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Fuzzy Logic 

l Neural networks can learn. However, they are rather opaque. 

l "The network acts like a black box by computing a statistically sound 
approximation to a function known only from a training set.", Rojas. 
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l Fuzzy logic has an explanatory capability. However, it is unable to learn.  

   

Fuzzy Sets Vs. Crisp Sets  

l "Raise your hand if you're male" ... hands down. Now, 

l "Raise your hand if you're female" ... hands down. 

l These are crisp sets. 

l "Raise your hand if you're satisfied with your jobs" ... hands down. Now, 

l Some hands probably went up both times, and 

l Hands may have been only somewhat raised in each case. 

l We would say that job satisfaction is a fuzzy concept, in that most people are 
not entirely satisfied or dissatisfied with their jobs. 

l Parking spaces in a lot would be another example: 
Most of the time one has a situation like the one shown on 
the right. 

 

   

l Fuzzy logic was developed by Lotfi Zadeh during the mid 1960's. 

l Let X = {x1, x2, ... , xn} be a finite set 

l The subset A of X consisting of x1 alone, can be described by the n-dimensional 
membership vector 

             Z(A) = (1, 0, 0, ... 0).  

l The subset B of X with elements x1 and xn is described by the vector 

             Z(A) = (1, 0, 0, ... , 1).  

l Any other crisp subset of X can be represented in the same way by an n-
dimensional binary vector. 

l Consider the fuzzy set C 

             Z(C) = (0.5, 0, 0, ... , 0).  
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In classical set theory, this would be impossible. For classically, either x1  C or 
it doesn't. The world is black and white in classical set theory.  

l With Fuzzy set theory, this type of description is permitted. 

l The element x1 belongs to the set C only to some extent. 

l The degree of membership is expressed by a real number in the interval [0,1]. 

l An example: 
"x1 is a tall person" 
Is a 6-foot individual tall? ... yes.  

l Other diffuse statements: 
x is old  
y is young 
z is mature 

  

Three membership functions in the interval 0:70 years.  

l The three functions define the degree of membership of any given age in the 
sets of young, mature and old ages. 

l A 20-year old - degree of membership in the set 
of young people is  1.0 
of mature adults is 0.35 , and 
of old persons is 0.0. 

l If someone is 50 years old, the degrees of membership are 0.0, 1.0, 0.3 in the 
respective sets. 

l Definition 11.1: 
Let X be a classical universal set. A real function A : X  [0,1] is called the 
membership function of A, and defines the fuzzy set A of X. 
This is the set of all pairs (x, A(x)) with x  X. 

l A fuzzy set is completely determined by its membership function. 
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l The set of support of a fuzzy set A, is the set of all elements x of X for which (x, 

A(x))  A, and A(x) > 0 holds. 

l A fuzzy set A with finite set of support {a1, a2, ... , am} can be described as: 

             A = 1 / a1 + 2 / a2 + ... + m / am 
 

where i = A(ai) for i = 1, ... , m. 
 

l Let X = {x1, x2, x3}. 

The classical (crisp) subsets A = {x1, x2} and B = x2, x3} can be represented as 
 

             A = 1/x1 + 1/x2 + 0/x3 
 

             B = 0/x1 + 1/x2 + 1/x3 
 

l The union of A and B is computed by taking for each element x i the maximum of 
its membership in both sets. I.e., 

             A  B = 1/x1 + 1/x2 + 1/x3 . 
 

l The fuzzy union of two fuzzy sets can be computed in the same way. 
Let 

             C = 0.5/x1 + 0.6/x2 + 0.3/x3 
 

             D = 0.7/x1 + 0.2/x2 + 0.8/x3 
 

Then 
             C  D = 0.7/x1 + 0.6/x2 + 0.8/x3 . 

 

l The fuzzy intersection of two sets can be defined in a similar manner.  

   

Geometric Interpretation of Fuzzy Sets  

l Let X = {x1, x2} be a universal set. 

l Each point in the interior represents a subset of X  

l The crisp subsets of X are located at the vertices 
of the unit square. 
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l The point (1,0) represents the set x1. 

The point (0,1) represents the set x2 
etc. ... 

l The crisp subsets of X are located at the vertices of the unit square. 

l The inner region of a unit hypercube in an n -dimensional space - the fuzzy 
region. 

l The point M (in the figure above) corresponds to the fuzzy set 

             M = 0.5/x1 + 0.3/x2. 
 

l Center of square - most diffuse of all fuzzy sets. 

l The degree of fuzziness of a fuzzy set can be measured by its entropy (here 
different from the entropy used in information theory or physics.) 

l The entropy  (index of fuzziness) corresponds inversely to the distance between 
the representation of the set and the center of the unit square. 

l Entropy here is the index of fuzziness, crispness, certitude or ambiguity. 

l The set Y in the previous figure has the maximum entropy. 

l The vertices represent the crisp sets and have the lowest entropy, i.e. 0. 

   

Entropy of a Fuzzy Set M  

l Quotient of the distance of the nearest 
corner from M to the distance d2 from 
the corner which is farthest away. 

             E(M) = d1/d2. 
 

0  entropy of a set  1.  

l Maximum entropy - at the center of 
square. 

   

Visualization for Union and Intersection of Fuzzy Sets  

l The membership function for the union of two sets A and B is 
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             AUB(x) = max( A(x) , B(x) ) ,  x  X.  

l This corresponds to the maximum of the corresponding coordinates in the 
geometric visualization. 

l The membership function for the intersection  of two sets A and B is given by 

             A B(x) = min( A(x) , B(x) ) ,  x  X. 
 

 

l The union or intersection of two fuzzy sets is in general a fuzzy, not a crisp set. 

l The complement AC of a fuzzy set is given by 

             AC(x) = 1 - A(x) ,  x  X. 
 

 
   

l In general, for fuzzy sets we have 

             A  AC  X , and 
 

             A  AC  X , and 
 

   

Fuzzy Sets and Logic: 

The line joining the 
representation of A and A C 
goes through the center of the 
square. 
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On the Relationship between Set Theory and the Propositional Logic   

l Let A, B be two crisp sets. We have, 

             A , B : X  {0,1}. 
 

l The membership function AUB for A  B is 

             AUB(x) = A(x)  B(x) ,      x  X. 
 

             where 0  False , 1  True.  

l Similarly, for the membership function for A  B, we have 

             A B(x) = A(x)  B(x) ,      x  X. 
 

l For the complement AC, 

             AC(x) = A(x). 
 

l De Morgan's Laws 

(A  B)C  AC  BC       corresponds to (A  B)  A  B 
 

(A  B)C  AC  BC       corresponds to (A  B)  A  B 
 

l Fuzzy Counterparts to Logic Operators 
We may identify: 

the OR operation ( ) with maximum, 
the AND ( ) with minimum, and 
Complementation ( ) with x  1 - x.  

l Then we may write: 

l The properties of the isomorphism present in the classical theories are 
preserved. 

l Many classical logic rules are valid for fuzzy operators. 
E.g., min and max are commutative and associative. 

AUB(x) = A(x)  B(x) ,  x  X, 

A B(x) = A(x)  B(x) ,  x  X, 

AC(x) = A(x) ,  x  X. 
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l But note: the principle of no contradiction does not hold. 
E.g., proposition A with truth value 0.4: 

A  A = min(0.4, (1 - 0.4) )  0.  

l Similarly, the Law of Excluded Middle is not valid either. 

   

Axiomatic Definitions of Fuzzy Operators  

Fuzzy OR Operator  

l The maximum function satisfies 1  4

 

Fuzzy AND Operator  

l The fuzzy AND is monotonic, commutative and associative. 

Boundary Conditions 
0  0 = 0  
1  0 = 0  
0  1 = 0 
1  1 = 1.  

Fuzzy Negation  

l Axiom 1: Boundary Conditions 
0  0 = 0  
1  0 = 1  
0  1 = 1  
1  1 = 1. 

l Axiom 2: Commutativity 
a  b = b   a. 

l Axiom 3: Monotonicity 
If a  a' and b  b' , 
then a  b  a'  b' . 

l Axiom 4: Associativity 
a  (b  c) = (a  b)  c. 

l Axiom 5: Idempotence 
a  a = a. 

l Axiom N1: Boundary Conditions 
 0 = 1 
 1 = 0 

l Axiom N2: Monotonicity 
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l Graphs of the functions max and min (i.e., a possible fuzzy AND and fuzzy OR 
combination,) 

  

l They could be used as activation functions in neural networks. 

l Using output functions derived from fuzzy logic can have the added benefit of 
providing a logical interpretation of the neural output. 

   

Fuzzy Inferences  

l Fuzzy logic operators can be used as the basis for inference systems. 

l Fuzzy inference rules have the same structure as classical ones. 
E.g., rule R1: if (A  B) Then C 
(A  B) Then D. 

l Note  ~ min and  ~ max, though other choices are possible. 

l Let the truth values of A and B be 0.4 and 0.7. Then 

             A  B = min(0.4, 0.7) = 0.4 
             A  B = max(0.4, 0.7) = 0.7 

l Fuzzy inference mechanism - Rules R1 and R2 can only be partially applied 
(i.e., rule R1 is applied 40% and rule R2 70%.) 

l The result of the inference is a combination of the propositions C and D. 

   

If a  b , then  b   a. 
l Axiom N3: Involution 

a = a. 
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