Due April 7, 2011

Homework 6

Obijective:

Designing and implementing the banker algorithm for deadlock detection for several instance of a
resource type.

Introduction:

For this implementation you need several data structure;

Available: A vector or array of length m indicates the number of available resources of each
type.

Max: A n x m matrix defines the maximum demand of each process. If Max[i][j] equals k, then
process P;may request at most k instances of resource R;

Allocation: An n x m matrix defines the number of resources of each type currently allocated to
process.

Need: an n x m matrix indicates the current need of each process. If Need[i][j] equals k, then
process P;is requesting k more instances of resource type R;. (Need =Max-Allocation).

More Details:

To illustrate the banker algorithm, consider a system with R resources and P processes such as each
resource type R; has a W number of instances. For Example, a system with 6 resources (j=6) and 7
processes (P=7) is shown in Figure 1.

For your implementation, you have to generate all this numbers by using your programming

language’s integer generator function.

b)

c)

d)

Werite a program to do the followings;
Generate numbers for Rand P suchas5<R <15, 10 <P < 30.

Generate numbers for resource instances such as 1 < W < 7 . For example, If Ris 6, your
program must generate 6 integers for each resource type such as R, has 6 instances, R, has 7
insurances, R; has 3 instances, R, has 6 instances, Rs has 2 instance, and Rg has 2 instance.

Fill out the Allocation and Max Matrices by generating random integers.
Hint: if X € Max than 0 < X <= W. If Y € Allocation than 0 <Y <=X

Find the Available vector and Need Matrix.

e) Detect if the system is in a safe state or unsafe state. If the system is currently in a safe state.
Print the sequence that satisfied the safety, e.g. P2, P3, P4, PO, P4, P5, P6. If the system is in an
unsafe state it must print “unsafe state”.

Allocation Max Available
Ri | Ry |Rs|Rs|Rs|Rsg R, IR, | Rs | R | Rs | Re
Po|Y Py | X
Py P
P, P,
Ps P
P, P,
Ps P
Ps P

Figure 1

