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Associative Memory Networks
e« Remembering something: Associating an idea or thought with a sensory cue.

¢ Human memory connects items (ideas, sensations, &c.) that are similar, that
are contrary, that occur in close proximity, or that occur in close succsession

- Aristotle

¢ An input stimulus which is similar to the stimulus for the association will invoke
the associated response pattern.

o A woman's perfume on an elevator...
o A song on the radio...
o An old photograph...

e An Associative Memory Net may serve as a highly simplified model of human
memory.

e These associative memory units should not be confused with Content
Addressable Memory Units.

A Taxonomy of Associative Memories
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Fig. 12.1, Types of associative networks

The superscripts of x and y are all i

¢ Heteroassociative network
Maps n input vectors =1, =2, ..., x", in n-dimensional space

to m output vectors ¥1, ¥2, ..., ¥m in m-dimensional space,

T Wi
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e Autoassociative Network
A type of heteroassociative network.
Each vector is associated with itself; i.e.,

=¥ i=1,..n.
Features correction of noisy input vectors.

e Pattern Recognition Network
A type of heteroassociative network.
Each vector z'is associated with the scalar i.
lillegible - remainder cut-off in photocopy]

An Example of Associative Recall

mimmnnny To the left is a binarized version of the letter
:_'"'; :; IITIII

#5108 The middle picture is the same "T" but with
“" the bottom half replaced by noise. Pixels
have been assigned a value 1 with probability 0.5

Upper half: The cue
Bottom half: has to be recalled from memory.

The pattern on the right is obtained from the original "T" by adding 20% noise. Each
pixel is inverted with probability 0.2.

The whole memory is available, but in an imperfectly recalled form ("hazy" or
inaccurate memory of some scene.)

(Compare/contrast the following with database searches)
In each case, when part of the pattern of data is presented in the form of a sensory

cue, the rest of the pattern (memory) is associated with it.

Alternatively, we may be offered an imperfect version of the...
lillegible - remainder cut-off in photocopy]

Hebbian Learning
Donald Hebb - psychologist, 1949.

Two neurons which are simultaneously active should develop a degree of interaction
higher than those neurons whose activities are uncorrelated.
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Input X,
Outputy,

weight update Aw; = Txy,

Hebb Rule for Pattern Association
It can be used with patterns that are represented as either binary or bipolar vectors.
e Training Vector Pairs 3 : ¢

e Testing Input Vector z (which may or may not be the same as one of the
training input vectors.)

Algorithm
Step 0, Initialize all weights (f = 1,.. ., =1, . P
wiy = 0
Step 1. For each inpul training—target output vector pair s:t, do Steps 2-4.
Srep 2. Set activations for inpul units to current training input
il S nl;
Xy = 5
Step 3, Set activations for output units to current target output
(f= 1 ....m)
V=1
Srep 4. Adjust the weights (i = 1, ..., mjf=1,..%, m)
Wlnew) wlold) + xs

In this simple form of Hebbian Learning, one generally employs outer product
calculations instead.
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Architecture of a Heteroassociative Neural Net
Procedure
Step (7 Initialize weights using ei Seot
# ight ng either the Hebb rule (Section 3.1. 1) or the delta
rule (Section 3.1.2). J
Step 1. For each input vector, do Sleps 2-4.
Siep 2. _Sct activations for input laver units equal to the current
inpul vector
Xy
Step 3. Compute net

input 1o the output units:

Yodmy = ¥ xivy,
L)

Step &, Determine the activation of the output units:

| ydn >0
Ye=d O ifyin =0
=1 Ex i<,

(for bipolar targers).

The cutput vector y gives the p

Ve atlern associated with ¢
heteroassociative memory is not i

1 _ iterative.
Other activation funetions can
net are binary, a suitable activation

input vector x. This

also .bc used. If the target responses of the
function e gwéﬁ'ﬁ“—'—“—%-—

] £3) = [1 ifx>0
| ey 0 fx=0.

%

A simple example (from Fausett's text)
= Heteroassociative network.
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Example 3.1 A Heteroassoclative net trained osing the Hebb rule: slgorithm

Suppose a net is (o be trained to store the following mapping from input row vectors
5 = (5, 1, 83, 24) 1o -output row vectors £ = (4, ;)

I, I3 &3 &g t I3
1t s (I, 0, @ Q) sttt {1, B
2nd & (I, 1, 0, 0} 2nd &t (I, O
Jed & (0, 0, 0O, 1) Id t (0, 1)
dth 5. (8, 0, 1, 1} #th ¢ (@, D

The input vectors are not mutually orthogonal (i.e., the dot product # 0,) - in which
case the response will include a portion of each of their target values - cross-talk.

Note: target values are chosen to be related to the input vectors in a simple manner.
The cross-talk between the first and second input vectors does not pose any
difficulties (since these target values...

[Illegible - cut off in photocopy]

The training is accomplished by the Hebb rule:

* w;(new) = w,(old) + st
ie, Aw; = s, o =1,
Training

The results of applying the algorithm given in Section 3.1, 1:are as follows (only the
weights that change at each step of the process are shown):

Step 0 Initialize ail weights to 0.
Step 1 For the first ;¢ pair (1, 0, 0, 0k:(1. O
Srr;:-.z. I = ¥ Xg = X3 & X = 0.
Step 3 =l wm=0
Step 4 wolnew) = wlold) + 29 =0+ 1= 1
(All other weights remain 0.}
Step 1. For the second s:t pair (1, 1, @, @)1, 00
Step 2 o= 1 x; = |3 Xy = x; =0,
Srep 3. =1l wp=0
Srep o wilnew) = wylold) + 2 =1 +1=1;
. wainew) = wylold) + xaw 0+1=1
{All ather weights remain .)
Srep 1. Eor the third s:t pair (0, 0, 0, 1240, Lk
Step 2. Bm=n=n=0hG =1
Step 3. v =1 yr= L
,Er.--.,-:- d. waalnew) = wglold] + xapn =0+ 1 = |
(ALl other weights remain unchanged.}
Step 1. For the fourth s: ¢ pair (0. 0, 1. 10, 1k
Sitep 2. = X3 = 0; xy = 1; xe= |
Step 3. y = O yr o= |,
Srep 4 Wi {new] = H'].:':Ul.lj'l + L= D4 1= l,
welnew) = welold) + x4 = 1.4 1 =12
(Al other weights remain unchanged.)
The weight matrix is 4
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Example 3.3 Testing n heteroassociative net using the troining input

testing - cont'd:

Page 7 of 19

We now test the ability of the net to produce the correct outpurt for each of the
traiming inputs. The steps are as given in the application procedure at the beginning
of this section, using the activation function

I ifx>0;
i = {n Fx=0.

The weights are as found in Examples 3.1 and 3.2,

0
Sup, We ‘l’
2

(== B

Step 1. For the first input pattern, do Steps 2-4.
Srep 2. x = (1,0,0, 0

Step 3. Yoimy = Ipwyp b xgWa Iy o+ XaWa
12 + 01 + 000 + )
-1
Yudny = xywgg + Xawa F Iywn + Tawa
10} + 0(0) + O{1) + OCZ)
=
Siep 4, yi= flydm) = fi2) = 1;

¥ = Flydnsh = filh = 0.
{This is the correct response for the first training pattern.}
Step !.  For the second input patiern, do Steps 2-4,
Stdn 2. x=(1,1,0 0.

Step 2, Y_ift) = Xiwy + Wy Xy Xy
= L2) + 1) + 000) + ()
= %

Yoiay = X Wy + Kawn + X + Tewe
) + L) + 0010 + )

= ),
Step 4. ¥i = flyin) = f(3) = 1;

¥ = filydin) = fil) = 0.
{This 15 the correct response for the second training pattern.)
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Step 1. For the third input pattern, do Steps 2-4,
Srep 2, x= (0,000 S
i -5'!{.03 }'-'IRI = XiWj + gy + Iy + Xy,

2} + OC1) + WO + W
= 0

ying = X wiz + Zawn + Sywy + TaWaa

000} 4 000) + O01) + 1(2)

2
Hying) = i) = O

Srep 4. ¥i

y2 = f(ydn®) = £(2) = L
{This is the correct response for the third training pattern.)
Step | For the fourth input pattern, do Steps 2-4.
Step2, x=1(0,0,1,1)
Srep 3. yodmy = xywy + Xgway 4 Xyway 4 Tawyg

]

02) + {1} + LO) + LD
=

Yoty = KW + Xawn + Xy + XiWas
= {0 + 0000 + (1) + 12

= 3,
Step 4. o= flydm) = i) = O

¥ = flyiml) = F2) = L
(This is the correct response for the fourth training pattern.)

We can employ vector-matrix rotation to illustrate the testing process.
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. We repeat the steps of the application procedure for the input vector x. which
15 the first of the training input veclors 5.

2.0

A
Siep 0. W 01

02

Step 1. For the inpat vector:

Srep 1, x = (1, 0,0, 0,
Srep 3, W = [y _imy, viin)

(Lo, 0o

Step 4. fizi=1 Ao =0;
y= 11,0

The entire process (Steps -4} can be represented by
W = (¥in yiniz)—+y

{1
0
1
o2

(1,000 = (2,00 == (1..0),

0 o= P

or, in shightly more compact notation,
{1,0,0, 00w = {1 00— (1, 0.

Mote that the putput activetion vector s the same as the training cutput vector thid
was stored in the weight matrix for this inpul vector.

Similarly, applying the same algorithm, with x equal o each of the other three
training input vectors, yields

(L L, B, 00W = (3, 00— (1, 0L,
(0, 0,0, LW = ¢, 20— (0, 1),
(0,0, 1, 1FW = {0, 3= (0, 1).

Mote that the net has responded correcily to (has produced the desired vector of
output activations for) sach of the traiming patierns.

Example 3.4 Testing a heteroassociative net with lnput similar to the training inpul

The fest vector x = (@, 1, 0, 0) differs from the training vector s = (1, 1, 0, 0) only
in the first component. We have

(0, 1, 0, 00-W = (1. 0} —={1, 00,

Thus, the net also associates & known oulput pattecn with this inpul.

Esample 3.5 Testing a hetervagsociative net with input that is not similar to the training
Input

The test patteen (0 1, 1, 0} differs from each of the tralning inpot paiterns in al least
rwo components. We have

(01, 1, 0BW = {1, l}— (L 1}
The output is not one of the outputs with which the net was trained; in other words,
the net does not recagnize the pattern. In this case, we can view x = (0, |, 1, QLps
differing from the training vector s = (1,1 0. 0} in the firs] and Third components,
s that 1hc'_|:_1§a;.|__‘_‘.m.i.5m3"_‘ in the input patiern make it impossible for the pet to
recognize it. This is not serprising, since the vector could egually well be viewed

as formed from s = (0, 0, 1, 1}, with “mistakes" [n the second and fourth com-
ponenis. B

Stephen Lucci, PhD

e A bipolar representation would be preferable. More robust in the presence of
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noise.

e The weight matrix obtained from the previous examples would be:

4 4
|2 -2
22
4 4

with two "mistakes".
Trouble remains:
ie, (-1,1,1, -1) - w = (0,0) —(0,0).

e However, the net can respond correctly when given an input vector with two
components missing .
e.g., X=(0, 1,0, -1) formed from S = (1, 1,-1, -1) with the first and third
components missing rather than wrong.
©,1,0,-1)-w=(6,-6) =(1,1) which is the ...
[illegible - cut off in photocopy]

Character Recognition Example

(Example 3.9) A heteroassociative net for associating letters from different
fonts

A heteroassociative neural net was trained using the Hebb rule (outer products) to
associate three vector pairs. The x vectors have 63 components, the y vectors 15.
The vectors represent patterns. The pattern

'

I

=ik

is converted to a vector representation that is suitable for processing as follows: The
#'s are replaced by 1's and the dots by -1's, reading across each row (starting with the
top row). The pattern shown becomes the vector

(-1,2-1 1-11 111 1,-1,1 1,-11).

The extra spaces between the vector components, which separate the different rows
of the original pattern for ease of reading, are not necessary for the network.
The figure below shows the vector pairs in their original two-dimensional form.
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Figure 1.} Truining patterns for charsctér recognition using helero: ssocia

After training, the net was used with input patterns that were noisy versions of the
training input patterns. The results are shown in figures 3.4 and 3.5 (below). The

noise took the form of turning pixels "on" that should have been "off" and vice versa.
These are denoted as follows:

@ Pixel is now "on", but this is a mistake (noise).
O Pixel is now "off", but this is a mistake (noise).

Figure 3.5 (below) shows that the neural net can recognize the small letters that are

stored in it, even when given input patterns representing the large training patterns
with 30% noise.

3 B
R E O
i i iR LR X

!nput Output Input Output Input QOutput

o R B RE B
:gm i B M

Input Qutput Input Output
::g@'g ; b,
199" ﬁfﬁ : 5008 - g*g
ég:::-ﬂ ' 8- ::0.
Q=== 8 _____ g
Figure 3.4 Response of heleroussnciative net to several nolsy verslons of pat-
tern A
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Autoassociative Nets

e For an autoassociative net, the training input and target output vectors are
identical.

e The process of training is often called storing the vectors, which may be binary
or bipolar.

¢ A stored vector can be retrieved from distorted or partial (noisy) input if the input
is sufficiently close to it.

e The performance of the net is judged by its ability to reproduce a stored pattern
from noisy input; performance is generally better for bipolar vectors than for
binary vectors.

Imput Units
Units

Architecture of an Autoassociative neural net

It is common for weights on the diagonal (those which connect an input pattern
component to the corresponding component in the output pattern) to be set to zero.

Page 12 of 19
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3.3.2 Algorithm

For mutually orthogonal vectors, the Hebb rule can be used for setting the weighty
in an auloassociative net because the input and output vectors are perfectly cor.
related, component by component (i.e., they are the same). The algorithm is as
given in Section 3.1.1; note that there are the same number of output units as

input units.
Step 0, Initialize all weights, f = 1, ... . mif=1,. .., %
wy =
Step I.  For each vector to be stored, do Steps 2-4:
Step 2. Set activation for each input unit, i = 1, ..., m
X} = Zy,
Srep 3, Set activation for each output unit, j = I, ..., m
¥ = &5
Srep 4, Adjust the weights, i = 1, ...,/ =1,... .8

wilnew) = wfold) + 1y,
As discussed earlier, in practice the weights are usually set from the formula
'F
W -~ E 51[?}5”—“-
e

rather than from the algorithmic form of Hebb learning.

Application and examples of Autoassociative Nets

3.3.3 Application

f&;}lautnag:m:_iative neural net can be used to determine whether Brl input vector

s “known" (ie., Stored in the net) or “‘unknown."' The net recognizes a *‘known"'

:fhtctur by produc}n: 4 pattern of activation on the output units of the ner that is
& same as one of the vectors stored in it, The application ith bi

: 2 of : b procedure (with bipcla

inputs and activations) is as follows: i

Step @, Set the weights (using Hebb rule, outer product).

Step 1. For each testing input vector, do Steps 2-4,
Step 2. Setactivations of the input units equal to the input vector
Step 3. Compute net input to each output anit, f= 1, ., .. 2 -

J"-jn_',l e E Lk
i

Step 4. Apply activation function (f = 1, ..., n)
. 1 if}?.-.fl-l"l; >
= Fly-ing = {_1 if y_in, < 0,

Page 13 of 19



Artificial Neural Networks Part 11

Page 14 of 19

Simple examples
Example 3.10 An autoassociative pet to store one vector: recognizing the stored veclor

We itlustrate the process of storing one pattern in an autorssociative net and thea
recalling, or recognizing, that stored pattern.

Srep 0. The vector s = (1, 1, 1, = 1} i3 stored with the weight matrix;

1 | 1

1 1 1 =]
Lt B TR

-1 =1 =1 1

Frep 1. For the testing input vector;

Step 2. X = {1, 1,1, -1\

Step 3. Yoin = (4,4, 4, —4),

Srepd. y =1fld 4,4, -d)=(1 1.1 -1

Since the respanse vector ¥ is the same as the stored vector, we can say the input
vector is recognized ot & ““known'' vector.
The preceding process of using the net can be written more succinetly as

(L L L —DW=1(4,4,4, -4 |l 1.1, =1}

MNow, if recognizing the vector that was stored were all that this weight matrix
enabled the net to do, it would be no better than using the identity matrix for the
weights, However, an sutoassociative neural net can recognize as ""known'” vectors
that are similzr to the stored vectos, but that differ slightly from it. As befoce, the
differences take one of two forms: “mistakes” in the data or "'missing” data. The
only “mistakes” we consider are charfges from + [ to =1 or vice versa. We use the

t;‘a'rm_‘_"gl_[ﬂlgi' data to refer to a cnmpﬂnt'ﬁ:_lhat has the value U, ralher than eit
or =1L

Stephen Lucci, PhD
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Example 3,11 Testing an antoassociative :u:t:Lne mistake in the input vects:

Using the succinct notation just introduced, consider the performance of the net for
each of the input vectors x that follow, Eech vector x is formed from the original
stored vector 5 with & mistake in one companent.

(=L 1L L=0W=2 23 -D-=(1.L =1
( L=l L-=1)W-=(22.2 =f-=(11.1 =1}
(1 Li=li=-BW=0.3,3 ==L 1LL-1
{ 1. L L ID-We 2 2, =2+l 1.1, =1

Mote that in each case the input vector is recognized as “known" after 3 singls
update of the activation vector in Step 4 of the algorithm. The reader can verify tha
the net also recognizes the vectors formed when one component is “"missing. " Those
Veclors are {ﬂr 11 If iy t]h [i- 1J1 I-| - ”l {ll 1| ﬂl "_IJ- al'l.'d. ‘.h I1 l1 {J].

_In genzral, a net is more tolerant of *'missing'’ data than it is of “‘mistakes™" '
in the data, a5 the examples thatTo onstrate. This 15 nots "
the vectors with *‘missing’’ data are closer (both intuitively and in 2 mathematica
sense) to the training patterns than are the vectors with “*mistakes.™

Example 3.12 Testing an autoassociative net: two “missing"’ entries In the Input vector
¥ The vectors formed from (1, 1, 1, = 1) with twe “missing'" data are (0, 0, 1, — 11,

0 5L0, =1k 00, 1, L, 0) (1, 0,0, =1, (1, 0, 1, O, and (1, 1, 0, 0}). As before,
consider the performance of the net for each of these input vectars:

m, L =)W =(2,2,2 =2)=+(1, 1,1, =1
0. L0, -1)W=(2,22, ~)—(1. I, 1, =1}
W LL W= 22,2 =2)=(1, 1,1, =1)
(1,0,0, =)W = (2,22, -2 =1, 1,1, -1 &
(10,1, WW=10222 =D={l,1,1 =1
(L, L0, BW=(2212 -O=(11 =1

The response of the net indicates that it recognizes each al these inpat vectors as
the treining vector (1, 1, 1, —1}, which is what one would expect, or at least hope
for.

Page 15 of 19
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Example 3,13 Testing an autoassocistive net; ¢
The vector (~1, -1, 1, —1) can
(1, 1, L =1) with two mistakes {

wo mistakes in the input vector

_h-: viewed as being formed from the stored vector
i the first and second components), We havea:

=L -LL-npwa=q 0.0, .
The net does not recognize this input vector,
Example 3.14 Ag autoassociative net with no

s . self-connections: zeroing-out the diagonal
oo f 8 autonssocistive network o have itz diggonal terms

0 I 1 =]
W, = 1 0 1 =1
1 1 0 =1
. =1 =1 =] o

onsider again the input vee

; tor (=1, -1, 1, —

P ; | v 1, =1} formed from th
i b with two mistakes {in the d second Compone M;Ls$:cg‘::?mr
(~1, =1, I, =Wy = (=1, 1. =1, 1)

The net stil] does not recognize this input viector,

first an

It is interesting to note that if the weight matrix Wy (with 0°s on the diagonal)
is used in the case of “'missing’’ components in the input data {sce Example 3.12),
the output unit or units with the net input of largest magnitude coincide with the
input unit or units whoese input component:or components were Zero. 'We have:

00,1 =DWe=s (23, 1, =l—={,11. -1

(01,0, =1Wo = (2,1, 2, =B =l 1,1, =1)

0, 1,1, 0FWy= (21,1 =2)—=(l, 1,1, =1}

1L0,0 =W = (1.2, 2. =) =(L, L], =1}

(La61 GWe=(1,21 <2)=(1.1,1, ~1)

(1,8, 0)yWe e {1, 1,2 =2)—(1, 1,1, =1).
The net recognizes each of these inpt vectors.

Storage Capacity
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An important consideration for associative memory neural networks is the npumber

ﬂmrmmmw stored before the net begins to forget. In

15 section we consider some simple examples and theorems for noniterative

autoassociative nets.

Examples
Example 3.15 Storing two vectors in an autoassociative net

More than one vector can be stored in an autoassaciative net by

ing the weight

Page 17 of 19

martrices for each vector together. For example, if W, is the weight matrix used to
store the vactor (1, 1, — 1, — 1) and W, iz the weight matax vs re the vector
(=1, 1.1, =1}, then the weight malnix Gsed to store both (1, 1, =1, =1) and
. 1.1, = 1) 15 the sum of W and W;. Because it is desired that the net respond
with one of the stored vectors when it is presented with an imput vector that is similar
(but not identical} to a stored vector, it is customary to set the dizgonal terms in the
weight matrices to zero. If this iz not done, the diagonal terms (which would ezch
be equal to the number of vectors stored in the net) would dominate, and the net
would rend to reproduce the input vector rather than & stored vectrr. The addition
of W, and W; procesds as follows:

W, W, W, + W,
& | =1 =1 B =1 =1 1 ] 0 -2 ]
1 0 =1 =1 x -1 [i] I =1 iy 1] 1] 0 =32
=1 =1 1] 1 -] I g =1 =32 0 ] 0
=L =1 1 1] Lo =1 =} 0 B =2 a 0
The reader should verify that the net with weight matrix W, + W, can rec-
ognize both of the vectors (1, 1, <1, =l and (=1, 1, 1, = I}. The number of veclors

that ean be stored in & net 12 called the copacity of the net,
S

Example 3.16 Attempling to store two nonorthogonal vectors in an autoassociative net

Not every pair of bipolar vectors can be stored In an autoassociative net with four
nodes; attempting to store the veetors (1, -1, —1, Doand (1, [, —1, 1) by edding
their weight matrices gives a net that cannot distinguish between the two vectors i
was trained to recognize:

0 =1 -1 1 AR e T 00 -2 2
-t W b efrol ¥ = B lEE U e
-1 1 0 -1 -1 =1 0 -l 20 0 -2

e It =1 0 20 -2 0

The difference between Example 3.15 and this exampte is thet there the vectors are
orthogonal, while here they are not. Recall that two vectors x and y are orthogonal
if

Xy = ¥ oz =0
i

illustrates the difficulty that results from trying to store
vectors that are too similar, ==
——,

An autcassociative net with four nodes can store three orthogonal vectors

{i.e., each vector is orthogonal to each of the other two vectors). However, the
weight matrix for four mutually orthogonal vectors is alwavs singular (so four
vectors cannot be stored in an autoassociative net with four nodes, even if the
vectors are orthogonal). These properties are illustrated in Examples 3.17 and

.18,
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Example 3.17 Storing three mutually orthogonal vectors in an sutoassociative net

Let W; + Wi be the weight matrix to store the orthogonal vectors (1, 1, — 1, =1
and (-1, 1,1, ~1) and W ; i -

Wy + W Wy W, + W + W,
0 0 =2 L] 0 -1 1 =1 g -1l =1 =i
¢ ¢ 0 =2 it & =) 1 _|=! 0 =1 =]
-2 0 0 0 | =1 & =17 ]|=1 =1 ¢ =i
0 =2 0 ©o -1 I =1 © -1 =1 -1 B

which i weciors on which it was trained,

Example 3.18 .}tlempﬁn: to store four vectors In an autoassociative net

Attempting to store a fourth vector, (1, 1, I, 1), with weight matrix W,, orthogonal
to each of the foregoing three, demonsirates the difficllies eacountered in over
training 2 net, namely, previous learning is erused. Adding the weight matrix for the
new vector to the matrix for the first three vectors gives

W, + W+ W, W, w*

g =1 =1 =1 a1 41 g ¢ o 0
-1 6 =1 <1 11 oot 2] e g .
1 =1 0 =] T[1 1.0 1 000 0
- =1 =1 0 ! 1 1 4 1 S
which canno! recognize any vecior.
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3.4 ITERATIVE AUTOASSOCIATIVE NET "
ITERATIVE AUTOASS0C

i : t respond im-
12 that in some cases the net does no
al ored target pattern, but the response may :
ge of having more nodes com-

We see from the next & it
mediately to an input signal with 4 :
be enough like & stored pattern {at least in the sen

——————

mitted to values of +1 or — 1 and fewer nodes with the **unsure’ respanse of g)
Lo suggest using this first response as input to the net again.

Example 3.19 Testing a recurrent autvassociative nei: stored vector with second, third
snd fourth components set fo zero

The weight matrix to store the vector (1, 1, 1, =1} is
L] I 1 =1
| 0 I =1
1 1 o =1

; -1 -1 =1 0
The vector (1, 1, 0, 0) is &n example of & vector formed from the stored vector

with three “missing” components (thege zero entries). The performance of the ney

for this vector is given next.

W=

Input vector (1, 0, O, 0):
(1,0, 0,.00W = (@, 0,1, =)= ierate

0L =W e ~B=(L1 1, -1
Thus, for the input vector (1, @, 0, 0), the net produces the '‘kmovwn’ vector
{1, 1, 1, =1} as its responss in two terations,

We can also take this iterative feedback scheme a step further and simply
let the input and output units be the same, to obtain a fegurrent autoassociative
neural net, In Sections 3.4.1-3.4.3, we consider three that differ primEHIy in their
activation function. Then, in Section 3.4.4, we examine & net developed by Nobel
prize-winning physicist John Hopfield (1982, 1988). Hopfield's work {and his
prestige) enhanced greatly the respectability of neural nets as a fizld of study in
the 1980s. The differences between his net and the others in this section. although
fairly slight, have a significant impact on the performance of the net. For iterative
nets, one key guestion is whether the activations will converge. The weights are
fixed (by the Hebb rule for example), but the activatidns of the units change.
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