Due April 7, 2011

Homework 6

Obijective:

Designing and implementing the banker algorithm for deadlock detection for several instance of a
resource type.

Introduction:

For this implementation you need several data structure;

Available: A vector or array of length m indicates the number of available resources of each
type.

Max: A n x m matrix defines the maximum demand of each process. If Max[i][j] equals k, then
process P;may request at most k instances of resource R;

Allocation: An n x m matrix defines the number of resources of each type currently allocated to
process.

Need: an n x m matrix indicates the current need of each process. If Need[i][j] equals k, then
process P;is requesting k more instances of resource type R;. (Need =Max-Allocation).

More Details:

To illustrate the banker algorithm, consider a system with R resources and P processes such as each
resource type R; has a W number of instances. For Example, a system with 6 resources (j=6) and 7
processes (P=7) is shown in Figure 1.

For your implementation, you have to generate all this numbers by using your programming

language’s integer generator function.

b)

c)

d)

Werite a program to do the followings;
Generate numbers for Rand P suchas5<R <15, 10 <P < 30.

Generate numbers for resource instances such as 1 < W < 7 . For example, If Ris 6, your
program must generate 6 integers for each resource type such as R, has 6 instances, R, has 7
insurances, R; has 3 instances, R, has 6 instances, Rs has 2 instance, and Rg has 2 instance.

Fill out the Allocation and Max Matrices by generating random integers.
Hint: if X € Max than 0 < X <= W. If Y € Allocation than 0 <Y <=X

Find the Available vector and Need Matrix.



e) Detect if the system is in a safe state or unsafe state. If the system is currently in a safe state.
Print the sequence that satisfied the safety, e.g. P2, P3, P4, PO, P4, P5, P6. If the system is in an
unsafe state it must print “unsafe state”.
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