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Perceptron Learning - An example 

A Two-Input NAND 

    Let w1 = w2 = = 0.25 to begin.  

 

x1 x2 x1 NAND x2  

0  0  1  

0  1  1  

1  0  1  

1  1  0  
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=  
w1x1 + w2x2 =  
x2 = -( w1 / w2 )x1 + ( / w2 ) 

Substituting, we obtain 
x2 = -( 0.25 / 0.25 )x1 + (0.25 / 0.25) 
x2 = -x1 + 1 

. i.e., 

 

x1 x2  

0  1  

1  0  

 
  

The First Epoch:  

w1 w2  x1 x2  a y t (t-y)  w1 w2   
.25 .25 .25 0 0 0 0 1 .5(1-0)=.5 0 0 -.5  
.25 .25 -.25 0 1 .25 1 1 .5(1-1)=0 0 0 0  
.25 .25 -.25 1 0 .25 1 1 0 0 0 0  
.25 .25 -.25 1 1 .5 1 0 .5(0-1)=-.5 -.5 -.5 .5  

  

 



After the First Epoch 

w1 = -0.25 = w2 
= +0.25 

x2 = -( w1 / w2 )x1 + ( / w2) 
x2 = -x1 - 1 

. i.e., 
 

x1 x2  

0  -1  

1  -2  

 
  

Second Epoch:  

w1 w2  x1 x2  a y t (t-y)  w
1 

w
2   

-.25 -.25 .25 0 0 0 0 1 .5(1-0)=.5 0 0 -
.5  

-.25 -.25 -.25 0 1 -.25 1 1 0 0 0 0  
-.25 -.25 -.25 1 0 -.25 1 1 0 0 0 0  
-.25 -.25 -.25 1 1 -.5 0 0 0 0 0 0  

  

 



After the Second Epoch 

w1 = w2 = -0.25 
= -0.25 

x2 = -( w1 / w2)x1 + ( / w2 ) 
x2 = -x1 + 1 

. i.e., 

 

x1 x2  

0  1  

1  0  

 
  

Third Epoch:  

w1 w2  x1 x2  a y t (t-y)  w1 w
2   

-.25 -.25 -.25 0 0 0 1 1 0 0 0 0  
-.25 -.25 -.25 0 1 -.25 1 1 0 0 0 0  
-.25 -.25 -.25 1 0 -.25 1 1 0 0 0 0  
-.25 -.25 -.25 1 1 -.25 0 0 0 0 0 0  

 

Since there have been no changes, Halt! 

 

The Delta Rule 

We desire:  

1. Capability to train all the weights in multilayer nets with no a priori knowledge of the training set. 
2. Based on defining a measure of the difference between the actual network output and target vector. 
3. This difference is then treated as an error to be minimized by adjusting the weights. 

Finding the Minimum of a Function: Gradient Descent (informed hillclimbing?) 

 



  

  

Suppose that quantity y depends on a single 
variable x. 

i.e., y = y(x). 

We wish to find x0 which minimizes x. 

i.e., y(x0) <= y(x) , x. 

   

o Let x* be current best estimate 
for x0.  

o To obtain a better estimate for 
x0, choose x so as to follow 
the function downhill.  

o We need to know the slope of 
the function at x*:  

Slope of a Function 

The slope at any point x is just the slope of a 
straight line, the tangent, which just grazes the 
curve at that point. 

1. Here, one may draw the function on 
graph paper  

2. Draw the tangent at the point P  
3. Measure the sides x, y, or 

merely calculate: 

y'(x = P).  

 
  



If x is small enough, y = y . 

Dividing y by x, and then multiplying by x leaves y unchanged. 

y = ( y / x ) x  

Furthermore, y y. 

Hence, we may write:        y = slope x. 
That is,  

             y = (dy / dx) x.           ( * ) 

That is, the derivative of y with respect to x.  
  

 

Suppose we can evaluate the slope or derivative of y and put  

x = - (dy/dx) , where > 0 and is small enough to ensure that y y. 

Then, substituting this is in ( * ), we get 

             dy - (dy/dx)2                 ( ** ) 

The quantity (dy/dx)2 is positive. 
Hence, the quantity - (dy/dx)2 must be negative. 

y < 0. 

i.e., we have "traveled down" the curve towards the minimal point. 

If we keep repeating steps such as ( ** ), then we should approach the value x0 associated with the 
function minimum. 

This is Gradient Descent. 

Its effectiveness hinges on the ability to calculate or make estimates of dy/dx. 

 

Functions of More Than One Variable 

Suppose       y = y(x1, x2, ..., xn). 

One may speak of the slope of the function, or its rate of change, with respect to each of these variables 
independently. 



The slope or derivative of a function y with respect to the variable xi is: 

             y / xi           The partial derivative. 

The equivalent is then 

             xi = - ( y / xi ). 

There is an equation like this for each variable, and all of them must be used to ensure that y < 0 and 
there is gradient descent.  

 

Gradient Descent on an Error. 

o Consider a network consisting of a single TLU.  
o Assume supervised learning. 

i.e., for every input pattern, p, in the training set there is a corresponding target tp.  
o The augmented weight vector, , completely characterizes the behavior of the network.  
o Any function, E, that expresses the discrepency between desired and actual network output, may 

be considered as a function of the weights. 
i.e.,  
E = E(w1, w2, wn+1). 

The optimal weight vector is found by 
minimizing this function E by gradient descent. 

     wi = - ( E / wi ). 

We need to find a suitable error E. 

Suppose we assign equal importance to the 
error for each pattern, so that if ep is the error 
for training pattern p, then the total error E is 
just the average or mean over all N patterns. 

 

One attempt to define ep as simply the 
difference ep = tp - yp , where yp is the TLU 
output in response to p. 

However ... then the error is smaller for tp=0, yp=1 than for tp=1 , yp=0. They're equally wrong. 

We next try 

          ep = ( tp - yp )2. 

o A subtle problem remains: 
With gradient descent, it is assumed that the function to be minimized depends on its variables in 



a smooth, continuous fashion. 
First, the activation ap is simply the weighted sum of inputs. This is smooth and continuous. 
But, the output depends on ap via the discontinuous step function. 

o One remedy: 
          ep = ( tp - ap )2. 

We must be careful how we define the targets. 
We have used {0,1} heretofore. 

When using the augmented weight vector, the output changes as the activation changes sign 
i.e., 

          a >= 0 y = 1. 

o As long as activation takes on the correct sign, the target output is guaranteed and we are free 
to choose two arbitrary numbers, one positive, and one negative, as the activation targets. 

{1, -1} are customary. 

o One last modification: 
A factor of 1/2 is added to the error expression - simplifies the resulting slope or derivative. 

          ep = 1/2 ( tp - ap )2. 

and thus, 

 

   

 

The Delta Rule. 

o The Error E depends on all the patterns. So do all its derivatives. Hence ,the whole training set 
needs to be presented in order to evaluate the gradients E / wi 

o This is batch training - results in true gradient descent, but is computationally intensive. 
o Instead ... adapt the weights based on the presentation of each pattern individually. 

i.e., we present the net with a pattern p, 
evaluate ep / wi,  
and use this as an estimate of the true gradient E / wi 

o Recall that:  
          ep = 1/2 ( tp - ap )2 

and 
          ap = w1x1

p + w2x2
p + ... + wn+1xn+1

p 

          ep / wi = -( tp - ap )xi
p , where xi

p is the ith component of pattern p.  



1. The gradient must depend in some way on ( tp - ap ). The larger this is, the larger we expect the gradient to 
be. 
If this difference is zero, then the gradient is also zero, since we have found the minimum value of ep. 

2. The gradient must depend on the input xi
p, for if this is zero, then the ith input is making no contribution to the 

activation for the pth pattern - and cannot affect the error. No matter how wi changes, it makes no difference 
to ep. 

Conversely, if xi
p is large, then the ith input is correspondingly sensitive to the value of wi. 

          ep / wi = -( tp - ap )xi
p 

use as an estimate ,  

          wi = - ( E / wi) 

we obtain, 
          wi = - (tp - ap) xi

p 

  

o Pattern Training Regime: weight changes are made after each vector presentation. 
o We are using estimates for the true gradient. The progress in the minimization of E is noisy. 

i.e., weight changes are sometimes made which increase E. 
o This is the Widrow-Hoff Rule, now refered to as the Delta Rule (or -rule.) 
o Widrow and Hoff first proposed this training regime (1960.) They trained ADALINES (ADAptive 

LINear ElementS,) which is a TLU, except that the input and output signals were bipolar (i.e., {-
1,1}.) 

o If the learning rate is sufficiently small, then the delta rule converges. 
I.e., the weight vector approaches the vector w0, for which the error is a minimum, and E itself 
approaches a constant value. 

o Note: A solution will not exist if the problem is not linearly separable. 
o Then w0 is the best the TLU can do, and some patterns will be incorrectly classified. 
o (Note the difference with the Perceptron rule !!!) 
o Also note, delta rule will always make changes to weights, no matter how small (because target 

activation values 1 will never be attained exactly.)  

 

The Delta Rule Algorithm 

 
Begin 
Repeat 
 For each training vector pair (V, t) 
  Evaluate the activation a when V is input to the TLU 
  Adjust each of the weights 
 End For 
Until the rate of change of the error is sufficiently small 
End 

 



The Delta Rule - An Example 

Train a two-input TLU with initial weights (0, 0.4) and threshold 0.3, using a learning rate = 0.25. (The 
AND function) 

First Epoch 

w1 w2  
x
1 

x
2 a t  w1  

0.00 0.40 0.30 0 0 -0.30 -1.00 -
0.17 -0.00 -0.00 (1) 

0.17 

0.00 0.40 0.48 0 1 -0.08 -1.00 -
0.23 -0.00 (2) 

-0.23 
(3) 

0.23 

0.00 0.17 0.71 1 0 -0.71 -1.00 -
0.07 

(4) 
-0.07 -0.00 (5) 

0.07 

0.07 0.17 0.78 1 1 -0.68 1.00 0.42 (6) 
0.42 

(7) 
0.42 

(8) 
-0.42 

w2 

  

After the first epoch, w1 = 0.35, w2 = 0.59, = 0.36 

We employ wi = + (tp - ap) xi
p. 

Note the plus sign before : Always travel in the opposite direction of gradient. 

(1) = +0.25(-1.00 - (-0.30) )(-1) -1 is the input to . 
          = -0.25(-0.7) = 0.175      (sign?)! 

(2) w2 = -0.25(-1.00 - (0.08) ) * 1 
           = -0.25(-0.92) = 0.23.      ( (3) will have the opposite sign.) 

(4) w1 = -0.25(-1.00 - (-0.71) ) * 1 
           = -0.25(-0.29) = 0.07.      ( (5) will have the opposite sign.) 

(8)  = -0.25(1.00 - (-0.68) )(-1) 
         = -0.25 (1.68) = -0.42      ( (6), (7) opposite sign.) 

Since, after the first epoch, we have 
w1 = 0.35, 
w2 = 0.59, 

= 0.36 , 

x2 = -(0.35 / 0.59) x1 + (0.36 / 0.59) = -0.59 x1 + 0.6 
i.e., slope is -0.59. 

  

  

 



Second Epoch 

w1 w2  x1 x2 a t  w1  
0.35 0.59 0.36 0 0       

   0 1       
   1 0       
   1 1       

w2 
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