted from the product ontology.

If the system does not find any category that matches

any of the extracted concepts, then the plan execution is

stopped.
,
 Manufacturer finding. This is executed thanks to a task

included in the agent’s implementation. The task target

is to look for seller agents in the ‘yellow pages’. For it,

the system incorporates the Directory Facilitator

Agent—DF—, which returns a collection with all
Fig. 3. Message format 1 for info
the identifiers (ID) of the agents found. In order to match

this ID with the agent transport address, the system uses

the Agent Management System (AMS), i.e. white pages.

If the DF does not find any agent, then the plan

execution stops.
,
 Information request. For each category and seller agent

found, a task is created that starts a conversation with

the found agent and returns all products found grouped

by seller agent. The information returned has the

following format (Fig. 3).Where ‘Cat-i’ represents the

ith category, ‘Man-j’ the jth manufacturer and ‘Prod-ij’

is a product of the ith category offered by the jth

manufacturer.For each category, the system will return

all the products (and its respective manufacturers) found

with respect to that category.It is important to

emphasize that each seller agent works in parallel to

find the products of each category. The buyer agent

saves this information then and asks for the next

category.
,
 Offer selection. Once a buyer agent has the information

described before, the only remaining thing it has to do is

to sort the products of each category.The result of this

process is a collection with the following format

(Fig. 4).Where ‘BestPr’ represents the best product for

the category under question, ‘ManBP’ represents

the manufacturer for such a product, ‘2ndPr’ represent

the second best product for the category, ‘Man2P’ is the

manufacturer for the mentioned product, and so on.This

will be returned to the customer.
Asking for a product. In order to execute a product

petition, a search must have taken place previously, because

it is necessary to indicate the seller agent ID, in addition to

other product-related features such as the amount of

products, the product type and the product code.
rmation request.

Table 1

An operator for the blocks world problem

Pick-up(block)

Preconditions Clear(block)

On-table(block)

Arm-empty

Add list Holding(block)

Delete list On-table(block)

Clear(block)

Arm-empty

Fig. 4. Message format 2 for offer selection.

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235228
The task to attend the request hence needs the product

code (this must agree with the one that the seller agent has

registered), the product type or category, the AgentID of the

seller agent that offers the product and the number of units

the customer requests. All this information is then sent to the

seller through an ACL message.

3.2.2. The seller agent

The seller agent is in charge of performing three

tasks: one consists of attending petitions and determining

which task to execute; the second is to keep the

communication with the buyer agent which requests

some products, and the last carries out the petition record

of a given product. Therefore, this agent’s main objective

is to receive petitions and questions from different buyer

agents.

Agent initialisation. This process is similar to the agent

initialisation process in the buyer agent. This agent does not

use NLP neither planning.

Search task. This task is executed when a ‘Query’-type

message is received. The aim of this task is to return all the

products found in the database with the category indicated

in the query.

Petition task. This task is called when a message

‘Petition’ is received. The function of this task is to insert

a record of the product sale into the database. This task can

check whether the product is available in stock or it is

necessary to make a petition to the providers.

3.2.3. The planner

STRIPS (Fikes & Nilsson, 1971) is a linear planner

that attempts to find a sequence of operators in a space

of world models to transform a given initial world model

into a model in which a given goal formula can be

proven true. It represents a world model as an arbitrary

collection of first-order predicate calculus formulae and

works with models consisting of a large number of

formulae. It uses a resolution theorem prover to answer

questions of particular models and mean-ends analysis as

a guide towards the desired goal-satisfying model.

For every world model, we have a set of applicable

operators, which transform the world model into another

world model. The problem solver finds some composition of

operators that transforms a given initial world model into

one that satisfies a stated goal condition.

In STRIPS, a world model is represented by a set of

well formed first-order predicate calculus formulae.

Each operator in a solution corresponds to an action

routine whose execution causes a robot to take certain

actions.
Each operator in STRIPS is composed by:
–
 A set of preconditions. To execute the action related to

the operator it is necessary that preconditions are true

before the operator can be applied.
–
 Delete list, which is a set of formulae that will not be true

after the operator has been applied (so that the planner

has to delete them from the current world model).
–
 Add list, which is a set of formulae that will be true after

the operator has been applied (so that the planner has to

add them to the current world model).

For example, an operator for the Blocks World problem

is shown in Table 1.

In Table 1, clear(block), on-table (block), arm-empty and

holding(block) are well formed formulae.

STRIPS, like most of planners, has been applied to the

blocks world problem as an effective benchmark (Slaney &

Thiébaux, 2001). The blocks world problem consists of a

finite number of blocks stacked into towers on a table large

enough to hold them all. The towers’ positioning on the

table is irrelevant. The Blocks World planning problem is to

turn a blocks initial state into a goal state, by moving one

block at a time from the top of a tower onto another tower or

to the table. The optimal Block World planning problem

consist in doing so in a minimal number of moves.

Most of planners adopt the STRIPS representation and

search forward the state space. The GRT planner (Refanidis

& Vlahavas, 2001) is a domain-independent heuristic

planner, which solves planning problems calculating in a

first, phase the distances between the facts and the goals of

the problem. The second phase consists of a simple best first

search strategy using the distances calculated in the previous

phase. This planner has been validated in several domains

like blocks-world domain, in which GRT can easily solve

problems with more than 20 blocks.

Another planner, which adopts the STRIPS represen-

tation is the Fast-Forward Planning System (Hoffmann,

2001), which attacks the planning problems by forward

Table 2

The set of well formed formulae

Formula Description

PREFERENCE(S) The customer’s desires contained in the

sentence S

CONCEPT(CO, S) The concept CO in S

CATEGORY(C, CO, S) The category C is one of the customer’s

preferences related to CO in S

MANUFACTURER(MA) The manufacturer MA is registered in the

system, therefore, it is available for

possible petitions

INFO(OF, MA, C) The manufacturer MA presents the offer

OF for C

SORT(OF) The offer’s group is sorted out attending to

the relation quality-price

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235 229
searching in the state space, guided by a heuristic function.

This function is extracted from the domain description

relaxing the planning problem by ignoring parts of its

specification, concretely the delete lists of operators.

In this work, we have used a STRIPS planner for allowing

agents to determine dynamically the actions to be performed.

More precisely, this planner has been implemented into the

buyer agent to accomplish the product search task. The well

formed formulae of first-order predicate calculus used in this

planner are showed in Table 2.

The initial world model is formed by the formulae which

represent the user’s preferences. The formulae of the final

world model represent an ordered set containing the

products that the customer may be interested in (according

to his/her likes and dislikes).

The operators which have been designed can be viewed

in Table 3.
3.2.4. Natural language processing

The NLP application used in this approach is based on

the work presented in Valencia-Garcı́a et al. (2004), where
Table 3

The STRIPS operators

Operator

FINDMANUFAC-

TURER()

Preconditions

Delete list

Add list MANUFACTU

ANALYZE(F) Preconditions PREFERENCE

MANUFACTU

Delete list MANUFACTU

Add list CONCEPT(CO

GETCATEGORY(CO) Preconditions CONCEPT(CO

Delete list CONCEPT(CO

Add list CATEGORY(C

REQUESTINFO(C) Preconditions MANUFACTU

CATEGORY(C

Delete list CATEGORY(C

Add list INFO(OF, MA

SELECTOFFER(OF) Preconditions INFO(OF, MA

Delete list INFO(OF, MA

Add list SORT(OF)
the authors described a software tool for ontology building

from natural language texts. The principal idea sustaining

our approach is that in natural language relationships

between knowledge entities are usually associated to verbs.

The knowledge acquisition process is divided into three

sequential phases, which have been implemented into three

separate modules: POS-tagging, Concept search and

inference.

POS-tagging. The main objective of this process is to

obtain the grammatical category of each word in the current

sentence. For this purpose, the POS-tagger described in

Ruiz-Sánchez, Valencia-Garcı́a, Fernández-Breis, Martı́-

nez-Béjar, and Compton (2003) is used. This is the first sub-

process to be carried out.

Concept search. Through this process, linguistic

expressions representing concepts are identified. The

associations between linguistic expressions and concepts

have been stored in the conceptual knowledge base in a

previous training of the system. This process is quite simple

and as a result we obtain all the expressions of the fragment

which are already in the conceptual knowledge base.

Inference. In natural language, relationships between

concepts are usually associated to verbs. Although the sub-

process in which MCRDR acts is mainly concerned with

obtaining relationships between concepts, it can also be

used to get other knowledge categories like concepts,

attributes, or values. This MCRDR component is formed by

a knowledge-base that contains linguistic expressions

representing generic conceptual relationships, and by an

MCRDR subsystem that infers the participants in these

relationships. We describe next the modus operandi of this

process. Firstly, the verb in the current sentence is identified.

Then, the user (of the system if the knowledge base is not

empty) searches for the type of semantic relationship

associated to that verb. Once the type of relation associated

to the main verb in the current sentence has been found, the

MCRDR sub-system is applied to extract knowledge by
Action

Return all the manufacturer registered

RER(MA)

(S) Obtain the relevant concepts within a sentence

RER(MA)

RER(MA)

, S)

,S) Try to match a concept with the set of product categories

,S)

, CO, S)

RER(MA) Make a request to a manufacturer about a category

, CO, S)

, CO, S)

, C)

, C) Sort a set of offers related to the same category

, C)

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235230
means of the grammatical category of the words, their

position in the current sentence, and the type of relation

associated to the verb, if any.

The inputs of this tool are the product queries, in natural

language, introduced by the customers. An example of these

queries could be: “I need a 20 GB Hard Disk”. Then, the

system would obtain, for instance, an ontology formed by

the concept ‘HARD DISK’, so that the attribute ‘Capacity’

of this concept is ‘20 GB’.

As it has been indicated before, the NLP system needs a

previous training in the domain. This training is based on the

study of a set of texts in natural language related to the domain.

In our case, this domain has been a hardware domain.

3.3. Product ontology

In order to maintain a conversation, agents must have a

common language. This is established by means of an

ontology, which contains the main concepts owning to the

domain we are dealing with. In addition to this information,

the ontology also includes attributes, values, relations

between concepts and axioms so that consistency checking

and inferences are done.

These concepts are the ones the buyer agent utilizes to

indicate the customer’s preferences to the seller agent and

the ones the seller agent utilizes to access the database.

An (incomplete) example of a product ontology related

to the computer products domain is shown in Fig. 5.

In this example, ontology shows how a computer is

composed by several elements: monitor, keyboard, mouse,

motherboard, processor, etc.

3.3.1. Ontology editor

To specify the product ontology, a graphic tool prototype

has been implemented that allows to introduce concepts,

attributes and semantic relations in a intuitive way. It also

generates an XML document with the designed ontology’s

description.
Fig. 5. Computer pro
The XML file has the following characteristics:
,

ducts
Concept:

!concept commentZ“” nameZ“COMPUTER”O
!alternative-namesO
!nameOWORKSTATION!/nameO
!nameOPC!/nameO
!nameOLAPTOP!nameO
!/alternative-namesO
!specific-attributesO
!attribute commentZ“” nameZ“TRADE-
MARK” typeZ“STRING”O!/attributeO
!attribute commentZ“” nameZ“MODEL”
typeZ“STRING”O!/attributeO
!attribute commentZ“” nameZ“DESCRIP-
TION” typeZ“STRING”O!/attributeO
!attribute commentZ“” nameZ“GUAR-
ANTY” typeZ“INTEGER”O!/attributeO
!attribute commentZ“” nameZ“PRICE”
typeZ“INTEGER”O!/attributeO
!/specific-attributesO
!/conceptO
ont
It can be noticed that every concept, besides the ‘main

name’, has also alternative names (that we will use like

synonyms), in addition to its attributes.
,
 Relation:

!relation nameZ“COMPONENT_OBJECT”O
!concept_nameOPROCESSOR!
/concept_nameO
!concept_nameOCOMPUTER!
/concept_nameO
!relation_typeO
!propertyONonSymmetry!/propertyO
!/relation_typeO
!/relationO
ology.

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235 231
In this case, in addition to the concepts taking part in the

semantic relation under question, the relation will have

a name with the relation type and eventually some other

properties associated to that relation.
3.3.2. The analyser

There are two possible parsers. The API SAX accom-

plishes a sequential access to the document and provides an

event based programming model (callbacks). On the other

hand, the API DOM makes a tree structure from the

document. The main advantages of API SAX are its

simplicity and that it consumes less time of processing.

So, we have chosen this option because we do not need to

update the document and the API SAX is a more simple

solution to do the queries in the ontology. Thus, every agent

only needs to do one document analysis.

The buyer agent, once the concepts of the customer

sentence have been found, should compare these concepts with

that found in the ontology in such a way that, if they match, we

understand that it is a product the customer wants to buy.
3.4. Product database

The product each manufacturer possesses has been stored

in a database. For it, MySQL Database Server has been

chosen because, apart from being Open Source (uses the

GPL—GNU General Public License), it is very fast, reliable,

and easy to use MySQL Reference Manual (2002). Besides,

the MySQL Database Software is a client/server system that

consists of a multi-threaded SQL server that supports

different backends, several different client programs and

libraries, administrative tools and a wide range of application

programming interfaces (APIs).

A JDBC–ODBC bridge driver has been utilized to access

the database from Java due to its efficiently using native
Fig. 6. Connection pool
database client code. Besides, the drive may be changed

easily in the Web application description file.

In order to add flexibility to the database management the

DAO pattern has been used, so that persistent information

from different sources (relational databases, LDAP, XML,

etc.) can be stored and recovered. The benefits from utilizing

this solution are the following: transparency-oriented, easier

component migration, complexity reduction and centraliza-

tion of the access to data through a single layer.

We also use a connection pool to improve the

performance (see Fig. 6).

The general structure of the DAO pattern is shown in

Fig. 7.

3.5. Web application

With the purpose of applying the designed agents in a

real environment, the FIPA-OS framework has been

integrated into a Web application.

3.5.1. Agents integration

We have to distinguish three subjects: the AgentLoader

creation, the buyer agent creation and the seller agent

creation.

AgentLoader creation. The environment initialisation is

needed in order to start working with FIPA-OS. This is done

by ‘Loader’, which reads configuration files and creates the

AMS and DF agents (those that form the platform kernel).

The AgentLoader must be created by the FrontController

Servlet (see Section 3.5.2) at the application initialisation

time.

The buyer agent creation. Each customer has a buyer

agent associated to him/her. When a customer starts to use

the application, a buyer agent is created. The problem

observed then was that the agent creation process is very

slowly.
implementation.

Fig. 7. DAO pattern implementation.

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235232
The solution provided for that problem was to use the

connection pool’s idea commented before for the database,

so that when there are not enough agents to associate to

customers new agents are created.

The seller agent creation. For each manufacturer, we will

have previously set up a database containing the stock

together with a seller agent associated to it and registered in

the platform.

In this way, the customer through his buyer agent will

have access to the stock of a large number of manufacturers

being able to choose a better product.
3.5.2. Application design

The design is based on the Apache Struts Web

Application Framework. In this way, we only have one

Servlet (FrontController) where all petitions go to. This

Servlet studies every petition and executes the action that

corresponds to the petition.
4. The system prototype

A software tool based on the approach described in this

work has been designed and implemented for facilitating
e-commerce. This is a Web application implemented with

Java technology and designed following Struts recommen-

dations. The application domain on which it has been

applied is computer hardware.

The user has been provided with two ways to introduce a

query. On the one hand, it is possible to write free text with

the user’s desires and, on the other hand, the user can select

specific product categories from those indicated in Fig. 8.

We have trained the system with some sentences a user

can write to ask for a hardware component. In this process,

when we introduce a sentence to the tool, we have to

establish the concepts, attributes, values and relations this

sentence contains. For example, if we say I want a 60 GB

hard disk, we will have to indicate that there is a concept,

‘hard disk’, with an attribute, Capacity, which value in this

example is ‘60 GB’. Once the tool have learnt this, if we

introduce a new sentence like I want a 256 MB memory, the

tool will automatically determine that there is a concept

‘memory’, with the attribute Capacity which value is

‘256 MB’.

Once the user has entered information into the system

about the wanted products, the system creates a set with the

product categories that match the user wishes. Once the

communication with the seller agents is established,

Fig. 8. Screenshot showing product categories.

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235 233
the application shows a page with the best products of each

category. Then, the user is shown a list of all the products

related to a found category sorted by an internal relation

quality-prize.

Finally, for each product the user is interested in

(according to the information supplied by her/him to the

system), the user will be able to ask for the amount (s)he

wants (see Fig. 9). Internally, this request will be addressed
Fig. 9. List of products so
to the seller agent that represents the manufacturer which

has the product under question in its catalog.
5. Validation of the system

The system described in previous sections has been

employed by eight users, who were given two hardware
rted by categories.

Table 4

System scoring

Question Score (by user)

U1 U2 U3 U4 U5 U6 U7 U8

Previous experience in suchlike application 0 5 8 6 7 4 1 3

Interface 7 6 6 3 5 5 6 5

Performance – 6 5 3 4 8 6 5

Application utility 8 8 – 6 5 8 7 8

Easy use 9 7 8 6 7 9 9 8

Agree with solution 7 6 6 5 5 8 7 6

Utility (Do they think new characteristics are

important (DSS, NLP,.?))

9 6 7 7 – 10 9 8

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235234
product catalogs. Each catalog had products belonging to

seven categories: hard disk, mouse, graphic card, sound

card, monitor, motherboard and CD player. Moreover, each

catalog possessed three items.

The mode the system was deployed is the following. In

one computer, we installed the Web application and one of

the two seller agents (the one which accesses to its catalog).

On the other hand, in a distinct computer we set up then the

seller agent to make queries on the another available

catalog.

The users were asked to use the system during half an

hour and to make at least 10 requests to the system. Utilities

like search by all product categories to browse between

products in an easy way were assessed as important for

them.

The main problem found by them was the performance

(caused by the time consumed by the NLP module). They all

think that the interface is intuitive but too simple and agree

in the fact that the functionalities added to the e-commerce

application are positive.

Finally, the goodness of solution was well assed for most

of them: they think that it is necessary to take additional

attributes into account (price, brand, product characteristics,

etc.) in order to minimize the space of search. These results

are summarized in Table 4.
6. Discussion and conclusion

The results presented in this paper contribute to the

development of intelligent electronic-commerce appli-

cations that are capable of simulating real world transactions.

Concerning related work, a similar solution to ours can be

found in Silverman et al. (2001). However, while in our

solution we split the functionality into two different agent

roles (buyer and seller), the quoted author makes use of an

unique search agent that integrates all the functionality.

Using intelligent agent technologies, NLP, decision

support systems, ontologies and web technologies we have

made a system that facilitates B2C (business-to-consumer)

and B2B (business-to-business) transactions.
The agents have been designed and implemented within

a multiagent framework, FIPA-OS, that follow a broad

standard such as FIPA (Foundation for Intelligent Physical

Agents). It allows to develop a distributed application in a

very simple way. All this makes the development process

more realistic, simulating the interaction between a store

customer and the seller, which attempts to help the buyer to

find the product that (s)he is looking for. At the same time,

the solution presented in this paper also gives the user an

object pre-classification that supports the user decision.

The system developed has made use of advanced

technologies to build an intelligent application but there

are some aspects that we have not taken into account such as

security, auctions, efficiency, etc. In particular, a few

interesting issues should be explored and improved in

future system improvements. First, a more complete

ontology (i.e. with more knowledge) must be created. The

application must be able to take into account and to use all

the knowledge contained in the ontology (axioms, attri-

butes, etc.). Second, it is important to better train the NLP

tool allowing more free text, so that the application be able

to understand the customer’s wishes and to do a better

search. Third, in the current approach the agents must

follow a rigid plan created by an STRIPS-like planner.

We can use a more flexible planner, which uses more

knowledge about the environments and creates plans that

take into account the possible contingencies that could take

place. Fourth, we can make the application totally product-

independent. This implies the intensive use of the ontology

in all application fields. Fifth, both the buyer user and the

seller user might be given the possibility of configuring their

respective agents. So, a buyer agent could be configured

with the buyer user’s preferences (e.g. the cheapest product,

or the one with more quality,.) and something similar with

the seller agent. Finally, it could be interesting to use XML

messages for the agents to communicate with one another,

as a number of manufacturers currently do.
Acknowledgements

We thank the Spanish Ministry for Science and

Technology for its support for the development of

F. Garcı́a-Sánchez et al. / Expert Systems with Applications 28 (2005) 223–235 235
the system through projects TIC2002-03879, FIT-110100-

2003-73 and FIT-150500-2003-503; the Regional Govern-

ment of Murcia (Spain) through project 2I03SIU0039; and

Seneca Foundation through project PI-16/0085/FS/01. We

also thank the European Commission for its support under

project ALFA II0092FA.
References

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the

application of theorem proving to problem solving. Artificial Intelli-

gence, 2, 189–208.

FIPA-OS Developers Guide (2001). http://fipa-os.sourceforge.net/,

February.

Guttman, R. H., Moukas, A. G., & Maes, P. (1998). Agent-mediated

electronic commerce: A survey. The Knowledge Engineering Review,

13(2), 147–159.

Hoffmann, J. (2001). The fast-forward planning system. AI Magazine,

57– 61.

Kang, B. (1996). Multiple classification ripple down rules. PhD Thesis,

University of New South Wales.
MySQL Reference Manual (2002). http://www.mysql.com/.

Refanidis, I., & Vlahavas, I. (2001). The GRT planner. AI Magazine,

63–65.

Ruiz-Sánchez, J. M., Valencia-Garcı́a, R., Fernández-Breis, J. T., Martı́nez

Béjar, R., & Compton, P. (2003). An approach for incremental

knowledge acquisition from text. Expert Systems with Applications, 25,

77–86.

Silverman, B. G., Bachann, M., & Al-Akharas, K. (2001). Implications of

buyer decisión theory for design of e-commerce websites. International

Journal of Human Computer Studies, 55, 815–844.

Slaney, J., & Thiébaux, S. (2001). Blocks World revisited. Artificial

Intelligence, 125, 119–153.

Valencia-Garcı́a, R., Ruiz-Sánchez, J. M., Vivancos-Vicente, P. J.,

Fernández-Breis, J. T., & Martı́nez-Béjar, R. (2004). An incremental

approach for discovering medical knowledge from texts. Expert

Systems with Applications, 26(3), 291–299.

Van Heijst, G., Schreiber, A. T., & Wielinga, B. J. (1997). Using explicit

ontologies in KBS development. International Journal of Human

Computer Studies, 45, 183–292.

Vlassis, N. (2003). A concise introduction to multiagent systems and

distributed AI. http://carol.science.uva.nl/~vlassis/cimasdai/.

Wooldridge, M. (2002). An introduction to MultiAgent systems. New York:

Wiley.

http://fipa-os.sourceforge.net/
http://www.mysql.com/
http://carol.science.uva.nl/~vlassis/cimasdai/

	An integrated approach for developing e-commerce applications
	Introduction
	Methodology
	Multiagent systems
	Decision support systems (DSS)
	Ontologies
	Natural language processing (NLP)

	A framework for developing e-commerce applications
	Overview of the system
	FIPA-OS and intelligent agents
	Product ontology
	Product database
	Web application

	The system prototype
	Validation of the system
	Discussion and conclusion
	Acknowledgements
	References

