State of the Art in Computer Games:

Challenges and Solutions

Aleksandr Shnayderman

CIS 718 Expert Systems

Introduction

Artificial Intelligence or AI is the prominent area of research in today’s computer science. Artificial Intelligence has as its goal solution of problems which can not be solved by traditional programming or when a typical solution takes unacceptably too long to compute. Artificial Intelligence usually aims at finding the best possible solution without considering all possible solutions. While trying to model situations which would require intelligence researchers frequently turn to games. 


“Games are ideal domains for exploring the capabilities of computational intelligence. The rules are fixed, the scope of the problem is constrained, and the interactions of the players are well defined. Contrast the game world with the real world - the game of life - where the rules often change, the scope of the problem is almost limitless, and the participants interact in an infinite number of ways. Games can be a microcosm of the real world (for example, the role of game theory in economics, social interaction, and animal behavior), and successfully achieving high computer performance in a nontrivial game can be a stepping stone toward solving more challenging real-world problems.” [1]


Today computer programs have been written to play a multitude of games. Some of these games like chess and checkers have been around for thousands of years. Others like poker and bridge are very young by comparison. In either case these games have well defined small and simple set of rules while at the same time allowing for finite yet very large number of situations that can arise during game play.


This survey will provide a description of several games used in AI research. For some of them a “better than any human” player program has been written while for others best playing programs barely qualify as rookies. There will be a brief description of each game and its rules in order to give the reader better understanding of the matters being discussed. Then the difficulties that each particular game has with respect to AI programming will be shown along with the possible ways to overcome them. Also well known computer programs that play these games and famous man vs. machine matches will be discussed.

Checkers

Just in case you do not know already, Checkers, also known as "draughts" in Ireland and the UK, is played on 8X8 board. Pieces move diagonally forward, one square at a time, and capture enemy pieces by jumping them. If a piece reaches the back rank, it is promoted to a king, which can move backwards as well as forwards. The goal of the game is to capture all enemy pieces. There are also other versions of checkers popular in various parts of the world with slightly different rules.

From a mathematical game theory point of view, checkers is a simpler game than chess. There are only 5x1020 positions (5 with 20 zeros after it) in checkers, whereas chess has at least 1040 positions. Thus, we have a better chance of completely solving checkers than chess. [2]

However having somewhat smaller decision space or simpler rules (all pieces are equivalent except for kings) does not mean that this game is any easier to win at for human players nor does it mean that it is easier to create a good program to play the game.


In 1952 Arthur L. Samuel wrote a checkers playing program. He started thinking about it way back in 1948 but did not start coding until a while later. Samuel’s main goal however was not so much creating a good checkers playing program as creating a program that learns. In his program Samuels took advantage of the existing annotations of checker games which distinguished good moves versus the bad ones. In particular his program used Lee's Guide to Checkers to adjust its criteria for choosing moves so that the program would choose moves thought good by checker experts as often as possible. [4]


In 1963 Samuel challenged Robert Nealeyn, who was the Connecticut state checker champion and the number four ranked player in the nation, to an exhibition match between the champion and the program. Samuel's program won. From this single game, many people erroneously concluded that checkers was a "solved'" game. [4, 1]


Later in 1966 Samuel's program lost 8 games in a row in 1966 against Walter Hellman and Derek Oldbury.


It is interesting to note that Christopher Strachey developed a checker playing program several months before Samuel. Strachey’s program however did not become as well known as Samuel’s.


In the 1970's Eric Jensen, Tom Truscott and Alan Bierman from Duke University wrote another checkers playing program. Their program beat Samuel's program in a 2-game match. However shortly after that it lost against grandmaster Elbert Lowder in a 5-game match with 2 losses, 2 draws and a win. Experts say that Lowder played carelessly and should have won the game he lost and thus should have won the match versus the program. Regardless, the authors of the program were inspired to challenge the world champion, Marion Tinsley. But that match never happened, and the program was retired. [1]

In 1989 a team under the leadership of Jonathan Schaeffer from University of Alberta began working on what would become the world's most famous computer checkers program. Norman Treolar was the team's checkers expert, and responsible for the evaluation function and the opening book. Robert Lake was in charge of the endgame databases. Martin Bryant supplied a very big and very good opening book for the project. A lot of graduate students were also involved in developing the soon to be famous program. The program was named Chinook. [1]

At that time computers became faster than in the preceding years. Chinook, the program developed by Schaeffer and his team, uses alpha-beta search with a myriad of enhancements, including iterative deepening, transposition table, move ordering, search extensions, and search reductions. However Chinook also introduced something new to the field of computer checkers: endgame databases. The Chinook team produced databases which gave the computer perfect knowledge for all positions with 8 pieces or less on the board of the form win/loss/draw. Therefore you do not need to search once you are in the database because you already have the knowledge of the best move for any situation. The win/loss/draw scheme is interesting, because it has to store less information and therefore you can compress these databases much more. This is important if you want to access the database during the search. The 8-piece database turned out to be about 6GB in compressed form. The Chinook endgame database was the largest endgame database ever computed at that time. Chinook was able to average a minimum of 19-ply searches (using 1994 hardware), with search extensions occasionally reaching 45 ply into the tree. The median position evaluated was typically 25-ply deep into the search. [1]

Like the Duke programmers, Schaeffer and his team wanted to play against the human world champion, Marion Tinsley. They got their match in 1992, but lost with 2 wins versus 4 losses. At that time, they didn't have the 8-piece database yet. In 1994, a rematch was started, this time Chinook had the full 8-piece database. Due to bad health, Tinsley forfeited the match after 6 drawn games, he died shortly afterwards from cancer. Later on Chinook beat Don Lafferty, who was considered the second best player in the world after Tinsley in 1995 in a very close match (1 win and 31 draws), and finished clear first far ahead of the field in the 1996 national tournament in the US. At that point, the Chinook team decided there was nothing left to prove, and the program was retired. The endgame database was made public, and was the standard for PC programs for many more years. [1]

Backgammon

Backgammon is a simple two player game with deep strategic elements. Each player has fifteen pieces which move between twenty-four triangles (points) according to the roll of two dice. The objective of the game is to be the first to bear off, that is, to move all fifteen checkers off the board. It is a game of both skill and luck. [5]

In the late 1970s Hans Berliner of Carnegie Mellon University made an attempt at building a strong backgammon program. His program, BKG9.8, was programmed on PDP-10 as an experiment in evaluating board positions. Early versions of BKG played badly even against poor players, but Berliner noticed that the critical mistakes the program made were always at phase changes. He applied basic principles of fuzzy logic to smooth out the transition between phase changes which greatly improved program’s performance. [1, 5]

By July 1979, BKG 9.8 was ready to play against then current backgammon world champion Luigi Villa. In the exhibition match the final score was seven points to one in favor of the computer. BKG9.8 won four of the five games played (the rest of the points came from the doubling cube). This program became the first computer program to defeat a world champion in any game, although, some say that this was mostly a matter of luck, as the computer happened to get better die rolls than its opponent in that match. [1, 5]

In the late 1980 IBM researcher Gerald Tesauro began work on a neural net based backgammon program. The neural net used encoded backgammon knowledge acquired through training on data sets of games played by expert players. With this training it learned the weights to assign to these pieces of knowledge. The program, Neurogammon, was good enough to win first place in the 1989 Computer Olympiad.

Later Tesauro created another backgammon playing program called TD-Gammon. This program's neural network was trained by using temporal difference learning applied to data generated from self-play. Instead of using data collected from human matches this program played with itself and thus figured out various pieces of knowledge and weights to assign to them. Later versions of TD-Gammon used more knowledge, larger neural net and small selective searches. [1, 5]


In 1998 at the AAAI-98 conference an exhibition match was played between TD-Gammon 3.0 and world champion Malcolm Davis. In order to reduce the luck factor a total of 100 games were played. Malcolm Davis won by a narrow eight points. TD-Gammon’s performance is thought to be on the level of the best human players in the world.

GO

The game of go is a two player board game. Full sized Go board will have a grid of 19 horizontal and 19 vertical lines. Therefore a full sized Go board will have 361 intersections. Some simplified modifications of Go use 13X13 or 9X9 board. The game is played with black and white stones which are placed on the intersections of the grid. The object of the game is to capture your opponent’s stones by surrounding them with your own.

The beauty of Go is that it has only a few simple rules (far fewer than in chess). At the same time the number of possible situations which can arise during game play is far greater than that in chess. One major challenge that Go presents to computer programmers is that there is no easy way to accurately determine value of any particular game situation. Furthermore there is no easy way to tell whether any particular group of opponent’s stones is worth capturing or not. Quite often player’s stones that were used to capture the opponent’s stones are thus exposed to be captured themselves.

The first go program was written by Al Zobrist in 1968. It was a part of his PhD thesis on pattern recognition. In his program Al Zorbist introduced the idea of influence function which divided the board into black and white territories. His program divided the game into four phases. First the opening in which the program lays out its stones in preparation for the following stages. Then there was an extension phase in which the program extends its territory towards the center point on the game board. The next stage was defense and attack of loosely stacked out territory. Finally, there was the endgame phase in which the program attacks or defends a fairly stable territory. [1, 6]

Walter Reitman and Bruce Wilcox began researching go programs in 1972. These early efforts produced weak programs. There was no obvious single algorithm to build a program around, as alpha-beta had done for chess. The difficulty in writing a go program became evident. A strong Go program can not depend on search. It would need lots of patterns and knowledge, with only a limited use of search. [1]

In 1976 David Benson published an algorithm for unconditional life determination. He presented an efficient algorithm which requires no search and allows to determine stones that are “alive” or, in other words, impossible to capture. His algorithm was later used in some Go playing programs. [6]

Computer go tournaments began in 1984 with a series of annual tournaments at the USENIX Conference. The Acornsoft Computer Go Competition which also happened in 1984 was first ever computer Go event, for programs for the BBC micro (6502 chip) devised by David Johnson-Davies and Charles Matthews. The winning program was published in 1985. In 1987, the First International Go Congress was held, and there have been annual events ever since. [1, 6]

The mid-1990s were dominated by Zhixing Chen’s program Handtalk. Handtalk was the best performing Go program from 1995 to 1997 while it was being rewritten. Around this time another program called GO4++ which was written by Michael Reiss' assumed front-runner status. Later Zhixing Chen has written another Go playing program called Goemate which became and still remains a Go champion program. [1]

Even though Zhixing Chen’s program is the best Go playing program to date it still remains comparable only to mid-level amateur human players. Some experts believe that it is even weaker than that. Today when chess program has defeated a world champion and checkers is considered to be almost a solved game Go remains the game which humans play far better than machines. Go is resistant to many techniques which were successfully used to create programs for other games that play on the level of the human world champion or better. In fact alpha-beta search, which is successfully used in Chess programs, is nearly useless due to very large branching factor. David Fotland, the author of the Many Faces of Go program, identifies over 50 major components needed by a strong go-playing program. These components are very different from each other and none of them are easy to implement. Yet David Fotland says that all those components are critical to any program that hopes to achieve a successful game play.

Othello

Othello, also known as Riversi, is another simple yet very strategic board game which attracted the attention of the AI researchers. The game is played with light and dark colored stones (checkers, disks) on a grid board. The stones are placed within the cells of the grid. The objective of the game is to turn as many stones as you can to your color by locking opposite colored stones between yours. [5]

The first major Othello playing program was written in 1982 by Paul Rosenbloom. The program Iago achieved very impressive results especially considering early 1980s hardware it ran on. The program showed superior performance compared to other Othello playing programs which existed at that time. However Iago lost both games that it played against the human world class players. Iago was able to accurately predict 59% of the moves made by human players which led experts to conclude that it was on the level of the human world class player. [1]

By the late 1980s another famous Othello program was developed by Kai-Fu Lee and Sanjoy Mahajan. The program was called Bill. Bill won every game it played against Iago. Bill combined deep search with extensive knowledge in the form of pre-computed tables in its evaluation function. Bayesian learning was used to combine the evaluation-function features in a weighted quadratic polynomial. Bill played a single game against the highest-rated American Othello player at the time, Brian Rose, and won. [1]

The 1990s saw the rise of another Othello playing program created by Michael Buro. The program was called Logistello. It used alpha-beta search with a sophisticated evaluation function. The program divided the game play into thirteen phases based on the number of discs on the board. Each phase had a different set of weights for the evaluation function. Evaluation function recognized and considered patterns of squares comprising combinations of corners, diagonals, and rows which allowed it to evaluate important Othello concepts, such as mobility, stability, and parity. LOGISTELLO had eleven such patterns, which with rotations and reflections yielded 46. The patterns include a 3 X 3 and a 5 X 2 configuration of stones anchored in a corner and all diagonals of length greater than three. Millions of weight table entries for thirteen phases of the game were pre-computed from self play. Thus a table lookup returned a weight for any given game situation which was used in the evaluation function. [1]

Logistello participated in 25 tournaments. Out of those 25 it finished first eighteen times, second six times and fourth once. In 1997 Logistello played an exhibition match against world champion Takeshi Murakami. Logistello won all six games against Murakami by a total stone count of 264 to 120. This match demonstrated that computer Othello playing abilities have surpassed human ones. As a matter of fact the experts say that the gap in Othello playing abilities of man and machine is very large and effectively insurmountable. [1]

Scrabble

Scrabble is a game in which players score points by forming words from letter tiles in a crossword fashion on a 15X15 board. The words are formed across and down and must appear in a dictionary. Each letter is worth a certain amount of points based on how often the letter is used in the English language. More frequent letters are worth fewer points than less frequent ones. Furthermore the board is marked with squares that increase the number of points a player gets from forming a word over them. Some squares multiply the value of individual letter while others multiply the whole words. The letters that the players get are drawn from a bag and are thus random. [5]

Scrabble presents a number of challenges when trying to program a good computer player. Scrabble can rarely be won by simply creating the most expensive words that your letters allow. A player has to consider position of his words and letters in them so as to prevent the other players from scoring points with the letters he put on the board. Additionally a player has to consider creating words over the bonus squares. Thus Scrabble has a very strong territorial aspect. In addition there is some room for prediction of opponents’ word creating capabilities based on the letters they played, the letters a player has and whether there are any more letters left in the bag.

The first known Scrabble playing program was written in 1977 by Stuart C. Shapiro and Howard Smith. Later a number of other Scrabble playing programs emerged. Among them was a program called Tyler developed by Alan Frank which took the second place in 1989 Olympiad. Then there was the program developed by Andrew Appel, Guy Jacobson, and Graeme Thomas called Crab which took the first place. Later a program called TSP developed by Jim Homan showed performance of the Tyler’s level. [1]

The computer players were very successful partially because they had access to the entire dictionary which is a serious advantage over human players. Another factor that contributed to the success of computer players is the fast and compact Scrabble move generator developed by Andrew Appel. It is worth noting that later Steven Gordon developed another Scrabble move generator which was twice as fast but required five times more storage than Appel’s.

The development of the most famous Scrabble playing program, Maven, began in 1983. By December 1986 Brian Sheppard’s program matured enough to be entered into a tournament versus human players. MAVEN scored eight wins and two losses over an elite field, finishing in second place on a tie breaker. In the following years Maven demonstrated superior performance over human players. [1]

In the 1990s, Sheppard developed a pre-endgame analyzer (when there were a few tiles left in the bag) and improved the program's ability to simulate likely sequences of moves. This advancement has greatly improved the ability of the program to play the game. That was a great achievement indeed considering how even without it the program already demonstrated super human performance. [1]

“In 1997, a two-game match between MAVEN and Adam Logan at AAAI-97, one of the best players in North America, ended in two wins for the human. Unfortunately, the match was not long enough to get a sense of who was really the best player. Later in March 1998, the New York Times sponsored an exhibition match between MAVEN and a team consisting of world champion Joel Sherman and runner-up Matt Graham. It is not clear whether the collaboration helped or hindered the human side, but the computer won convincingly by a score of six wins to three. The result was not an anomaly. In July 1998, MAVEN played another exhibition match against Adam Logan (at AAAI-98), scoring nine wins to five. “[1]

Maven divides the game into three phases. First there is the early game which starts at the first move and continues until there are only a few tiles left in the bag. When there are only a few tiles left in the bag the computer enters the pre-end game phase in which it can take advantage of the limited amount of unknown information. Finally there is the end game phase which starts when there are no more tiles left in the bag. [1]

During each phase of the game the program uses different kinds of statistical analysis to figure out the likely consequences of a move. The problem with considering different moves is of course the large branching factor. The number of possible moves that can be made in the middle of the game is far greater than that in chess. This means that the program must use knowledge and selective searches to only look at the moves that the opponent would actually care to make. The problem with that is of course that if some significant move is overlooked by the selective searches then its consequences will be overlooked as well which would make the program vulnerable.

Maven actually uses several move generators to create lists of likely moves based on the variety of features that deserve consideration. First there is a generator that considers moves that give you a good score while leaving you with good tiles playable for the upcoming words. Then there is a move generator that considers the possibility of opponent playing all his tiles in one turn (which leads to bonus points). This move generator is used to prevent the opponent from scoring extra points. Then of course there is the move generator that considers the moves that lead to scoring the most points. Each generator provides lists of candidate moves which are then merged together using various weights depending on the game phase and situation on the board. Then the resulting list is used to select the move used by the program.

Maven’s play has been extensively analyzed by experts who found some minor flaws. These flaws were later corrected and the experts concluded that Maven plays nearly perfect Scrabble.

Bridge

Bridge is a card game that is usually played by teams of players. There are of course several variants of Bridge with differing rules that are played around the world. The general principles however are the same for all of them. The game consists of an auction of placing “bids” which will determine the “declarer”. A “bid” specifies a number of “tricks” and a trump suit (or that there will be no trumps). The side which “bids” highest will try to win at least that number of “tricks”, with the specified suit as trumps. One of the players leads to the first “trick” and each player must if possible play a card of the suit led. A player with no card of the suit led may play any card. A “trick” consists of four cards, and is won by the highest trump in it, or if no trumps were played by the highest card of the suit led. The winner of a “trick” leads to the next. Once the round of the game is over (all “tricks” have been played) a scoring system is used to determine the number of points that a team gets. The number of points depends on the “bid” number of tricks and the actual number of “tricks” played. Then the next round begins. 

References to works on Bridge playing programs go as far back as 1960s. However no major works appeared until 1980s. With the appearance of personal computers in 1980s a large number of commercial bridge playing programs were created. These programs however were very poor Bridge players. It was only in the 1990s that bridge started to be seriously used by the AI researchers which produced noteworthy Bridge playing programs. [1]

In 1997 the commercial program Bridge Baron won World Computer Bridge Championship. The program used a hierarchical task network for the play of the hand. Instead of building a search tree where each branch was the play of a card, they defined each branch as a strategy, using concepts such as finesse and squeeze. The result was an incremental improvement in the program's card play. But this program was still far from being world-class caliber. [1]

In 1998 the World Computer Bridge Championship was won by another program called GIB which was developed by Matthew Ginsberg. His program also played an exhibition match against world champions Zia Mahmood and Michael Rosenberg which was held at AAAI-98. The match lasted two hours, allowing 14 boards to be played. The result was the first notable man-machine success for computer bridge-playing programs. Later GIB was invited to compete in the Par Contest at the 1998 World Bridge Championships where it finished in a strong twelfth place. Which was a very good result especially since the program was not designed for this kind of competition. [1]

One of the major issues in programming a bridge playing program is the bidding process. Usually a knowledge database is used to represent many possible bidding strategies and outcomes. There is however a significant flaw in this approach. In Bridge you always deal with uncertain information. In particular that applies to information that you have about your opponent’s hand. Therefore it is difficult to determine the best bidding strategy by simply querying the database. Sometimes a strategy might work because the opponent has a bad hand. Sometimes it might work because you have a very good hand. But that same strategy may not work if, for example, the opponent has a different kind of a bad hand than the one you think.

“GIB uses three partial solutions to the problem of an erroneous or incomplete bidding system. First, the bidding database can be examined by doing extensive offline computations to identify erroneous or missing bid information. This is effective but can take a long time to complete. Second, during a game, simulation results can be used to identify when a database response to a bid leads to a poor result. This may be evidence of a database problem, but it could also be the result of effective disruptive bidding by GIB. Finally, GIB can be biased to make bids that are "close" to the suggested database bids, allowing the program the flexibility to deviate from the database.” [1]

Currently GIB is well on the way to becoming a world class Bridge player. One major deficiency that is holding GIB back is the possible errors in the bidding process. Efforts are currently on the way to correct this. If they are successful the world will soon see a Bridge program playing on the level of human world class champion or better.

Poker

Today there are many variations of Poker. Some have open cards dealt to players while others do not. Some allow players to exchange cards multiple times while the others allow only one exchange or none at all forcing you to play with the cards you were dealt. However all variations of Poker have the same general game play. First the players are dealt the cards. Then the players place bets. Each player can raise the bet that was placed before him, match the previous bet or forfeit the current game round and loose the bet already made but possibly not loose any more than that. The players can usually exchange some or all cards they were dealt between betting rounds with the cards still left in the deck possibly improving their hand. Once the betting is done the players that did not forfeit open their cards to each other. The higher combination of cards wins. The winning player takes all bets that were made (usually as chips denoting their value) and adds them to his pile. Then the next round begins. The ranking of different combinations of cards in Poker depends on the probability of a player getting those combinations. The lower the probability of a combination the higher is the value of that combination. It is interesting to note that in Poker it is often not necessary to have the strongest hand to win. You can often scare the opponents into forfeiting by raising bets to make them think you have a very strong hand. On the other hand if they call your bluff you risk loosing a lot. Poker is a high risk – high reward kind of game.

The earliest documented cases of development of a poker playing program go as far back as 1970s. It is known that Nicolas Findler worked on a Poker playing programs that played one of the simpler versions of poker. The focus of his research was to create a learning program to model the human cognitive processes.

In 1984 a professional Poker player Mike Caro wrote a poker playing program called Orac (which is his last name spelled backwards). This program participated in several matches against human opponents. It showed a level of play comparable to the best human players. However Orac was never properly documented and its game play was never analyzed by experts. It is unclear whether its performance was largely the result of skill or luck. [1]

In the 1990s a number of hobbyists and researchers began programming poker playing programs to play over the Internet. Some programs developed at that time deserve special attention. R00LBOT developed by Greg Wohletz used expert knowledge in the beginning of the game and simulations for subsequent betting decisions. Another noteworthy program, POKI, was written by Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. This program evaluates its betting strategy based on the kind of hand that the opponent might have. It estimates the opponents hand based on the kind of opponent it is facing because the opponents betting strategy will be different based on their playing style. Performance of POKI shows that opponent modeling is a large part of the computer Poker playing programs.

At best modern Poker playing programs play on the level of intermediate human players.

Conclusions

Computer games certainly provide rich field for AI research. The methods that worked very well for some games, such as alpha-beta search for checkers, have proven nearly useless for other games such as Go. In Poker opponent modeling plays major role while in most other games opponent modeling can be of little help at best. It is clear that many programmers choose expert knowledge in some form or other instead of searching even though processing capabilities of the hardware become more and more impressive. Machine learning in general and temporal difference learning is used more and more often. Obviously the researchers are no longer satisfied with brute force approaches and choose more subtle and intelligent ones instead. It is clear that today the machines are truly becoming not just faster but indeed more intelligent in every sense of the word.

References

1. A Gamut of Games Jonathan Schaeffer AI Magazine Fall 2001 v22 i3 p29

2. http://www.chessbase.com/newsdetail.asp?newsid=1270
3. http://www.fierz.ch/history.htm
4. http://www-db.stanford.edu/pub/voy/museum/samuel.html
5. http://www.wikipedia.org
6. http://senseis.xmp.net/?GoHistory
7. Computer Game Playing: Theory and practice edited by M. A.Bramer 1983 Ellis Norwood Ltd.
8. Computer Games I edited by David N. L. Levy 1988 Springer – Verlag New York Inc.
9. Computer Games II edited by David N. L. Levy 1988 Springer – Verlag New York Inc.
