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Preface v

Preface

These notes started as a set of handouts to the students while teaching a course on
introductory analysis in the spring of 2002 at Brooklyn College of the City University of
New York, using Rosenlicht’s book [Ros].1 While I find this book really excellent, there were
some areas where I wanted to give an emphasis to the material different from that given in
the book; for example, this being single-variable analysis, I wanted to give more emphasis
to the real line than to abstract metric spaces. Hence the supplementary material enclosed
here. The first draft of these notes were completed in April 2002. The date of the present
revision is January 2013.

New York, New York, January 2013

Attila Máté

1See the bibliography at the end of these notes for the full title and publication data.
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2. More on logic 1

1. Interchange of quantifiers

There are two kinds of quantifiers: universal: ∀, meaning “for all,” and existential: ∃,
meaning “ there is” or “there exists.” Within a quantifier, one may specify the kind of
things the quantifier talks about, e.g.,

(∀x : x is an integer), (∃y : y is a real number), (∀x ∈ Z), (∃y ∈ R),

etc.; here Z stands for the set of integers (positive, negative, or zero), and R stands for the
set of reals. Two quantifiers of the same kinds mean either two universal quantifiers or two
existential quantifiers, while two quantifiers of different kinds refer to one universal and one
existential quantifier. Two quantifiers of the same kind are always interchangeable, but two
quantifiers of different kinds are not. To see this, consider the following example:

(∀x : x is licensed driver)(∃y : y is a car) (x has driven y).

This sentence is entirely reasonable, since it only says that “every licensed driver has driven
a car,” or, more precisely, “every licensed driver has driven at least one car.” In real life,
there are exceptions even to such a reasonable statements, but if you restrict your attention
to life in a small town, the statement is most likely true. If one interchanges the quantifiers,
the result is totally absurd:

(∃y : y is a car) (∀x : x is licensed driver) (x has driven y).

This says that “there is a single car that every licensed driver has driven,” and this is unlikely
to be true even in a small town, unless everyone has gone to the same driving school within
the last few years, and got a chance of practising on the same car.

Another, more mathematical, example is the following. Let x and y run over integers.
Then the formula

(∀x)(∃y)[x > y]

is true, while the formula
(∃y)(∀x)[x > y]

is false. Indeed, the first formula is true. Given an arbitrary integer x, we can pick y = x−1
to ensure that x > y. On the other hand, the second formula is not true. To see this, pick
an arbitrary number y. Then (∀x)[x > y] is certainly not true; for example, x > y is not
true with x = y − 1.

2. More on logic

A sentence is a statement that is either true or false.2 Sentences can be connected by
the logic operations, also called sentential connectives and, or, if ... then, and if and only if,
denoted in turn by & , ∨, →, and ↔. Instead of & , people often use the symbol ∧. The
logic operations only connect sentences (or, more generally, statements – see below). For

2That is, true or false in principle. If one talks about formal logic, then a sentence would be a declarative

sentence. Some declarative sentences, however, cannot be considered sentences in the sense of logic, since
they cannot be considered true or false even in principle. For example, the sentence “This sentence is false”
cannot be taken as true (since it then says that it is false), and it cannot be taken as false (since then it says
that it is true). In mathematical logic, what is a sentence or a statement is defined formally by describing

the rules how a statement can be formed. The collection of these rules is called syntax.



2 Notes on Analysis

example, the “or” in the sentence “You can have coffee or tea with your breakfast” is not a
logic operation.3

The meaning of the sentential connectives can be illustrated by truth tables. Writing T
for true and F for false (T and F are called truth values) we have for the operation & ,
called conjunction:

A B A & B
T T T
T F F
F T F
F F F

For the operation ∨, called disjunction, we have

A B A ∨B
T T T
T F T
F T T
F F F

As seen from the truth table, disjunction is always meant in the inclusive sense, that is
A ∨ B is true unless both A and B are false. This differs from colloquial usage, where one
often uses the word “or” in the exclusive sense, where “A or B in the exclusive sense” is
true if exactly one of A and B is true.

For the operation →, called conditional, we have

A B A→ B
T T T
T F F
F T T
F F T

The meaning of the conditional is often differs from its colloquial use, where the meaning of
“if A then B” is unclear in case A is false. In mathematics, one strictly follows the truth table
above. For example, the sentence “if 2 by 2 is 5 then the snow is black” is a true sentence
in mathematics.4 In colloquial speech one would consider this sentence meaningless, or at
best pointless. But it illustrates an important point: in the conditional, there does not need
to be a causal connection between the constituents.5 For the operation A → B, instead of
saying “if A then B”, it is often more convenient to say “A only if B”. In case of this latter
sentence, the colloquial meaning approaches more closely the mathematical meaning of the
conditional. Namely, “A only B” means that A is allowed to be true only in case B is also
true; indeed, when A is true and B is false, the truth table entry for A→ B shows false.

One occasionally reverses the arrow in the conditional, using the symbol A← B meaning

3However, on can rewrite this as a logic operation by saying that “You can have coffee with your breakfast

or you can have tea with your sentence” (although by doing this, one probably changes the meaning, since
in logic, “or” is meant in the inclusive sense (allowing to have both coffee and tea), while on a restaurant
menu the meaning is probably exclusive (not allowing to have both coffee and tea without paying extra).

4This example is due to the German mathematician David Hilbert. Note that the sentence “if 2 by 2 is
5 then the snow is white” is also true.

5That is, 2 by 2 being 5 does not cause the snow to be black. As for the constituents, or, with a more
technical word, operands, in the conditional A→ B, A called the antecedent and B is called the consequence

(the latter is a somewhat misleading name, since the name seems to imply a causal connection).
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“A if B”, or “if B then A”:
A B A← B
T T T
T F T
F T F
F F T

The conditional A ← B (or B → A) is usually called the converse of A → B. Finally, the
truth table of the operation ↔, called biconditional, is

A B A↔ B
T T T
T F F
F T F
F F T

A ↔ B is expressed as “A if and only if B”, or, sometimes, as ‘A iff B” (but it is not
clear how one should pronounce the word “iff”). The word “iff” was introduced by Paul
Halmos. “A if and only if B” is short for saying “A if B and A only if B”; formally, for
(A← B) & (A→ B). It is easy to check that the truth table for this formula is the same
as the one given for the biconditional above.

These logic operations are called binary operations, since they involve two constituents,
called operands, A and B in the above truth tables. The letters A and B used in the above
formulas are often called sentential variables, i.e., variables that can either be true or false.

Negation. The operation “not” is called negation. “Not A means that “it is not the
case that A”, or, more simply, “A is not true”. This is called a unary operation, since it has
only one operand. The truth table for negation is

A ¬A
T F
F T

Tautologies. A tautology is a logic expression (an expression involving the logical op-
erations just defined) that is always true, whether or not the sentential variables in it are
true or false. Examples for tautologies are

(¬(A & B))↔ ((¬A) ∨ (¬B)).

For better readability, one can drop several pairs of parentheses here, to write

¬(A & B)↔ ¬A ∨ ¬B.

To make sense of this way of writing the formula, one can assigns priority to the logic
operations in the order ¬, & , ∨, ←, →, ↔, meaning that one first try to perform the
operations with higher priority.6 Most people consider the priority between & and ∨, and
between ← and → unclear, so it is best to use parentheses to avoid misunderstanding. To
check that the above formula is indeed a tautology, one can use the truth table to evaluate

6This is similar to the rule in algebra that · (multiplication) has higher priority than + (addition). That

is, the formula 2 + 3 · 5 means 2 + (3 · 5), and not (2 + 3) · 5. + and − have equal priority, so in the
expression 2 + 3 − 5 − 6 + 8 one performs the operations from left to write, i.e., this expression means
(((2+ 3)− 5)− 6)+ 8 In computer science, one often uses the word precedence instead of priority; computer
scientists unambiguously assign higher precedence to to logical and than to logical or; in mathematics, this

precedence is not always taken for granted.



4 Notes on Analysis

it for each choice of A and B to find that the formula is always true. One interpretation of
the above tautology is that ¬(A & B) and ¬A∨¬B mean the same thing. This is because
the biconditional is true exactly when the two sides have the same truth value; so the above
formula being always true means that the two sides on the biconditional in it always have
the same truth value. The above formula is one of the two De Morgan identities. The other
De Morgan identity is the tautology

¬(A ∨B)↔ ¬A & ¬B.

Another simple tautologies are

(A→ B)↔ ¬A ∨B;

we used parentheses on the left here, since the sometimes → and ↔ is considered to have
equal priority. When one wants to establish the implication7 A → B, one often takes
advantage of the tautology

(A→ B)↔ (¬B → ¬A),

and proves the implication ¬B → ¬A instead. The conditional ¬B → ¬A is called the
contrapositive of A→ B. A further tautology is

¬(A↔ B)↔ (¬A↔ B).

One often writes A= B instead of ¬(A↔ B). The truth table of A= B is

A B A= B
T T F
T F T
F T T
F F F

One might call the operation A = B exclusive or, since it reflects the meaning the word
“or” often used colloquially. However, it is best to avoid this term “exclusive or”, since in
mathematics the word “or” is always used in the inclusive sense, as defined by the logic
operation A ∨ B. The expression A = B in mathematics is often given as “A if and only
if not B”, reflecting the fact that this this expression is equivalent to (i.e., true exactly the
same time as) the expression A↔ ¬B; that is, the fact that

(A= B)↔ (A↔ ¬B)

is a tautology.

Open statements. An open statement is a statement that has (zero or more) variables
in it; when one gives values to these variables. For example, to say that “x is greater than 2”
(where x denotes an unspecified real number) is on open statement. One can tell its truth
value only after one specifies what real number x is. In mathematical logic, one describes
the rules how open statements are formed; the collection of these rules are called syntax.
However, want to discuss matters somewhat informally, so we will avoid a detailed discussion
of syntax. Occasionally, open statements will be denoted by script capital letters such as A
or B.

7One often calls a conditional an implication, especially in informal usage, since instead of “if A then B”
one might say “A implies B”. However, logical implication has a meaning separate from, though related to,

that of the conditional. Therefore, some consider calling a conditional an implication objectionable.
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Negating quantified statements. The formula ¬(∀x)A is the same as (∃x)¬A; here
A is some open statement.8 That is, saying that “it is not true that for all x A holds” means
that “there is an x for which A does not hold”. One writes this by saying that

¬(∀x) ≡ (∃x)¬;

here ≡ means that what are written on the two sides are equivalent, i.e., they mean the
same thing, i.e. they can replace each other.9 Similarly, the formula ¬(∃x)A is the same as
(∀x)¬A. That is, to say that “it is not true that there exists an x for which A holds” means
that “for all x it is not true that A holds”. This can be expressed by the rule

¬(∃x) ≡ (∀x)¬.

One can use these rules and the tautologies mentioned above to move negation inside a
formula. For example,

(1) ¬(∀ǫ > 0)(∃δ > 0)(∀p ∈ (0, 1))(∀q ∈ (0, 1))

(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ
)

)

.

Here p, q, ǫ, and δ denote real numbers,10 and (0, 1) denotes the interval {t : 0 < t < 1}.
What this formula expresses is irrelevant for our present purpose.11 The quantifiers (∀ǫ > 0)
is called a restricted quantifier, since it says that ǫ ranges over positive real numbers instead
of all real numbers (where unrestricted variables range in the present case). Similarly,
(∀δ > 0), (∃p ∈ (0, 1) are restricted quantifiers. The important point at present is that the
above rules of interchanging negation and quantifiers are also true for restricted quantifiers.

The above formula can be transformed as follows:

¬(∀ǫ > 0)(∃δ > 0)(∀p ∈ (0, 1))(∀q ∈ (0, 1))

(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ ¬(∀ǫ > 0)(∃δ > 0)(∀p ∈ (0, 1))(∀q ∈ (0, 1))

(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ (∃ǫ > 0)¬(∃δ > 0)(∀p ∈ (0, 1))(∀q ∈ (0, 1))

(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ (∃ǫ > 0)(∀δ > 0)¬(∀p ∈ (0, 1))(∀q ∈ (0, 1))

(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ (∃ǫ > 0)(∀δ > 0)(∃p ∈ (0, 1))¬(∀q ∈ (0, 1))

(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ (∃ǫ > 0)(∀δ > 0)(∃p ∈ (0, 1))(∃q ∈ (0, 1))¬
(

|p− q| < δ →
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ (∃ǫ > 0)(∀δ > 0)(∃p ∈ (0, 1))(∃q ∈ (0, 1))

(

|p− q| < δ & ¬
∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

< ǫ

)

≡ (∃ǫ > 0)(∀δ > 0)(∃p ∈ (0, 1))(∃q ∈ (0, 1))

(

|p− q| < δ &

∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

≥ ǫ
)

.

8Presumably, A depends on x, so one might be tempted to write A(x) instead. However, writing A(x)
really does not make things clearer.

9We do not regard ≡ as a logical connective here. It can be considered as a rule according to which we

can change (or transform) formulas without changing their meanings. That is, it expresses a transformation
rule; see below.

10One also says that these variables range over real numbers.
11It expresses the statement that the function f(x) = 1/x is not uniformly continuous in the interval

(0, 1), discussed below in these notes.



6 Notes on Analysis

Restricted quantifiers. If E is a set, and A is an open statement, quantifiers of the
form (∀x ∈ E) and (∃x ∈ E) are called restricted quantifiers. More generally, given an open
statement A, one can consider the restricted quantifiers (∀x : A and ∃x : A). If B is another
open statement, then the formula (∀x : A)B says that “for all x such that A holds we (also)
have B, and for (∃x : A)B means that “for all x for which A holds we also have B”. It is
easy to see that

(∀x : A)B ≡ (∀x)(A → B),
and

(∃x : A)B ≡ (∃x)(A & B).
Therefore, restricted quantifiers are not strictly necessary, but they are often convenient
to use. They frequently make formulas simpler, and, a very important point, the rules dis-
cussed above involving the interchange of negation and quantifiers are also true for restricted
quantifiers. Finally, for a set E,

(∀x ∈ E) ≡ (∀x : x ∈ E)

and
(∃x ∈ E) ≡ (∃x : x ∈ E).

3. The Axiom of Completeness

A cut is a pair (A,B) such that A and B are nonempty subsets of the set R of real
numbers with A ∪ B = R, and such that for every x ∈ A and every y ∈ B we have x < y.
If (A,B) is a cut, it is clear that the sets A and B must be disjoint (since every element of
A is less than every element of B). For a cut (A,B) and a real number t we say that the
cut determines the number t if for every x ∈ A we have x ≤ t and for every y ∈ B we have
t ≤ y.

For example, a cut that determines the number 2 is the pair (A,B) with A = {t : t ≤ 2}
and B = {t : t > 2}. Another cut that determines the number 2 is the pair (C,D) with
C = {t : t < 2} and D = {t : t ≥ 2}.

It is clear that a cut cannot be determine more than one number. Assume, on the contrary,
that the cut (A,B) determines the numbers t1 and t2 and t1 6= t2. Without loss of generality,
we may assume that t1 < t2. Then the number c = (t1 + t2)/2 cannot belong to A, since we
cannot have t1 < x for any element of A, whereas t1 < c. Similarly c = (t1 + t2)/2 cannot
be an element of B, since we cannot have y < t2 for any element of B, whereas c < t2.

Furthermore, the above example is of a general character, in that for every real number
u there are exactly two cuts, (A,B) and (C,D) that determine u, where A = {t : t ≤ u}
and B = {t : t > u}. C = {t : t < u} and D = {t : t ≥ u}. The Axiom of Completeness is
an important property of real numbers:

Axiom of Completeness. Every cut determines a real number.

Ordinarily, one does not expect to prove this statement, since axioms are basic statements
that one does not prove. However, one can prove the Axiom of Completeness if one defines
the real numbers as infinite decimals.12

12However, defining the reals numbers as infinite decimals is inelegant in that the decimal number system
came about only by a historical accident. One could also define the reals, however, as infinite binary fractions;
i.e., “decimal” fractions in the binary number system. The binary number system is somewhat more natural

than the decimal system in that it is the simplest of all number systems.
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Proof of the Axiom of Completeness. Let (A,B) be a cut. Assume first that A

contains a positive number. Let n be a positive integer, and let x(n) = x
(n)
0 .x

(n)
1 x

(n)
2 . . . x

(n)
n

be the largest decimal fraction with n digits after the decimal point such that x(n) is less

than or equal to every element of B; here x
(n)
0 is a nonnegative integer, and, for each i with

1 ≤ i ≤ n, x(n)i is a digit, i.e., one of the numbers 0, 1, . . . , 9.13 There is such an x(n), since
the set of decimal fractions with n digits after the decimal point that are nonnegative and
less than or equal to every element of B is finite.14

It is easy to see that if m and n are positive integers and m < n then for each i with

0 ≤ i ≤ m we have x
(m)
i = x

(n)
i . Indeed, we cannot have x

(m)
i < x

(n)
i . for any i with

0 ≤ i ≤ m since then the number x′ = x
(n)
0 .x

(n)
1 x

(n)
2 . . . x

(n)
m would be an m-digit decimal

greater than x(m) and less than or equal to every element of B. Furthermore, we cannot

have x
(m)
i > x

(n)
i . for any i with 0 ≤ i ≤ m, since then, with this i, the number x′′ =

x
(m)
0 .x

(m)
1 x

(n)
2 . . . x

(m)
i 00 . . . 0 (n − i zeros at the end) would be an n-digit decimal greater

than x(n) and less than or equal to every element of B.

Now, the infinite decimal r = x
(0)
0 .x

(1)
1 x

(2)
2 . . . x

(n)
n . . . is the number determined by cut

(A,B). Indeed, r ≥ x for every x ∈ A. Assume, on the contrary, that r < x and let
n be such that 10−n < x − r. Then noting that r − x(n) < 10−n, the decimal number
x(n) + 10−n ≤ r + 10−n < x would be less than every element of B (since x is less than
every element of B), contradiction the choice that x(n) was the largest such n-digit decimal
fraction. Furthermore, r ≤ y for every y ∈ B. Assume, on the contrary that r > y for some
y ∈ B, and let n be such that 10−n < r − y. Then noting that r − x(n) < 10−n, we have
x(n) > r−10−n > y, contradiction the assumption that x(n) ≤ y for every y ∈ B. The proof
is complete in case the cut (A,B) is such that A contains a positive number.

If (A,B) is a cut such that B contains the negative number, writing −A = {−x : x ∈ A}
−B = {−y : y ∈ B}, the cut (−B,−A) is such that −B contains a positive number; hence,
by the above argument, this cut determines a number r. Then the cut (A,B) determines
the number −r.

Finally, if the cut (A,B) is such that A does not contain a positive number and B does
not contain a negative number, then it is clear that the cut (A,B) determines the number 0.
The proof is complete.

The Axiom of Completeness guarantees, for example, that the number
√
2 exists. Namely,

the cut (A,B) with A = {x : x < 0 or x2 ≤ 2} and B = {x : x > 0 and x2 > 2} and
determines the number t such that t2 = 2.

To show this, we will first show that for every ǫ > 0 we have |t2 − 2| < ǫ. In order to
show this, we may assume that ǫ < 1. First note note that there is an x ∈ A and a y ∈ B
with x ≥ 0 and y ≥ 0 (the latter holds for every y ∈ B) such that y − x ≤ ǫ/6. To see this,
consider the set

S = {nǫ/6 : n ≥ 0 is an integer and nǫ/6 ∈ A}.
S is not empty, since 0 ∈ S. Furthermore, it is clearly a finite set, and so it has a largest
element. Now, choose x to be the largest element of this set and put y = x + ǫ/6 (clearly,
y ∈ B, since if we had y /∈ B then we would have y ∈ A, and so y ∈ S, and then x would
not be the largest element of x).

Observe that x < 2 (because x ∈ A, and so x2 ≤ 2 unless x < 0 by the definition of A)
and y = x+ ǫ/6 ≤ 2 + 1/6 < 3 (this is where we used the assumption ǫ < 1). Furthermore,
x ≤ t ≤ y, since t is the number determined by the cut (A,B). We have

t2 − 2 ≤ t2 − x2 = (t− x)(t+ x) ≤ (y − x)(y + x) <
ǫ

6
· 5 < ǫ;

13i.e., if x(n) = 345.84 then n = 2, x
(n)
0 = 345, x

(n)
1 = 8, and x

(n)
2 = 4.

14The set of these decimal fractions is nonempty, since it contains the number 0. It is finite, because if b
is an arbitrary element of B, there are at most 10n · b+1 n-digit nonnegative decimal fractions less than or

equal to b.
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the third inequality holds because we have y − x ≤ ǫ/6, x < 2, and y < 3. Similarly,

2− t2 ≤ y2 − t2 = (y − t)(y + t) ≤ (y − x)(y + y) <
ǫ

6
· 6 = ǫ.

These two inequalities together show that

|t2 − 2| < ǫ.

as claimed.
Since ǫ > 0 was arbitrary, this inequality holds for every ǫ > 0. Now, assume that t2 6= 2.

Then the number |t2 − 2| is positive. Choosing ǫ = |t2 − 2|, the above inequality cannot
hold. This is a contradiction, showing that we must have t2 = 2.

Let S be a nonempty set of reals. A number t such that t ≥ x for every x ∈ S is called
an upper bound of S. The set A is called bounded from above if it has an upper bound. The
number c that is an upper bound of S such that c ≤ t for every upper bound t of S is called
the least upper bound or supremum of S. The supremum of S is denoted as supS.

Lemma. Let S be a nonempty set S of reals that is bounded from above. Then S has a
supremum.

Proof. Let B be the set of upper bounds of S, and let A be the set of those reals that
are not upper bounds of S (i.e., A = R \ B). Then it is clear that (A,B) is a cut. Indeed,
if we have x ≥ y and y ∈ B for the reals x and y, then x is also an upper bound of S (since
it is at greater than or equal to another upper bound, namely y). This shows that for every
x ∈ A and y ∈ B we must have x < y. A is not empty since S is not empty, so not every
real is an upper bound of S; B is not empty, since S is bounded from above by assumption.

Let t be the real determined by the cut (A,B). Then t is an upper bound of S. Assume,
on the contrary, that there is an s ∈ S is such that s > t. Let u = (s+ t)/2. Then u > t, so
we must have u ∈ B (since the cut (A,B) determines t). Yet u < s, so u is not an upper
bound of S, contradicting the relation u ∈ B.

Furthermore, t is the least upper bound of S. Assume, on the contrary, that y is an upper
bound of S such that y < t. Then y ∈ B (since B contains every upper bound of S). But
then we must have y ≥ t (since the cut (A,B) determines t). This contradicts the relation
y < t. The proof is complete.

For the empty set, one usually writes that sup ∅ = −∞, and for a set S that is not
bounded from above, one writes that supS = +∞. With this extension, the symbol supS
will be meaningful for any subset of S reals.

Let S be a nonempty set of reals. A number t such that t ≤ x for every x ∈ S is called
a lower bound of S. The set A is called bounded from below if it has an lower bound. The
number c that is an lower bound of S such that c ≥ t for every lower bound t of S is called
the greatest lower bound or infimum of S. The infimum of S is denoted as inf S. Every
nonempty set that is bounded from below has an infimum. The proof of this statement
is similar to the proof of the Lemma above. Instead of carrying out this proof, one can

argue more simply that inf S = − sup(−S), where −S def
= {−s : s ∈ S}. One usually writes

inf ∅ = +∞, and if S is not bounded from below, then one writes inf S = −∞.

4. Supremum and limits

Lemma. Let S be a nonempty set of reals that is bounded from above, and let a = supS.
Let ǫ > 0. Then the interval (a− ǫ, a] contains an element of S.
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Proof. As a − ǫ is not an upper bound of S (a being its least upper bound), there
must be an x ∈ S with x > a − ǫ. We have x ≤ a, since a is an upper bound of S. Thus
x ∈ S ∩ (a− ǫ, a].

Definition. A set S in the metric space (E, d) is said to be open if for every p ∈ S there
is an ǫ > 0 such that the open ball {q : d(p, q) < ǫ} is a subset of S.

What is meant in the above definition is ”if and only if” (that is, “(E, d) is said to be
open if and only if for every . . . ”). In mathematical definitions, it is customary to say if in
similar cases when one means if and only if. In other situations in mathematics, one makes
a very careful distinction between “if” and “if and only if.”

Definition. A set S in the metric space (E, d) is said to be closed if its complement ∁S
is open.

Lemma. Let S be a nonempty closed set of reals that is bounded from above. Then S has
a maximum. In other words, there is a u ∈ S such that u ≥ s for every s ∈ S.

Proof. As S is nonempty and bounded from above, it has a supremum; write u = supS.
We will prove that u ∈ S; then it will be clear that u = maxS (i.e. that u ∈ S and x ≤ u
for every x ∈ S).

Assume, on the contrary, that u /∈ S. Then u ∈ ∁S. As S is closed, its complement ∁S is
open; thus, there is an open ball (u − ǫ, u + ǫ) with center u that is included in ∁S (ǫ > 0;
in R, the open balls are open intervals). Hence S has no elements in this interval; since u is
an upper bound of S (i.e., x ≤ u for every x ∈ S), this means that u− ǫ is an upper bound
of S (i.e., x ≤ u − ǫ for every x ∈ S). This contradicts the assumption that u is the least
upper bound of S. Therefore the assumption u /∈ S must be wrong, completing the proof.

Lemma. Let S be a set in a metric space (E, d) is not closed. Then there is a point p /∈ S
of E and a sequence {pn}∞n=1 of elements of S that converges to p.

Proof. As S is not closed, its complement ∁S is not open. Therefore, there is a point
p ∈ ∁S such that no open ball with center p is included in ∁S. That is, for every ǫ > 0 the
set

{q : d(p, q) < ǫ} ∩ S

is not empty (if it were, the open ball on the left would be included in ∁S). Using this
statement with ǫ = 1/n, for each positive integer n we can find a pn in this set; that is
pn ∈ S and d(p, pn) < 1/n. From the latter inequality we can conclude that lim pn = p.
Thus the sequence {pn}∞n=1 has the desired properties.

Lemma. Assume {an}∞n=1 is an increasing sequence of reals that is bounded from above.
Then {an}∞n=1 is convergent.

Proof. The set S = {an : 1 ≤ n < ∞} is bounded from above, so it has a supremum.
Let a be this supremum. We will show that lim an = a.

To this end, let ǫ > 0 be arbitrary. Since a − ǫ is not an upper bound of S, the set S
has an element, say aN for some positive integer N , for which aN > a− ǫ. As the sequence
{an}∞n=1 is increasing, we have an ≥ aN for every n ≥ N . As we also have an ≤ a (since
an ∈ S and a is an upper bound of S), it follows that an ∈ (a − ǫ, a + ǫ) whenever n ≥ N .
Hence the sequence {an}∞n=1 converges to a.

Lemma. Let a be such that 0 < a < 1. Then limn→∞ an = 0.

Proof. The assumptions imply that 0 < an+1 < an; thus the sequence {an}∞n=1 is
decreasing and bounded from below; therefore it has a limit. Write x = lim an. Clearly, we
also have x = lim an+1. This can easily be verified directly. Alternatively, one may observe
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that {an+1}∞n=1 is a subsequence15 of {an}∞n=1; hence, the former sequence must have the
same limit as the latter. Now,

ax = a · lim an = lim a · an = lim an+1 = x,

i.e., ax = x, or (a − 1)x = 0. As a 6= 0 by our assumptions, this is only possible if x = 0.
Thus, lim an = 0, which is what we wanted to prove.

Second proof. The assertion lim an = 0 can also be proved by using Bernoulli’s In-
equality, saying that (1 + x)n ≥ 1 + nx holds whenever x ≥ −1, for every positive integer
n. For x ≥ 0, Bernoulli’s Inequality is a direct consequence of the Binomial Theorem. The
case −1 ≤ x < 0 of Bernoulli’s Inequality is harder to establish, but this case is not needed
for proving lim an = 0.

Writing x = 1
a − 1, we have x ≥ 0 and a = 1/(1 + x), and so (1/a)n = (1+ x)n ≥ 1+ nx,

i.e., an ≤ 1/(1 + nx). Given ǫ > 0, we will have 1/(1 + nx) < 1/(nx) ≤ ǫ whenever
n ≥ N = 1/(xǫ). For such n we will have −ǫ < an − 0 < ǫ, showing that lim an = 0.

Lemma. Let A and B be two nonempty sets of reals that are bounded from above. Then

sup{x+ y : x ∈ A and y ∈ B} = supA+ supB.

Proof. Writing S = sup{x + y : x ∈ A and y ∈ B}, a = supA, and b = supB, we will
first show that supS ≤ a + b. To this end, let x + y be an element of S, where x ∈ A and
y ∈ B. Then x ≤ a (since a is an upper bound of A; in fact, it is its least upper bound)
and y ≤ b (since b is an upper bound of B). Thus x+ y ≤ a+ b. As x+ y was an arbitrary
element of S, this shows that a+ b is an upper bound of S. Therefore supS ≤ a+ b, since
supS is the least upper bound of S.

Next we will show that supS ≥ a+b. We will do this by showing that no number c < a+b
is an upper bound of S. So, let c < a + b be arbitrary and write ǫ = (a + b − c)/2; then
ǫ > 0. Now a− ǫ is not an upper bound of A (as a is its least upper bound), so there must
be an x ∈ A with x > a− ǫ. Similarly, b− ǫ is not an upper bound of B, so there must be
a y ∈ B with y > b− ǫ. Then

x+ y > (a− ǫ) + (b− ǫ) = a+ b− 2ǫ = c.

As x+y ∈ S, this implies that c is not an upper bound of S, as we wanted to show. As both
supS ≤ a+ b and supS ≥ a+ b hold, we must have supS = a+ b. The proof is complete.

Second proof. Using the notation introduced in the first proof, we will give a second
proof of the inequality supS ≥ a + b (we will not give another proof of the inequality
supS ≤ a+b; the proof of this latter inequality will have to be taken from the first solution).
Let c be an upper bound of S; it will be enough to show that c ≥ a+ b.

Let x ∈ A and y ∈ B be arbitrary. Then x+ y ∈ S, and so x+ y ≤ c, since c is an upper
bound of S. That is, x ≤ c − y. Now, consider this inequality for a fixed y ∈ B. Then we
can see that, for every x ∈ A, the inequality x ≤ c− y holds. I.e., c− y is an upper bound
of A, and so c− y ≥ a, the least upper bound of A.

The last inequality can also be written as y ≤ c−a; this inequality holds for every element
y ∈ B (since y ∈ B was arbitrary). Thus c− a is an upper bound of B; i.e., c− a ≥ b, since
b is the least upper bound of this set. Thus c ≥ a+ b, as we wanted to show.

15The sequence {bn}∞n=1 is called a subsequence of {an}∞n=1 if bn = af(n) for some strictly increasing
function f that is defined for each positive integer and has positive integers as values. In the present case,

one can put an = an and bn = an+1 = an+1, that is, f(n) = n+ 1.
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5. Upper and lower limit

Let {an}∞n=1 be a sequence of real numbers. The upper limit or limit superior of this
sequence is defined as

lim sup
n→∞

an = sup{x : x ≤ an for infinitely many n}.

As the supremum of a set was always defined to be either a real number or +∞ (when the
set is not bounded from above) or −∞ (when the set is empty), it follows every sequence
has an upper limit that is either a real number or is +∞ or −∞.

The lower limit or limit inferior of the above sequence is defined as

lim inf
n→∞

an = inf{x : x ≥ an for infinitely many n}.

As the infimum of a set was always defined to be either a number or −∞ (when the set is
not bounded from below) or +∞ (when the set is empty), it follows every sequence has an
lower limit that is either a real number or is −∞ or +∞. We have

Lemma 1. Given a sequence {an}∞n=1 of real numbers, we have

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Proof. Write s = lim infn→∞ an, S = lim supn→∞ an and assume s > S. Let c be a
real number such that S < c < s.16 Then, noting that c > S, it follows that there are only
finitely many n’s such that c ≤ an; that is, the set {n : c ≤ an} is finite.17 Similarly, noting
that c < s, it follows that the set {n : c ≥ an} is finite. This is a contradiction, since the
union of these two sets is the set of all positive integers.

Lemma 2. Given a sequence {an}∞n=1 of real numbers, if limn→∞ an exists then we have
limn→∞ an ≥ lim supn→∞ an.

When saying that limn→∞ an exists we of course mean that limn→∞ an is a real number.
However, the reader may reflect that the assertion of the Lemma remains valid even if we
assume limn→∞ an = −∞, and it can be proved similarly (with some modifications, since
infinite limits are defined differently from limits that are equal to real numbers). If we assume
limn→∞ an = +∞, then the statement is of course valid, but in that case the statement is
uninteresting.

Proof. Write L = limn→∞ an, S = lim supn→∞ an, and assume that L < S. Let c be
a real number such that L < c < S.18 Write ǫ = c − L; clearly, ǫ > 0. Then, noting that
L = limn→∞ an, there is an N such that |an − L| < ǫ whenever n > N , i.e., such that
−ǫ < an −L < ǫ whenever n > N . Hence the set {n : x ≤ an} is finite for x ≥ c = L+ ǫ; in
fact, no n with n > N belongs to this set. Therefore, the supremum of the set

{x : x ≤ an for infinitely many n}

is less than or equal to c. On the other hand, the supremum of this set is S = lim supn→∞ an,
according to the definition of upper limit. This is a contradiction, since we have S > c. The
proof is complete.

16If S and s are real numbers, one can take c = (s + S)/2, but this choice will not work if S or s is

(positive or negative) infinity. It is, however, easy to see that an appropriate c can be found even in this
case.

17Note that this argument works even if S = −∞. Similarly, the argument next works even if s = +∞.
We cannot have S = +∞ or s = −∞ since S < s according to our assumption.

18If S is a real number then we can take c = (L+ S)/2. If S = +∞ then we can take c = L+ 1.
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Lemma 3. Given a sequence {an}∞n=1 of real numbers, if limn→∞ an exists then we have
limn→∞ an ≤ lim infn→∞ an.

For the proof, one can repeat the argument of Lemma 2, with appropriate changes.
However, it is easier to note that limn→∞ an = − limn→∞(−an) and lim infn→∞ an =
− lim supn→∞(−an), According the Lemma 2, we have

− lim
n→∞

(−an) ≤ − lim sup
n→∞

(−an),

and so the conclusion follows.

Again, the reader may reflect that the assertion of the Lemma remains valid even if we
assume limn→∞ an = +∞. If we assume limn→∞ an = −∞, then the statement is of course
valid, but in that case the statement is uninteresting.

Corollary. Given a sequence {an}∞n=1 of real numbers, if limn→∞ an exists then we
have

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

This is an immediate consequence of Lemmas 1, 2, and 3, since according to these we
have

lim
n→∞

an ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ lim
n→∞

an.

Again, the statement of the Corollary can be extended to the case when lim an is +∞ or
−∞ by using similar extensions of Lemmas 2 and 3.19 In the converse direction we have

Lemma 4. Given a sequence {an}∞n=1 of real numbers, if lim supn→∞ an is a real number
and

lim inf
n→∞

an = lim sup
n→∞

an,

then limn→∞ an exists.

Proof. Write L = lim infn→∞ an = lim supn→∞ an, and let ǫ > 0 be arbitrary. Then
noting that L+ ǫ > lim supn→∞ an, it follows that there are only finitely many n’s such that
L+ ǫ ≤ an; that is, the set {n : L+ ǫ ≤ an} is finite. Then there is an integer N1 such that
the set {n > N1 : L+ ǫ ≤ an} is empty.

Similarly noting that L− ǫ < lim infn→∞ an, it follows that there are only finitely many
n’s such that L− ǫ ≥ an; that is, the set {n : L+ ǫ ≥ an} is finite. Then there is an integer
N2 such that the set {n > N2 : L− ǫ ≥ an} is empty.

Writing N = max{N2, N2}, both the sets {n > N : L+ǫ ≤ an} and {n > N : L−ǫ ≥ an}
are empty. That is, we have

L− ǫ < an < L+ ǫ

for every n > N . Since ǫ > 0 was arbitrary, it follows that L = limn→∞ an. The proof is
complete.

By a modification of the argument used here, it is easy to show that if lim infn→∞ an =
lim supn→∞ an = −∞ then limn→∞ an = −∞ and if lim infn→∞ an = lim supn→∞ an = +∞
then limn→∞ an = +∞.

The completeness of R. An easy consequence of the above is the following

19Lemma 1 need not be extended, since in that Lemma we allowed lim infn→∞ an and lim supn→∞
an

to be +∞ or −∞.
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Lemma 5. In R, any Cauchy sequence is convergent.

Proof. Let {an}∞n=1 be a Cauchy sequence. Let ǫ > 0 be arbitrary, and let N be an
integer such that |am − an| < ǫ/3 whenever m,n > N . Fix k > N . Then the set

{n ≥ 1 : ak + ǫ/3 ≤ an}

is finite; in fact, it does not contain any integer n > N . Hence

lim sup
n→∞

an = sup{x : x ≤ an for infinitely many n} ≤ ak + ǫ/3.

Similarly, the set

{n ≥ 1 : ak − ǫ/3 ≥ an}

is finite; in fact, it does not contain any integer n > N . Hence

lim inf
n→∞

an = inf{x : x ≥ an for infinitely many n} ≥ ak − ǫ/3.

Thus

lim sup
n→∞

an − lim inf
n→∞

an ≤ (ak + ǫ/3)− (ak − ǫ/3) = 2ǫ/3 < ǫ.

That is, we have

lim sup
n→∞

an − lim inf
n→∞

an < ǫ.

Since ǫ > 0 was arbitrary, this implies that lim supn→∞ an−lim infn→∞ an ≤ 0. Indeed, if we
had lim supn→∞ an− lim infn→∞ an > 0, then the choice ǫ = lim supn→∞ an− lim infn→∞ an
would mean that ǫ < ǫ according to the last displayed inequality, a contradiction.

Thus, lim infn→∞ an ≥ lim supn→∞ an. Since, according to Lemma 1 we also have
lim infn→∞ an ≤ lim supn→∞ an, the equality lim infn→∞ an = lim supn→∞ an follows.
Therefore, limn→∞ an exists, according to Lemma 4. This completes the proof.

6. Subspaces and compact sets

Let S be a collection of sets (“collection” is just a synonym of “set,” so a collection of sets
is just a set of sets). The union of S, also called the union of all elements of S, is defined as

⋃

S def
= {x : ∃y ∈ S [x ∈ y]}.

Given a metric space (E, d), a point p ∈ E, and a positive real number r, we will write
UE(p, r) for the open ball of radius r centered at p. That is

UE(p, r)
def
= {q ∈ E : d(p, q) < r}.

If the space E is understood from the context, we may omit it, and write U(p, r) instead of
UE(p, r). The following is a simple characterization of open sets.
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Lemma. Let (E, d) be a metric space. The set S ⊂ E is open if and only if

S =
⋃

{UE(p, r) : p ∈ E & r > 0 & UE(p, r) ⊂ S}.

In plain language, the Lemma says that the set S is open if and only if it is the union
of the open balls it includes. Sometimes one writes

⋃

y∈S y instead of
⋃S, but the latter

notation is clearly simpler. Using the former notation, the set on the right-hand side of the
equation in the Lemma could be described as

S =
⋃

p∈E & r>0 & UE(p,r)⊂S

UE(p, r).

Proof of the Lemma. The set on the right-hand side of the equation of the Lemma,
being a union of open balls, is an open set. Hence, if the equation does hold, then S is an
open set. This proves the “if ” part of the Lemma.

To prove the “only if ” part, first note that

S ⊃
⋃

{UE(p, r) : p ∈ E & r > 0 & UE(p, r) ⊂ S},

since a union of subsets of S is taken on the right-hand side. We will show that

S ⊂
⋃

{UE(p, r) : p ∈ E & r > 0 & UE(p, r) ⊂ S}

also holds in case S is open. Indeed, assume S is open, and let p ∈ S be arbitrary. Then
there is an r > 0 such that UE(p, r) ⊂ S; as p ∈ UE(p, r), this shows that p is also an element
of the right-hand side. Since p ∈ S was arbitrary, it follows that S is indeed a subset of the
union on the right-hand side. Thus, both inclusions hold, and so S must be equal to the
union on the right-hand side. This establishes the “only if ” part. Thus, the proof of the
Lemma is complete.

Now, let (E, d) be a metric space and let S be a subset of E. It is easy to see that then
(S, d) is a metric space; this space has S as its set of points, and its distance function is
the same d as is the distance function on E.20 The space (S, d) is called a subspace of the
space (E, d). The next lemma describes the open sets in the space (S, d) in terms of those
in (E, d).

Lemma. Let (E, d) be a metric space, and let S ⊂ E be a set. A set M ⊂ S is open in
(S, d) if and only if there is a set U open in (E, d) such that M = U ∩ S.

Similarly, a set M ⊂ S is closed in (S, d) if and only if there is a set F closed in (E, d)
such that M = F ∩ S.

Note that the fact that the set M ⊂ S is open (or closed) in (S, d) does not mean that M
is open (or closed) in (E, d). For example taking E = R (R is the set of real numbers, with
the distance function d(x, y) = |x−y|), and taking S to be the semiclosed interval [0, 1), the
set S is both open and closed in (S, d) (since the whole space is always both an open and a
closed set), but S is neither open nor closed in (E, d).

20Technically, this is not quite correct; the distance function on S should be d′ defined as

d′(p, q) =

{

d(p, q) if p ∈ S and q ∈ S,

undefined otherwise (i.e., if p /∈ S or q /∈ S),

since, clearly, the distance function on S should not be defined outside S. d′ is called the restriction of d to
S (or, more precisely, to S × S). It will, however, be simpler to say, at the price of a minor inaccuracy, that

the distance function on S is the same d as the distance function on E.
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Proof of the Lemma. Assume that M is an open set in (S, d). Then, by the above
Lemma,

M =
⋃

{US(p, r) : p ∈ S & r > 0 & US(p, r) ⊂M}.

As US(p, r) = S ∩ UE(p, r) provided p ∈ S,21 the set on the right-hand side is equal to

⋃

{S ∩ UE(p, r) : p ∈ S & r > 0 & US(p, r) ⊂M}

= S ∩
⋃

{UE(p, r) : p ∈ S & r > 0 & US(p, r) ⊂M};

the second equation here is true by a distributive rule for the union of sets.22 The set

U
def
=
⋃

{UE(p, r) : p ∈ S & r > 0 & US(p, r) ⊂M}

is an open set in the space (E, d), since it is union of open balls in E. Since we have
M = S ∩ U , this completes the proof of the “only if ” part of the statement on open sets in
the lemma.

As for the “if” part, assume M = S ∩ U , where U is open in (E, d), and let p ∈ M be
arbitrary. Then we also have p ∈ U . Thus, by the openness of U in (E, d), there is an r > 0
such that UE(p, r) ⊂ U . Then US(p, r) = S ∩ UE(p, r) ⊂ S ∩ U = M . Since p ∈ M was
arbitrary, this shows that M is open in (S, d), completing proof of also the “if” part of the
Lemma on open sets.

The second statement (i.e., the one about closed sets) is easy to verify by going to com-
plements. That is, if M is closed in (S, d), then its complement S \ M in S is open in
(S, d). Thus by the statement about open sets, there is a set U open in (E, d) such that
S \M = U ∩ S. Then, writing F for the complement in E of U (that is, F = E \U), F is a
set closed in (E, d) such that M = F ∩ S.

Conversely, if M = F ∩ S where F is closed in (E, d), then U
def
= E \ F is open in (E, d),

so S \M = U ∩ S is open in (S, d) by the statement about open sets; thus M is closed in
(S, d). The proof of the Lemma is complete.

The lemma just proved has important consequences for compact sets, defined next

Definition. Let (E, d) be a metric space and let S be a subset of E. The set S is said
to be compact in (E, d) if the following holds: For any collection U of open sets in (E, d), if
S ⊂ ⋃U , there is a finite subcollection U ′ ⊂ U such that S ⊂ ⋃U ′.

Further, the space (E, d) is said to be compact if E is a compact set in (E, d).

To say that U is a collection of open sets in (E, d) means that U is a collection every
element of which is an open subset of (E, d). The inclusion S ⊂ ⋃U is expressed by saying
that U is on open cover of S. One also says that U covers S, or that the elements of U cover
S. If U ′ ⊂ U and S ⊂ ⋃U ′, then U ′ is called a subcover of U (for S, if one wants to avoid
repeating the preposition “of”). Thus, one can say shortly that a set is compact if and only
if any of its open covers has a finite subcover.

Example. The interval (0, 1) is not compact.

Indeed,

(0, 1) ⊂
∞
⋃

n=1

(

1

n
, 1

)

,

21The left-hand side makes no sense if p /∈ S.
22The distributive rule in question says that

X ∩
⋃

A =
⋃

{X ∩A : a ∈ A}

is valid for any set X and any collection A of sets. This equation is easy to verify with the aid of the

definition of the union of sets.
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and, for any positive integer N ,

(0, 1) 6⊂
N
⋃

n=1

(

1

n
, 1

)

.

Compactness is an intrinsic property; that is, whether a set is compact does not depend
on which larger space it is considered. That is, the second Lemma above has the following

Corollary. Let (E, d) be a metric space and let S be a subset of E. Then the set S is
compact in (E, d) if and only if (S, d) is a compact space.

Proof. To establish the “if ” part, assume that (S, d) is a compact space. Let U = {Uι :
ι ∈ I} be a collection of sets Uι, open in (E, d) such that S ⊂ ⋃U .23 Then

V def
= {S ∩ Uι : ι ∈ I}

is, by the second Lemma above, a collection of sets that are open in (S, d). We have

S ⊂ S ∩
⋃

U =
⋃

V;

that is V is an open cover, in the sense of (S, d) of S. As the space (S, d) is compact, V has
a finite subcover, say V ′; i.e., S ⊂ ⋃V ′. Since each element V has the form S ∩ Uι for some
ι ∈ I, there is a finite subset I ′ of I such that

(∗) V ′ = {S ∩ Uι : ι ∈ I ′}

Then S ⊂ ⋃V ′ implies that

S ⊂
⋃

{Uι : ι ∈ I ′}.

In other words,

(∗∗) U ′ def
= {Uι : ι ∈ I ′}

is an finite open subcover, in the sense of (E, d), of U , showing that S is compact in (E, d).
To establish the “if ” part, assume that S is a compact set in (E, d), and let V be an open

cover, in the sense of (S, d), of S; then S ⊂ ⋃V. Each element V of V is open in the space
(S, d). Hence by the second Lemma above, each V in V has form S ∩ U with some U open
in (E, d). Thus, taking

U def
= {U : U is open in (E, d) & S ∩ U ∈ V},

U is an open cover, in the sense of (E, d), of S. As S is compact in (E, d), there is a finite
subset U ′ of U that is an open cover, in the sense of (E, d), of S. Then

V ′ def
= {S ∩ U : U ∈ U ′}

is a finite subset of V that is an open cover, in the sense of (S, d), of S, showing that the
space (S, d) is compact. The proof is complete.

Remark. In the first part of the proof, we indexed the elements of the set U = {Uι :
ι ∈ I} with another set, I. If one wants to use function notation instead of the customary,

23The letter ι is the Greek lower case iota, and it is used instead of i, since often i is used to name the
elements of a countable set, and here it is not assumed that I is countable. We use the set I to index, or

name, the elements of the set U . The reason for this will be explained after the proof.
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but perhaps confusing, subscript notation, one can say f(ι) instead of Uι. Then the set U
equals the range of the function f (assuming that the domain of f is I, and not a larger
set). A set described this way is sometimes called an indexed set. Any set can be described
as an indexed set. For example, one can take I = U and f as the identity function on U . It
is not required that the function f be one-to-one.

In the above proof, the purpose of the index set I was to describe the set V ′ given in (∗)
in terms of a finite index set I ′, since the same index set I ′ can then be used to define the
set U ′, as was done in (∗∗). Without using the index set I, one might have been tempted
to say that let V ′ be a finite subcover of V, and then write

U ′ def
= {U : U ∈ U & ∃V ∈ V ′ [V = S ∩ U ]}.

This would not be correct though, since the set U ′ can be infinite. That is because, even
though there are finitely many choices for V ∈ V ′, for a given V there may be infinitely
many choices for U ∈ U such that V = S ∩ U . That is, for each V ∈ V ′ one needs to pick a
single U = g(V ) in U such that V = S ∩ U . Then one can define U ′ as

U ′ def
= {g(V ) : V ∈ V ′}.

This definition of U ′ accomplishes the same thing as the definition given in (∗∗), but the
present one is somewhat to messy to say. The use of the index set I in the above proof
avoids the need for this complicated circumlocution. In any case, difference between the
two approaches (one using indexed sets, the other not) is only a matter of style, and not of
substance.

Next we show the following.

Theorem. Let (E, d) be a metric space, and let S ⊂ E be compact. Then S is closed.

Proof. Assume S is not closed. Then its complement, E \ S, is not open. Therefore,
there is a q ∈ E \ S such that for no r > 0 is the open ball U(q, r) a subset of E \ S. That
is, we have q /∈ S for this q, and for every r > 0 we have

S ∩ U(q, r) 6= ∅.

For each p ∈ S, let rp = d(p, q)/2.24 Then the open balls U(p, rp) and U(q, rp) are
disjoint, as is easily verified with the aid of the triangle inequality. Then

S ⊂
⋃

p∈S

U(p, rp),

since each point p of S is an element of the union on the right-hand side (as p ∈ U(p, rp).
By compactness, the open cover on the right-hand side has a finite subcover. That is, there
is a finite subset S′ of S such that25

S ⊂
⋃

p∈S′

U(p, rp).

Now, let
r = min{rp : p ∈ S′};

the set on the right-hand side is a finite set of positive reals. Thus, the indicated minimum
exists, and is positive; i.e., r > 0. Since, as we remarked above, the open balls U(p, rp) and

24The dependence on q of rp is not indicated, since q is fixed throughout the argument.
25See the Remark above about indexed sets. Here we chose S as the index set for the open cover

{U(p, rp) : p ∈ S}.
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U(q, rp) are disjoint for p ∈ S, the open balls U(p, rp) and U(q, r) are also disjoint whenever
p ∈ S′, because r ≤ rp for such p. Thus,26

U(q, r) ∩
⋃

p∈S′

U(p, rp) = ∅.

This is, however, a contradiction, since the set on the right-hand side of the intersection
sign ∩ includes S, and, as we indicated above, the open ball on the left-hand side of the
intersection sign is not disjoint to S. This contradiction completes the proof of the theorem.

7. Totally bounded spaces

Our goal here is to give a characterization of compact metric spaces. To this end we
introduce the following concept.

Definition. The metric space (E, d) is called totally bounded if for every ǫ > 0 it can
be covered by finitely many closed balls of radius ǫ.

It will be convenient, but not essential, that we said closed balls above, since, clearly, if
E can be covered by finitely many closed balls of radius ǫ/2, then the open balls with the
same center and radius ǫ will also cover E. One can also observe that if (E, d) and S ⊂ E,
then the subspace (S, d) is also totally bounded. This is almost obvious, but there is the
minor hitch: if we cover E by finitely many closed balls of radius ǫ, then we may not be able
use these same closed balls to cover S, since the centers of these closed balls may not all be
in S, and so they will not be closed balls in (S, d). Cover instead E by finitely many closed
balls of radius ǫ/2, then take only those balls B for which B ∩ S 6= ∅, take p ∈ B ∩ S, and
replace B with a closed ball B′ in S with center p and radius ǫ. As B ∩ S ⊂ B′, it is clear
that these new closed balls will cover S.

A space metric space is called bounded if it can be included in a single open ball. It
is clear that a totally bounded space is also bounded, since finitely many closed balls can
always be covered by a single open ball; the converse is, however, not true. For any integer
n ≥ 1 let R

n be the set {(x1, . . . , xn) : xi ∈ R for 1 ≤ i ≤ n}; for x = (x1, . . . , xn) and

x = (x1, . . . , xn) write d(x,y) =
(
∑n

i=1(xi − yi)2
)1/2

. Then one can show that (Rn, d) is a
metric space (see Rosenlicht [1, pp. 34–36]); this space is called the n-dimensional Euclidean
space. It is easy to show that any bounded subspace of the n-dimensional Euclidean space
is totally bounded (see [1, p. 57]). Since this space is also complete (this is easy to conclude
from the completeness of R; cf. [1, p. 53]), it follows from the Theorem below that any closed
and bounded subspace of the n-dimensional Euclidean space is compact.

The space l2 is defined as the pair (E, d) where E = {(x1, x2, . . . ) : xi ∈ R for i ≥
1 and

∑∞
i=1 x

2
i < +∞} and the distance function d is defined as d(x,y) =

(
∑∞

i=1(xi −
yi)

2
)1/2

for x = (x1, x2, . . . ) and y = (y1, y2, . . . ) in E. It can be shown that l2 is a

complete metric space, and that no closed ball of positive radius in l2 is totally bounded.
We will need a few more concepts.

26For a formal verification of the next equality, one may use the distributive property mentioned above:

U(q, r) ∩
⋃

p∈S′

U(p, rp) =
⋃

p∈S′

(

U(q, r) ∩ U(p, rp)
)

.

A common sense argument may admittedly be simpler.
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Definition. The metric space is called sequentially compact if every sequence in it has
a convergent subsequence.

Definition. Let (E, d) be a metric space and let p ∈ E and S ⊂ E. We say that p is a
cluster point of S if every open ball with center p in E contains infinitely many elements of
S.

Observe that we can equivalently say that p is a cluster point of S if every open ball
with center p contains at least one element of S different from p. Indeed, if the open ball
with center p were to contain only finitely many elements of S, all these points, except p,
wound be excluded from an open ball with center p and an appropriately smaller radius.
The following result is simple.

Lemma. Let (E, d) be a metric space, and let S and T be sets such that T ⊂ S ⊂ E, S
is compact, and T is infinite. Then T has a cluster point in S.

Proof. Assume, on the contrary, that no point p ∈ S is a cluster point of T . For each
p ∈ S we can then take an open ball Bp with center p such that Bp ∩ T is finite. We have

S ⊂
⋃

p∈S

Bp.

That is, these open balls cover S. By the compactness of S, there are finitely many among
these open balls that also cover S. In other words, there is a finite set S′ ⊂ S such that

S ⊂
⋃

p∈S′

Bp.

We then have

T ⊂ S ∩ T ⊂
(

⋃

p∈S′

Bp

)

∩ T ⊂
⋃

p∈S′

(Bp ∩ T ).

The sets Bp ∩ T for p ∈ S′ are finite; the union of finitely many of these is finite. This is,
however, a contradiction, since T was assumed to be infinite, completing a proof.

Theorem. Let (E, d) be a metric space. The following are equivalent:

(i) (E, d) is compact;
(ii) (E, d) is sequentially compact;
(iii) (E, d) is complete and totally bounded.

Proof. We will prove this result by showing the implications (i)→ (ii), (ii)→ (iii), and
(iii)→ (i).

Proof of (i) → (ii). Assume (E, d) is compact. Let {pn}∞n=1 be a sequence of points
pn ∈ E. If the set {pn : n ∈ N} is finite, then there is a p ∈ E such that p = pn for infinitely
many n’s. Then we can take a subsequence {pnk

}∞k=1 of {pn}∞n=1 such that pnk
= p for all

k ∈ N. This subsequence converges to p.
If the set {pn : n ∈ N} is infinite, then it has a cluster point p by the above Lemma. For

each k ∈ N the open ball U(p, 1/k) contains infinitely elements of the set {pn : n ∈ N}. Let
nk ∈ N be such that pnk

∈ U(p, 1/k) and, in case k > 1, we also have nk > nk−1. Then the
subsequence {pnk

}∞k=1 converges to p.
Proof of (ii) → (iii). Assume (E, d) is sequentially compact. We will first show that

(E, d) is complete. Let {pn}∞n=1 be a Cauchy sequence; then this sequence has a convergent
subsequence. A Cauchy sequence that has a convergent subsequence is itself convergent; so
{pn}∞n=1 itself is convergent, showing that (E, d) is complete.

Next we show that (E, d) is totally bounded. Assume, on the contrary that it is not
totally bounded; let ǫ > 0 be such that (E, d) cannot be covered by finitely many closed
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balls of radius ǫ. Select a sequence pn of points pn ∈ E such that, writing Ū(p, ǫ) for the
closed ball of center p and radius ǫ, when selecting pn we have

pn /∈
n−1
⋃

k=1

Ū(pk, ǫ);

since the closed balls on the right-hand side do not cover E according to our assumptions,
it is possible to select pn in such a way. Then d(pn, pm) > ǫ for every two distinct n,m ∈ N,
showing that the sequence {pn}∞n=1 is not Cauchy sequence, and so it does not converge.
This contradicts the assumption that (E, d) is sequentially compact, showing that (E, d) is
totally bounded.

(iii)→ (i). Assume (E, d) is complete and totally bounded, and assume, on the contrary,
that E is not compact. Let U be a collection of open sets such that E ⊂ ⋃ U (in this case we
actually have E =

⋃ U , since E is the whole space) and there is no finite U ′ ⊂ U for which
E ⊂ ⋃ U ′, i.e., that E cannot be covered by finitely many sets in U . We will construct a
sequence of closed balls Bn for n ≥ 0 such that B0 = E (since E is totally bounded, it is
also bounded, so E can be regarded as a closed ball), for n ≥ 0 the closed ball Bn cannot
be covered by finitely many elements of U , i.e., for n ≥ 0 there is no finite set U ′ ⊂ U with
Bn ⊂

⋃U ′, and such that, for each n ≥ 1, the radius of Bn is 1/n, and the center pn of Bn

is in Bn−1, i.e., pn ∈ Bn−1,
Let n ≥ 1 and assume that Bn−1 has already been constructed in such a way that Bn−1

cannot be covered by finitely many elements of U (this is certainly true if n = 1, since
B0 = E). To construct Bn for n ≥ 1, cover Bn−1 by finitely many closed balls of radius 1/n
in such a way that the centers of each of these balls is in Bn−1; as we pointed out above,
this is possible since (Bn−1, d), being the subspace of a totally bounded space, is totally
bounded. There must be among these closed balls one that cannot be covered by finitely
many elements of U ; select one of these balls as Bn. Let pn be the center of Bn.

The sequence {pn}∞n=1 is a Cauchy sequence; indeed, for m > n we have pm ∈ Bn =
Ū(pn, 1/n), so d(pn, pm) ≤ 1/n. Let p be the limit of this sequence. As Bn, being a closed
ball, is a closed set for each n ∈ N and pm ∈ Bn for all m ≥ n, we have p ∈ Bn for each
n ∈ N. That is, d(p, pn) ≤ 1/n for all n ∈ N. Now, p ∈ U holds for some U ∈ U , since
U covers E. As U is open, there is an ǫ > 0 such that U(p, ǫ) ⊂ U . Then, for n ≥ 3/ǫ
we have 3/n ≤ ǫ, so U(p, 3/n) ⊂ U(p, ǫ) ⊂ U . Then we also have Bn = Ū(pn, 1/n) ⊂
Ū(p, 2/n) ⊂ U(p, 3/n) ⊂ U =

⋃ {U}; the first inclusion here holds since for any q ∈ Bn

we have d(p, q) ≤ d(p, pn) + d(pn, q) ≤ 1/n + 1/n = 2/n. That is, Bn can be covered by
a one-element subset of U . This is a contradiction, since we assumed that Bn cannot be
covered by finitely many elements of U . This contradiction shows that the assumption that
(E, d) is not compact was wrong, completing the proof.

Topological spaces are generalizations of metric spaces; in topological spaces, there are
open and closed sets, but there is no distance function. There are topological spaces that are
sequentially compact but not compact; so, maintaining the distinction between the notions
of compact and sequentially compact is important.

8. Compactness of closed intervals

The Heine–Borel Theorem. A closed interval [a, b] of R (a, b ∈ R, a ≤ b) is compact.

Proof. Let U be a collection of open sets such that [a, b] ⊂ ⋃ U ; here ⋃ U is the modern
notation for

⋃

U∈U U . We will say that U covers the interval [a, b], or that the elements of U
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cover [a, b]. The word collection is a synonym for set; that is, we could have said that U is
a set of open sets.

We must show that finitely many elements of U cover [a, b], i.e., that there is a finite
U ′ ⊂ U such that [a, b] ⊂ ⋃ U ′. Let

A ={x ∈ R : a ≤ x ≤ b+ 1 and x is such that

finitely many elements of U cover [a, x]}.

Clearly, A is not empty, since a ∈ A. In fact, we have a ∈ U0 for some U0 ∈ U , and then
the single open set U0 covers the interval [a, a] = {a} (here {a} denotes the set with a as its
only element). Further, A is bounded from above (by b+ 1). Let

c = supA.

Then c > a. Indeed, with U0 ∈ U as above, there is an ǫ > 0 such that (a− ǫ, a + ǫ) ⊂ U0,
as U0 is open. Hence [a, a + ǫ/2] ⊂ U0, i.e., the single set U0 covers the closed interval
[a, a+ ǫ/2]. Therefore, we have a+ ǫ/2 ∈ A. So we have c ≥ a+ ǫ/2, and thus c > a.

It is easy to see that if a ≤ x < c then x ∈ A, i.e., that finitely many elements of U cover
[a, x]. That is,

(2) [a, c) ⊂ A.

In fact, if [a, x] could not be covered by finitely many elements of U , then, for x′ > x, [a, x′]
could not be covered by finitely elements of U , either; that is, we would have x′ /∈ A for any
such x′, and so x would be an upper bound of A.

On the other hand, if x > c then x /∈ A (since c is an upper bound of A). That is,

(3) A ⊂ [a, c].

The relations (2) and (3) together show that either A = [a, c) or A = [a, c], Which of these
cases occur, i.e., whether or not we have c ∈ A, will not concern us here.

Claim. c > b.

Indeed, assume, on the contrary, that c ≤ b. Then c ∈ [a, b], and so there must be a
U1 ∈ U such that c ∈ U1. As U1 is open, there is an ǫ > 0 be such that

(c− ǫ, c+ ǫ) ⊂ U1;

as c > a, we may choose ǫ such that c − ǫ > a. Choosing ǫ ≤ 1 will also ensure that
c+ ǫ ≤ b+1. Let U ′ ⊂ U be a finite collection that covers the closed interval [a, c− ǫ]. There
must be such a U ′, since c− ǫ ∈ A according to (2). Then the finite collection {U1}∪U ′ (i.e.,
the collection consisting of U1 and the elements of U ′) covers the interval [a, c + ǫ). Hence
it also covers the smaller closed interval [a, c+ ǫ/2]; thus c+ ǫ/2 ∈ A. This contradicts (3).
Thus the Claim is established.

It is easy to derive the assertion of the Theorem from the Claim. In fact, according to (2),
the Claim implies b ∈ A; that is, finitely many elements of U cover [a, b]. The proof of the
Theorem is complete.
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9. The method of interval-halving:

The Heine–Borel Theorem

The Heine-Borel Theorem. Every closed interval I of R is compact.

The proof we will give of this result uses an argument that can be called the method of
interval-halving. Other proofs can also be given.

Proof. Let U be a collection of open sets such that I ⊂ ⋃U ; here ⋃U is the modern
notation for

⋃

U∈U U . We will say that U covers the interval I, or that the elements of U
cover I. The word collection is a synonym for set; that is, we could have said that U is a set
of open sets. We need to show that finitely many elements of U cover I, i.e., that there a
finite subset U ′ of U such that I ⊂ ⋃ U ′. Assume that this is not the case. That is, assume
that I cannot be covered by finitely many elements of U .

Write I0 = [a0, b0] for the interval I, and divide I0 into two equal parts, I00 = [a0, (a0 +
b0)/2] and I01 = [(a0 + b0)/2, b0]. If both these intervals can be covered by finitely many
elements of U , then so can I0. Hence at least one of them cannot so be covered. Pick
I1 = [a1, b1] as that one between I00 and I01 which cannot be covered by finitely elements
of U . If neither can be so covered, then pick I1 arbitrarily as one of these.27 Again, subdivide
the interval I1 = [a1, b1] into two equal parts, I10 = [a1, (a1+b1)/2] and I11 = [(a1+b1)/2, b1].
One of these intervals cannot be covered by finitely elements of U . Pick I2 as one that cannot
be so covered.

Continue in this fashion indefinitely. That is, if In = [an, bn] has already been picked
in such a way that cannot be covered by finitely elements of U , then subdivide it into two
equal parts, In0 = [an, (an + bn)/2] and In1 = [(an + bn)/2, bn], and let In+1 = [an+1, bn+1]
be one of these intervals that cannot be covered by finitely elements of U .

In this way, we obtain an infinite sequence of intervals

I1 ⊃ I2 ⊃ . . . In ⊃ In+1 ⊃ . . . ,

where In = [an, bn]. The inclusion In+1 ⊂ In is equivalent to saying that an+1 ≥ an and
bn+1 ≤ bn. Therefore, the sequence {an}∞n=0 is increasing,28 and the sequence {bn}∞n=0 is
decreasing. Of course these sequences are also bounded, since for every nonnegative integer
n we have a0 ≤ an < bn ≤ b0; therefore, these sequences are convergent. Let a = lim an and
b = lim bn.

The length of the interval In+1 is half the length of the interval In. Thus, the length
of In equals bn − an = (b0 − a0)/2n, and so lim(bn − an) = 0. Therefore, a = lim an =
lim an + lim(bn − an) = lim bn = b.

Since U covers I and a ∈ I, there is a set U0 ∈ U such that a ∈ U0. As U0 is open, there
is an ǫ > 0 such that the interval (a − ǫ, a + ǫ) is a subset of U0. As a = lim an = lim bn,
there is a positive integer n such that both an and bn belong to the interval (a − ǫ, a + ǫ).
Thus In = [an, bn] ⊂ (a − ǫ, a + ǫ). Hence the single open set U0 ∈ U covers the interval
In; yet, according the construction of In, the interval In cannot be covered by finitely many
elements of U . This is a contradiction, completing the proof.

27Reasons that go beyond the scope of this course and involve the foundations of mathematics suggest
that it is better to set up a definite rule as to which interval to select rather than make an arbitrary choice:
e.g., one can stipulate to pick the interval on the left if both intervals qualify.

28in the wider sense, i.e., with equality allowed. Some authors would call such a sequence nondecreasing.
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10. The Bolzano–Weierstrass Theorem

The Bolzano–Weierstrass Theorem. Let S be an infinite bounded subset of R.
Then one can pick distinct elements of S that form a convergent sequence.

Note that the Theorem follows from results we already know. In fact, one can take a
closed interval [a, b] including the set S. Since a closed interval in R is compact, and we
know that out of every infinite subset of a compact set one can pick a convergent sequence
of distinct elements, the assertion follows. The purpose here is to give a more direct proof.

Proof. We will show that one can pick distinct elements of S forming an infinite mono-
tone sequence. Since a monotone bounded sequence is always convergent, the result will
follow.

To accomplish this, assume that there is no infinite increasing sequence of distinct ele-
ments of S. Then we will show the following

Claim. For every real x, the set

S(x)
def
= {s ∈ S : s < x}

is either empty or has a maximum.

Indeed, assume that S(x) is not empty and it has no maximum (i.e., largest element).
Let a1 ∈ S(x) be arbitrary. Since a1 is not the largest element of S(x) (as S(x) has no
largest element), one can pick an element a2 ∈ S(x) with a1 < a2. Now a2 is not the largest
element of S(x), so one can pick an a3 ∈ S(x) with a2 < a3. This can be continued for
ever, and so one can pick elements of S(x) with a1 < a2 < . . . < an < . . . . This would
be an infinite increasing sequence of elements of S, in contradiction with our assumption
that there is no such sequence. Hence the assumption that S(x) is not empty and has no
maximum cannot be correct. Thus the Claim is established.

Using the above Claim, it is easy to pick an infinite decreasing sequence of elements of
S. Indeed, let b be an upper bound of S, and let b1 be the maximum of S(b + 1) (observe
that S(b + 1) = S is a nonempty set; in fact, it is infinite by our assumption). Let b2
the maximum of S(b1) (again, observe that S(b1) = S \ {b1} is still an infinite set). Let
b3 be the maximum of S(b2). In general, let bn+1 be the maximum of S(bn); noting that
S(bn) = S \{bk : 1 ≤ k ≤ n} is an infinite set (the equality here holds in view of the way the
bk’s were selected), S(bn) is an infinite set. Hence it is not empty; so it is possible to pick
bn+1 as required, according to the above claim. Now, it is clear that the sequence {bn}∞n=1

is an infinite decreasing sequence of elements of S.
The above argument establishes the assertion that one can pick an infinite monotone

sequence of distinct elements of S. Since a bounded monotone sequence is convergent, the
assertion of the Theorem follows, namely, that can pick a convergent sequence of distinct
elements of S. The proof is complete.

Note. Another way to prove the Theorem is to show that the number

c = sup{x : there are infinitely many elements of S less than x}

is an cluster point of S, and then one can show that there is a sequence of elements of S
that converges to c. This approach is reminiscent of the discussion of the limit superior on
p. 11 in Section 5.
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11. The method of interval-halving:

The Bolzano–Weierstrass Theorem

Recall the following

Definition. A real number r is said to be a cluster point of the subset S of R if for
every ǫ > 0 the interval (r − ǫ, r + ǫ) contains infinitely many elements of S.

Note that it is not assumed that r belongs to S. We have

The Bolzano–Weierstrass Theorem. Every infinite bounded subset S of R has a
cluster point.

Another version of this theorem says that every infinite bounded subset S of R includes
a convergent sequence; it is easy to derive each version from the other. The theorem follows
from results we already know. In fact, one can take a closed interval [a, b] including the set
S. A closed interval in R is compact, and we know that every infinite subset of a compact
set has a cluster point. The purpose here is to give a more direct proof.

Proof. Let I0 = [a0, b0] be a closed interval that includes the set S. Divide I into two
equal parts, I00 = [a0, (a0 + b0)/2] and I01 = [(a0 + b0)/2, b0]. One of these two intervals
must contain infinitely many elements of S; pick I1 = [a1, b1] as that one which contains
infinitely many elements of S; if both I00 and I01 contain infinitely many elements of S,
then pick I1 arbitrarily as one of these.29 Again, subdivide the interval I1 = [a1, b1] into
two equal parts, I10 = [a1, (a1 + b1)/2] and I11 = [(a1 + b1)/2, b1]. One of these intervals
must contain infinitely many elements of S; pick I2 = [a2, b2] as one of these two intervals
containing infinitely many elements of S.

Continue in this fashion indefinitely. That is, if In = [an, bn] has already been picked in
such a way that it contains infinitely many elements of S, subdivide it into two equal parts,
In0 = [an, (an + bn)/2] and In1 = [(an + bn)/2, bn], and let In+1 = [an+1, bn+1] be one of
these intervals containing infinitely many elements of S.

In this way, we obtain an infinite sequence of intervals

I1 ⊃ I2 ⊃ . . . In ⊃ In+1 ⊃ . . . ,

where In = [an, bn]. The inclusion In+1 ⊂ In is equivalent to saying that an+1 ≥ an and
bn+1 ≤ bn. Therefore, the sequence {an}∞n=0 is increasing,30 and the sequence {bn}∞n=0 is
decreasing. Of course these sequences are also bounded, since for every nonnegative integer
n we have a0 ≤ an < bn ≤ b0; therefore, these sequences are convergent. Let a = lim an and
b = lim bn.

The length of the interval In+1 is half the length of the interval In. Thus, the length
of In equals bn − an = (b0 − a0)/2

n, so lim(bn − an) = 0. Therefore, a = lim an =
lim an + lim(bn − an) = lim bn = b.

We claim that a is a cluster point of S. Indeed, let ǫ > 0 be arbitrary. As a = lim an =
lim bn, there is a positive integer n such that both an and bn belong to the interval (a−ǫ, a+ǫ).
Thus In = [an, bn] ⊂ (a− ǫ, a+ ǫ). As In contains infinitely many elements of S, it follows
that the interval (a− ǫ, a+ ǫ) also contains infinitely many elements of S. Since ǫ > 0 was
arbitrary, this shows that a is a cluster point of S. The proof is complete.

29Reasons that go beyond the scope of this course and involve the foundations of mathematics suggest
that it is better to set up a definite rule as to which interval to select rather than make an arbitrary choice:
e.g., one can stipulate to pick the interval on the left if both intervals qualify.

30in the wider sense, i.e., with equality allowed. Some authors would call such a sequence nondecreasing.
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12. Continuous functions. An example

Definition. Let (E, d) and (E′, d′) be two metric spaces, and let f be a function from
E into E′. Let p ∈ E. The function f is said to be continuous at p if for every ǫ > 0 there
is a δ > 0 such that we have d′(f(p), f(q)) < ǫ whenever d(p, q) < δ.

Note that f(p) and f(q) are in E′, so their distance is measured by d′, while p and q are
in E, so their distance is measured by d. The definition can be formally restated as

f is continuous at p↔ (∀ǫ > 0)(∃δ > 0)(∀q ∈ E) [d(p, q) < δ → d′(f(p), f(q)) < ǫ].

There are two observation to be made when comparing the formal definition to the definition
above. In the verbal definition we say that “f is said to be continuous if ,” while the formal
definition uses ↔ at the same place. Correctly, the verbal definition should say “if and only
if,” but it is common to say that “something is called something if” or “something is said
to be something if” in definitions when “if and only if” would be the correct phrase. In
mathematics, one is very careful to say what one means, and so one would virtually never
say “if” when one means “if and only if.” Definitions containing the above phrase is an
exception, where, by tradition, one says “if” and means “if and only if.”

Another comment is that the phrase “whenever” in the verbal definition introduces the
quantifier ∀q, and the context also implies that q is in E (since d(p, q) makes no sense
otherwise). It is understood that the variable q needs to be quantified, since it does not
occur in the text earlier;31 the word “whenever” is a cue that q (pun intended) is to be
quantified universally. This is why the formal definition contains the quantifier ∀q ∈ E. The
clause “such that we have d′(f(p), f(q)) < ǫ whenever d(p, q) < δ” could have had a clumsier,
but more precise phrasing such as “such that for every q ∈ E we have d′(f(p), f(q)) < ǫ
provided d(p, q) < δ.”

In the next example, R denotes the set of real numbers. R is a metric space with the
distance function d(x, y) = |x− y| for x, y ∈ R. We will use Z to denote, as usual, the set of
all integers, and Z+, the set of positive integers.

Example. Define the function f : R→ R as

f(x) =











1
n if x is rational and n ∈ Z+ is the least possible

such that x = m
n for some m ∈ Z,

0 if x is irrational.

Then f is continuous at x ∈ R if x is irrational, and f is not continuous at x if x is rational.

We will give a proof of the claims in this example. If x is rational then f(x) 6= 0 according
to the definition. Put ǫ = |f(x)|. Given an arbitrary δ > 0, there is an irrational number y
with |x− y] < δ. As f(y) = 0, we will not have |f(x) − f(y)| < ǫ for such a y. That is, no
δ > 0 can be found for which the definition of continuity can be satisfied (with p = x and
the given ǫ), showing that f is not continuous at x.

Now, assume that x is irrational, and let ǫ with 0 < ǫ < 1 be arbitrary. Put

S =

{

m

n
: m ∈ Z & n ∈ Z & 0 < n ≤ 1

ǫ
& x− 1 <

m

n
< x+ 1

}

.

31If we do not quantify q, its presence in the text is totally unexplained. In mathematics, the meanings
of letters are explained when the letters are first mentioned. So, an unexplained occurrence of a new letter
would be puzzling without some understanding how such an occurrence should be interpreted. Quantifying

such letters is often a natural thing to do.
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Clearly, S is a finite set. This is because, first, the inequality 0 < n ≤ 1
ǫ allows only finitely

any choices for n. Second, for a fixed n, the inequality x − 1 < m
n < x + 1 is satisfied only

for finitely many choices for m. Further, we have x /∈ S, since all elements of S are rational.
Finally, the assumption ǫ < 1 guarantees that S is not empty. Put

δ = min{|x− y| : y ∈ S}.

Then, clearly 0 < δ < 1; so (x− δ, x+ δ) ⊂ (x− 1, x+1). Let y ∈ (x− δ, x+ δ) be arbitrary.
If y is irrational, they f(y) = 0. If y is rational, then f(y) = 1/n for some positive integer
n. We must have n > 1/ǫ, since otherwise the definition of S would imply y ∈ S, but we
have (x − δ, x + δ) ∩ S = ∅ by the definition of δ. Thus, we have 0 ≤ f(y) < ǫ whether or
not y is rational. Therefore the inequality |f(x) − f(y)| < ǫ holds (whenever |x − y| < δ).
As ǫ > 0 was arbitrary (except for the harmless restriction that ǫ < 1), it follows that f is
continuous at x.

13. Continuous functions

Lemma. Let f be a continuous function from the metric space (E, d) to the metric space

(E′, d′), and let V ⊂ E′ be and open set. Then the set f−1[V ]
def
= {p ∈ E : f(p) ∈ V } is

open.32

Proof. Consider an arbitrary p ∈ f−1[V ]. We need to show that there is an open ball
with center p that is included in f−1[V ]. In other words, we need to show that there is
a δ > 0 such that {q ∈ E : d(p, q) < δ} ⊂ f−1[V ]. As V is open and f(p) ∈ V (since
p ∈ f−1[V ]), there is an ǫ > 0 such that the open ball {u ∈ E′ : d′(f(p), u) < ǫ} is a subset
of V . By the continuity of f , there is a δ > 0 such that d′(f(p), f(q)) < ǫ holds whenever
d(p, q) < δ; in other words,

{f(q) : q ∈ E and d(p, q) < δ} ⊂ {u ∈ E′ : d′(f(p), u) < ǫ}.

Since the latter set is a subset of V , this implies that {q ∈ E : d(p, q) < δ} ⊂ f−1[V ],
showing that f−1[V ] is indeed open. The proof is complete.

Lemma. Let f be a continuous function from the metric space (E, d) to the metric space

(E′, d′). Assume E is compact. Then the set f [E]
def
= {f(p) : p ∈ E} is compact.

Proof. Let U be a collection of open subsets of E′ such that

(4) f [E] ⊂
⋃

U ,

i.e., such that U cover f [E]. We need to show that there is a finite subcollection of U that
covers f [E]. (Recall that the word collection is just a synonym for set; so we could have
described U as a set of open subsets of E′.)

First observe that for any collection of Z of subsets of E′,

(5) f [E] ⊂
⋃

Z if and only if E ⊂
⋃

{f−1[Z] : Z ∈ Z}.

32The notation f−1(V ) is also used; however, f−1 is often used to denote the inverse of the function f ,

and the square bracket is used to avoid the confusion this may lead to.
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Indeed, the formula on the left says that for every p ∈ E there is a Z ∈ Z such that
f(p) ∈ Z, while the formula on the right says that for every p ∈ E there is a Z ∈ Z such
that p ∈ f−1[Z]. These two statements are, however, identical, since f(p) ∈ Z if and only if
p ∈ f−1[Z] (in view of the definition of the latter set).

In virtue of (5), formula (4) means that

E ⊂
⋃

{f−1[U ] : U ∈ U}.

By the continuity of f and the openness of the sets U ∈ U , the sets f−1[U ] are open (see
the preceding Lemma), i.e., the set on the right-hand side is an open cover of E. Thus,
by the compactness of E, it has a finite subset that is also an open cover; every subset of
{f−1[U ] : U ∈ U} has the form {f−1[U ] : U ∈ U ′} for some U ′ ⊂ U ; a finite subset of the
former set has this form with a finite U ′. Hence, what we said about the existence of a finite
subset that is an open cover can be rephrased as follows: there is a finite U ′ ⊂ U such that

E ⊂
⋃

{f−1[U ] : U ∈ U ′}.

By (5) means that

f [E] ⊂
⋃

U ′;

i.e., U ′ is a finite open cover of f [E]. Since our aim was to show the existence of such a
finite open cover, the proof is complete.

14. The Intermediate-Value Theorem

The Intermediate-Value Theorem. Let I = [a, b] be a closed interval in R, and let
f be a continuous real-valued function on I. Then f assumes every value between f(a) and
f(b).

Note that the theorem follows from results we already know. Namely, the range of a
continuous function defined on a connected metric space is connected. As the interval I is
a connected metric space, it follows that S = {f(x) : x ∈ I} is a connected set. If there
were a real c /∈ S with f(a) < c < f(b) (in case f(a) < f(b)) or f(a) > c > f(b) (in case
f(a) > f(b)), then the set S would not be connected, so such a c cannot exist. The purpose
here is to give a more direct proof.

Proof. Assume f(a) < f(b); the case f(a) > f(b) can be handled in a similar way, or
else, once the result in the former case has been established, one can prove it in the latter
case by using the result for the function −f (since −f is continuous on I and −f(a) < −f(b)
in the second case). Note that the Theorem also allows the possibility that f(a) = f(b), but
in this case the assertion of the Theorem (that f(ξ) = f(a) = f(b) for some ξ ∈ I) is trivial
(namely, one can take ξ = a or ξ = b).

Now, let c be an arbitrary real number with f(a) < c < f(b), and write

M = {x ∈ I : f(x) < c}.

Note that M is bounded (since M ⊂ I) and nonempty (since a ∈M). Let ξ = supM .
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Claim. We have f(ξ) = c.

This Claim will of course establish the Theorem. To show the Claim, let ǫ > 0 be
arbitrary. Then, by the continuity of f , there is a δ > 0 such that for every x ∈ I with
ξ − δ < x < ξ + δ we have

(6) f(ξ)− ǫ < f(x) < f(ξ) + ǫ.

Write I0 = (ξ − δ, ξ], and pick x0 be as an (arbitrary) element of the set I0 ∩M ; this is
possible, because the set I0 ∩M is not empty. Indeed, this is so in case a ∈ I0, since we
also have a ∈ M (as f(a) < c by our assumptions). In case a /∈ I0 we have ξ − δ ≥ a. As ξ
is an upper bound of M , if the set I0 ∩M were empty, then ξ − δ would also be an upper
bound of M , contradicting the choice ξ = supM . Note that we have f(x0) < c in view of
x0 ∈M . As x0 ∈ I0 ∩ I (note that M ⊂ I), (6) holds with x0 replacing x. Thus, using only
the left-hand side of (6), we obtain

(7) f(ξ)− ǫ < f(x0) < c.

Next, write I1 = [ξ, ξ + δ), and pick x1 as an (arbitrary) element of the set (I1 ∩ I) \M .
This is possible, since this set is not empty. Indeed, in case b ∈ I1 we have b ∈ (I1 ∩ I) \M ,
since b /∈ M according to the assumption c < f(b). In case b /∈ I1 (when ξ + δ ≤ b, i.e.,
I1 ⊂ I), x /∈ M is true for every x ∈ I1 \ {ξ}, since ξ is an upper bound of M (and all
elements of I1 \ {ξ} are greater than ξ). Note that we have c ≤ f(x1), since x1 /∈ M . As
x1 ∈ I1 ∩ I, (6) holds with x1 replacing x. Thus, using only the right-hand side of (6), we
obtain

c ≤ f(x1) < f(ξ) + ǫ.

Together with (7), this shows that

f(ξ)− ǫ < c < f(ξ) + ǫ.

Since ǫ > 0 was arbitrary, this implies that f(ξ) = c (since in case f(ξ) 6= c this inequality
would be contradicted by the choice ǫ = |f(ξ)− c| > 0), establishing the Claim.

This shows that there is a ξ ∈ I with f(ξ) = c, completing the proof.

15. The method of interval-halving:

the Intermediate-Value Theorem

The Intermediate-Value Theorem. Let I = [a, b] be a closed interval in R, and let
f be a continuous real-valued function on I. Then f assumes every value between f(a) and
f(b).

The proof we will give of this result uses an argument that can be called the method of
interval-halving. Other proofs can also be given.

Proof. For the sake of simplicity, assume f(a) < 0 < f(b); we will prove that there
is a ξ ∈ (a, b) such that f(ξ) = 0. This is not a serious restriction of generality, since the
argument can easily be reformulated so as to apply to the general case. Alternatively, if f
is continuous on [a, b] and c is such f(a) < c < f(b) (or f(a) > c > f(b)), then the function
g defined by g(x) = f(x) − c (or g(x) = c − f(x)) for x ∈ [a, b] is continuous on [a, b], and
g(a) < 0 and g(b) > 0. So, the assertion we intend to prove, with g replacing f , shows that
there is a ξ ∈ (a, b) for which g(ξ) = 0; then f(ξ) = c.
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Write a0 = a, b0 = b, and write I = I0. I.e., I0 is the interval [a0, b0]. Divide I0 into two
equal parts, I00 = [a0, (a0 + b0)/2] and I01 = [(a0 + b0)/2, b0]. If f((a0 + b0)/2) = 0, then
ξ = (a0+b0)/2 fulfills the requirements, and there nothing more to do. If f((a0+b0)/2)) > 0
then pick I00 as I1; if f((a0+b0)/2)) < 0 then pick I01 as I1. Write I1 = [a1, b1]; then, clearly,
f(a1) < 0 and f(b1) > 0. Again, subdivide the interval I1 = [a1, b1] into two equal parts,
I10 = [a1, (a1 + b1)/2] and I11 = [(a1 + b1)/2, b1]. If f((a1 + b1)/2) = 0, then ξ = (a1 + b1)/2
fulfills the requirements, and there nothing more to do. If f((a1 + b1)/2)) > 0 then pick I10
as I2; if f((a1 + b1)/2)) < 0 then pick I11 as I2. Write I2 = [a2, b2]; then, clearly, f(a2) < 0
and f(b2) > 0.

Continue in this fashion indefinitely. That is, if In = [an, bn] has already been picked
in such a way that f(an) < 0 and f(bn) > 0, then subdivide it into two equal parts,
In0 = [an, (an+bn)/2] and In1 = [(an+bn)/2, bn]. If f((an+bn)/2) = 0, then ξ = (an+bn)/2
fulfills the requirements, and there nothing more to do. If f((an + bn)/2)) > 0 then pick
In0 as In+1; if f((an + bn)/2)) < 0 then pick In1 as In+1. Write In+1 = [an+1, bn+1]; then,
clearly, f(an+1) < 0 and f(bn+1) > 0.

In this way, either in finitely many steps we end up with a ξ such that f(ξ) = 0, or the
procedure goes on indefinitely. In the latter case we obtain an infinite sequence of intervals

I1 ⊃ I2 ⊃ . . . In ⊃ In+1 ⊃ . . . ,

where In = [an, bn]. The inclusion In+1 ⊂ In is equivalent to saying that an+1 ≥ an and
bn+1 ≤ bn. Therefore, the sequence {an}∞n=0 is increasing,33 and the sequence {bn}∞n=0 is
decreasing. Of course these sequences are also bounded, since for every nonnegative integer
n we have a0 ≤ an < bn ≤ b0; therefore, these sequences are convergent. Let ξ = lim an and
η = lim bn.

The length of the interval In+1 is half the length of the interval In. Thus, the length
of In equals bn − an = (b0 − a0)/2n, and so lim(bn − an) = 0. Therefore, ξ = lim an =
lim an + lim(bn − an) = lim bn = η.

Since 0 > f(an) for all positive integers n, using the continuity of f we obtain34

0 ≥ lim f(an) = f(lim an) = f(ξ).

Similarly, using 0 < f(bn) we obtain

0 ≤ lim f(bn) = f(lim bn) = f(η) = f(ξ).

Thus f(ξ) = 0. From the construction it is clear that ξ ∈ [a, b]. However, ξ = a is not
possible since f(a) < 0, and ξ = b is not possible since f(b) > 0. Thus ξ ∈ (a, b). The proof
is complete.

16. The Maximum-Value Theorem.

The Maximum-Value Theorem. Let I = [a, b] be a closed interval in R, and let f be
a continuous real-valued function on I. Then f assumes its maximum on [a, b]. That is,
there is a ξ ∈ [a, b] such that f(ξ) ≥ f(x) for every x ∈ [a, b].

Here f being continuous on [a, b] means that f a continuous function on the metric space
[a, b]. Note that this does not mean that f , considered as a function defined at some points

33in the wider sense, i.e., with equality allowed. Some authors would call such a sequence nondecreasing.
34For the last equality next, see Rosenlicht, the Proposition on p. 74.
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of R, is continuous at every point x ∈ [a, b]. The reason for this is that an open set of the
metric space [a, b] does not need to be an open set in R. For example, for every c ∈ (a, b),
the semi-closed interval [a, c) is an open subset of the metric space [a, b], but it is not an
open subset of R.

One can reinterpret continuity of f on [a, b] in terms of pointwise continuity of f in R

as follows: f is continuous on [a, b] if f is and continuous at every t ∈ (a, b) (i.e., f(t) =

lim
x→t

f(x)), continuous from the right at a (i.e., f(a) = lim
x→a+

f(x)
def
= lim

x→a
x>a

f(x)), continuous

from the left at b (i.e., f(b) = lim
x→b−

f(x)
def
= lim

x→b
x<b

f(x)).

Note that the theorem follows from results we already know. Namely, [a, b] is compact,
and the range of a continuous function defined on a compact subset is compact; hence, the
range of f , being a compact set of real numbers, i.e., a closed and bounded subset of R, has
a maximum. Here we will give a proof based on the Bolzano–Weierstrass Theorem.

Proof. For each positive integer n define xn ∈ [a, b] as follows: pick xn such that
f(xn) > n if possible. If there is no such xn, in which case the set

S = {f(x) : x ∈ [a, b]}

is bounded from above (by n), write M = supS; pick xn such that f(xn) > M − 1/n (this
is possible, since the interval (M − 1/n,M ] must contain an element of S). If the set is
A = {xn : 1 ≤ n < ∞} is finite, then the same number, say ξ, must occur infinitely many
times among the numbers xn. If the set is A is infinite, then it has a cluster point ξ by
the Bolzano-Weierstrass theorem. In either case, the sequence {xn}∞n=1 has a subsequence
{xnk

}∞k=1 that converges to ξ. (Pick an increasing35 sequence of positive integers nk such
that, in the first case, xnk

= ξ, and, in the second case, xnk
∈ (ξ − 1/k, ξ + 1/k) for every

positive integer k.)
As xnk

∈ [a, b] for every positive integer k, the limit ξ of the sequence {xnk
}∞k=1 must

belong to (the closed set) [a, b]. As f is continuous on [a, b], we have36

(8) f(ξ) = f( lim
k→∞

xnk
) = lim

k→∞
f(xnk

).

As an immediate consequence of this is that the set S is bounded. Indeed, assuming S is
not bounded, we must have made the choice f(xn) > n for every integer n. Then

f(xnk
) > nk ≥ k

(the second inequality holds since the sequence {nk}∞k=1 of integers is increasing); hence the
sequence {f(xnk

)}∞k=1 cannot be convergent, contradicting (8).
The set S is bounded, so for n > M = supS we must have chosen xn such that f(xn) >

M − 1/n. As f(x) ≤M for every x ∈ [a, b] by the definition of M , we have

M ≥ f(xnk
) > M − 1

nk
≥M − 1

k

(the last inequality holds since nk ≥ k); hence, from (8) we can conclude that f(ξ) = M .
As M is the least upper bound of the set S = {f(x) : x ∈ [a, b]}, we have M = f(ξ) ≥ f(x)
for every x ∈ [a, b]. That is, f assumes its maximum in the interval [a, b] at ξ. The proof is
complete.

35strictly increasing, i.e., nk < nk+1.
36For the second equality next, see Rosenlicht, the Proposition on p. 74.
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17. Uniform continuity, uniform convergence

Let (E, d) and (E′, d′) be metric spaces.

Definition. The function f : E → E′ is said to be continuous on E if for every p ∈ E
and for every ǫ > 0 there is a δ > 0 such that for every q ∈ E, if d(p, q) < δ then
d′(f(p), f(q)) < ǫ.

Note. The above definition says that f is continuous at p for every p ∈ E. Using logic
notation, the function f : E → E′ is said to be continuous on E if

(∀p ∈ E)(∀ǫ > 0)(∃δ > 0)(∀q ∈ E)
(

d(p, q) < δ → d′(f(p), f(q)) < ǫ
)

.

The first two quantifiers are interchangeable here, since two quantifiers of the same type
(i.e., two universal quantifiers, or two existential quantifiers) are interchangeable, so we can
write this also as

(9) (∀ǫ > 0)(∀p ∈ E)(∃δ > 0)(∀q ∈ E)
(

d(p, q) < δ → d′(f(p), f(q)) < ǫ
)

.

Definition. The function f : E → E′ is said to be uniformly continuous on E if for
every ǫ > 0 there is a δ > 0 such that for every p ∈ E and for every q ∈ E, if d(p, q) < δ
then d′(f(p), f(q)) < ǫ.

Note. Using logic notation, the function f : E → E′ is said to be uniformly continuous
on E if

(10) (∀ǫ > 0)(∃δ > 0)(∀p ∈ E)(∀q ∈ E)
(

d(p, q) < δ → d′(f(p), f(q)) < ǫ
)

.

The formal difference between continuity and uniform continuity is indicated by the dif-
ferent order of the second and third quantifiers in formulas (9) and (10); aside from this
difference, the two formulas are identical. However, these quantifiers are of different type
(one is a universal quantifier, the other is an existential quantifier), and so they are not
interchangeable. Hence the meanings of these two formulas are different.

To explain the difference in a less formal way, in case of continuity, δ depends on the
choice of p as well as on ǫ (and, of course, on the function f itself), whereas in case of
uniform continuity, δ depends only on ǫ but not on p (but it does depend on the function f
itself). We will illustrate the situation with an

Example. The function f(x) = 1/x is continuous but not uniformly continuous nn the
interval (0, 1).

Proof. For every x0 ∈ (0, 1) we have

lim
x→x0

f(x) = lim
x→x0

1

x
=

limx→x0
1

limx→x0
x
=

1

x0
= f(x0),

showing that, indeed, f is continuous at every x0 ∈ (0, 1). As for uniform continuity, we will
show that formula (10) is not valid in the present example, that is, its negation is true:

¬(∀ǫ > 0)(∃δ > 0)(∀p ∈ E)(∀q ∈ E)
(

d(p, q) < δ → d′(f(p), f(q)) < ǫ
)

.

In other words, we have

(∃ǫ > 0)(∀δ > 0)(∃p ∈ E)(∃q ∈ E)
(

d(p, q) < δ & d′(f(p), f(q)) ≥ ǫ
)

.
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This latter formula can be written down by following simple formal rules in moving the
negation sign ¬ inside the formula (only rules (i), (ii), and (v) are needed for now); see also
the discussion moving the negation inside in formula (1) in Section 2 on p. 5 for more details.

(i) ¬(∀x) can be replaced by (∃x)¬,
(ii) ¬(∃x) can be replaced by (∀x)¬,
(iii) ¬(A & B) can be replaced by ¬A ∨ ¬B,
(iv) ¬(A ∨B) can be replaced by ¬A & ¬B,
(v) ¬(A→ B) can be replaced by A & ¬B.
(vi) ¬(A↔ B) can be replaced by A↔ ¬B,
(vii) ¬(¬A) can be replaced by A.

In showing that the last displayed formula is true, note that we have f(x) = 1/x, d(p, q) =
|p−q|, and d′(p′, q′) = |p′−q′| and E = (0, 1) in the present case; the formula above becomes

(∃ǫ > 0)(∀δ > 0)
(

∃p ∈ (0, 1)
)(

∃q ∈ (0, 1)
)

(

|p− q| < δ &

∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

≥ ǫ
)

.

To show that this formula above is true, simply pick ǫ = 1, then pick an arbitrary δ > 0,
then pick a p ∈ (0, 1) with p < δ, then pick q = p/2. We have

∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

=

∣

∣

∣

∣

1

p
− 1

p/2

∣

∣

∣

∣

=

∣

∣

∣

∣

1

p
− 2

p

∣

∣

∣

∣

=

∣

∣

∣

∣

−1

p

∣

∣

∣

∣

=
1

p
> 1;

the last equality and the inequality holds because p ∈ (0, 1). As ǫ = 1, this shows that we
certainly have

∣

∣

∣

∣

1

p
− 1

q

∣

∣

∣

∣

≥ ǫ.

As

|p− q| =
∣

∣

∣p− p

2

∣

∣

∣ =
p

2
< δ,

this shows that the above formula is indeed true, confirming that f(x) = 1/x is not uniformly
continuous in (0, 1).

Definition. The sequence {fn}∞n=1 of functions fn : E → E′ is said to converge to f if
for every p ∈ E and for every ǫ > 0 there is an N ∈ N such that for every integer n > N we
have d′(fn(p), f(p)) < ǫ.

Note. The convergence described is called pointwise convergence. Pointwise convergence
means that there is convergence at every point. In other words, for every p ∈ E,

lim
n→∞

fn(p) = f(p).

Using logic notation, the sequence of functions {fn}∞n=1 is said to converge to the function
f if

(∀p ∈ E)(∀ǫ > 0)(∃N ∈ N)(∀n > N) d′(fn(p), f(p)) < ǫ.

The first two quantifiers are interchangeable here, so we can write this also as

(11) (∀ǫ > 0)(∀p ∈ E)(∃N ∈ N)(∀n > N) d′(fn(p), f(p)) < ǫ.

Definition. The sequence {fn}∞n=1 of functions {fn}∞n=1 is said to converge to f uni-
formly if for every ǫ > 0 there is an N ∈ N such that for every integer n > N for every
p ∈ E we have d′(fn(p), f(p)) < ǫ.
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Note. Formally, the sequence {fn}∞n=1 of functions is said to converge to f uniformly if

(∀ǫ > 0)(∃N ∈ N)(∀n > N) (∀p ∈ E)d′(fn(p), f(p)) < ǫ.

The third and fourth quantifiers here are of the same type, and so they can be interchanged:

(12) (∀ǫ > 0)(∃N ∈ N)(∀p ∈ E)(∀n > N) d′(fn(p), f(p)) < ǫ.

The difference between convergence and uniform convergence can most easily be appre-
ciated by noting the difference in the orders of the second and third quantifiers in formulas
(11) and (12). In other words, in case of pointwise convergence, N depends on p and ǫ (and,
of course, on the sequence {fn}∞n=1 of functions), whereas in case of uniform convergence,
N depends only on ǫ (and, of course, on the sequence {fn}∞n=1 of functions).

18. Differentiability and continuity

We will show that differentiability implies continuity. A typical result is the following.
A similar result can be formulated to say that one-sided differentiability implies one-sided
continuity.

Lemma. Let f be a real-valued function on an open subset U of R, and let x0 ∈ U .
Assume that f is differentiable at x0. Then f is continuous at x0.

We will give two proofs. The first proof relies on the property that the limit of a product
equals the product of the limits.

First proof. Write f ′(x0) for the derivative of f at x0. We have

(13) f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

.

Therefore,

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

f(x)− f(x0)
x− x0

· (x− x0)

= lim
x→x0

f(x)− f(x0)
x− x0

· lim
x→x0

(x− x0) = f ′(x0) · 0 = 0.

Hence

lim
x→x0

f(x) = lim
x→x0

(

(f(x)− f(x0) + f(x0)
)

= lim
x→x0

(f(x)− f(x0)) + lim
x→x0

f(x0) = 0 + f(x0) = f(x0).

This shows that f is indeed continuous at x0, completing the proof.

The second proof proceeds directly from the definition of continuity.

Second proof. Write f ′(x0) for the derivative of f at x0. As before, we then have (13);
that is, for every ǫ0 > 0 there is a δ0 > 0 such that

∣

∣

∣

∣

f(x)− f(x0)
x− x0

− f ′(x0)
∣

∣

∣

∣

< ǫ0
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for every x ∈ (x0 − δ0, x0 + δ0) with x 6= x0. Pick an ǫ0 > 0 (any such ǫ0 will do; e.g., we
can simply pick ǫ0 = 1), and let δ0 > 0 be a number such that the above inequality holds
for every x ∈ (x0 − δ0, x0 + δ0) with x 6= x0 (by choosing δ0 small enough, this interval will
be a subset of U , as U is open). Multiplying both sides by |x− x0|, we obtain

|f(x)− f(x0)− f ′(x0)(x− x0)| ≤ ǫ0|x− x0|
for every x ∈ (x0 − δ0, x0 + δ0). We relaxed the inequality from ≤ to <; as a result, we can
now allow x = x0, since we obviously have equality here in that case.

Let ǫ > 0 be arbitrary, and pick any x in the interval (x0 − δ0, x0 + δ0). First using the
triangle inequality, and then using the last displayed inequality above, we obtain that

|f(x)− f(x0)| =
∣

∣

(

f(x)− f(x0)− f ′(x0)(x− x0)
)

+ f ′(x0)(x− x0)
∣

∣

≤ |f(x)− f(x0)− f ′(x0)(x− x0)|+ |f ′(x0)(x− x0)|
≤ ǫ0|x− x0|+ |f ′(x0)| · |x− x0| = (ǫ0 + |f ′(x0)|)| · |x− x0|.

If we choose δ = min
{

δ0,
ǫ

ǫ0+|f ′(x0)|

}

, then, noting that |x − x0| < δ, the right-hand side

here is less than ǫ, ensuring that the left-hand side, i.e., |f(x)− f(x0)|, is also less than ǫ.
To summarize, given an arbitrary ǫ > 0, we found a δ > 0 such that for every x with

|x− x0| < δ we have |f(x)− f(x0)| < ǫ. This means that f is indeed continuous at x0. The
proof is complete

19. An Intermediate-Value Theorem for derivatives

Sometimes it is useful to consider one-sided limits.

Definition. Let f be a real-valued function on R. Given t ∈ R and L ∈ R, we say that
limx→t+ f(x) = L, or that the limit on the right (or that the right-sided limit) of f(x) at t
is L, if for every ǫ > 0 there is a δ > 0 such that |f(x) − L| < ǫ whenever t < x < t + δ.
Formally,

lim
x→t+

f(x) = L↔ (∀ǫ > 0)(∃δ > 0)(∀x ∈ R) (t < x < t+ δ → |f(x)− L| < ǫ).

Limits on the left, written as limx→t− f(x), can be defined similarly. These are used in
defining continuity of a function on a closed interval.

Definition. Let [a, b] be a closed interval in R, and let f : [a, b]→ R be a function. f is
said to be continuous on [a, b] if f(t) = limx→t f(x) for every t ∈ (a, b), f(a) = limx→a+ f(x),
and f(b) = limx→a− f(x)

This definition is natural in the following sense: if [a, b] is considered a metric space with
the metric it inherits from R (i.e. d(x, y) = |x − y| for x, y ∈ [a, b]), then f is a continuous
function in the sense of being a continuous function from one metric space into another if
and only if it is continuous on [a, b] in the sense of the above definition. We will leave the
verification of this observation to the reader.

With the aid of one-sided limits, one can define one-sided derivatives:

f ′+(x0) = lim
x→x0+

f(x)− f(x0)
x− x0

, f ′−(x0) = lim
x→x0−

f(x)− f(x0)
x− x0

;

We call these derivative from the right, and derivative from the left, respectively. Above it
was established that differentiability implies continuity; in an entirely similar way, it can be
established that one-sided differentiability implies one-sided continuity (on the same side;
that is differentiability on the left implies continuity on the left, for example). They can be
used to define differentiability on a closed interval.
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Definition. Let [a, b] be a closed interval in R, and let f : [a, b] → R be a function. f
is said to be differentiable on [a, b] if f ′(x) exists for every x ∈ (a, b), and f ′+(a) and f

′
−(b)

exist.

We have the following

Intermediate-Value Theorem for Derivatives. Assume f is a real-valued differ-
entiable function on [a, b], and let c be a number that is strictly between f ′+(a) and f

′
−(b); that

is, f ′+(a) < c < f ′−(b) in case f ′+(a) < f ′−(b), and f
′
+(a) > c > f ′−(b) in case f ′+(a) > f ′−(b).

Then there is a ξ ∈ (a, b) such that f ′(ξ) = c.

The point is that the conclusion holds in spite of the fact that f ′ is not assumed to
be, and indeed, need not be, continuous. If f ′ were continuous, then the conclusion could
be obtained from the Intermediate-Value Theorem for continuous functions. Note that if
f ′+(a) = f ′−(b) = c, we cannot conclude the existence of a ξ ∈ (a, b) with f ′(x) = c, as shown
by the example of f(x) = cosx on [0, π].

It is sufficient to prove the following special case:

Lemma. Assume f is a real-valued differentiable function on [a, b], and f ′+(a) > 0 and
f ′−(b) < 0. Then there is a ξ ∈ (a, b) such that f ′(ξ) = 0.

Indeed, if f and c satisfies the assumptions of the above theorem, we can use the Lemma
for F (x) = f(x)− cx (in case f ′+(a) > c) or F (x) = cx− f(x) (in case f ′+(a) < c) to obtain
the desired conclusion.

Proof of the Lemma. From f ′+(a) > 0 it follows that f(x) > f(a) for some x ∈ (a, b).
Indeed, otherwise the quantity

f(x)− f(a)
x− a

would be ≤ 0 for every x ∈ (a, b), so its limit could not be positive as x approaches a from
the right. Similarly, from f ′−(b) < 0 it follows that f(x) > f(b) for some x ∈ (a, b).

Now, the differentiability of f on [a, b] implies that the continuity of f on [a, b]; hence, by
the Maximum-Value Theorem, f assumes its maximum on [a, b]; that is, there is a ξ ∈ [a, b]
such that f(ξ) ≥ f(x) for every x ∈ [a, b]. By what we said in the first paragraph of this
proof, ξ 6= a and ξ 6= b; that is, ξ ∈ (a, b). Then f ′(ξ) = 0 follows by Fermat’s Theorem
saying that the derivative at a local maximum is zero (if it exists).37

We will also give a different proof of the above Theorem. The proof relies on the fact
that the a triangle in the plane (with its inside and some sides included) is a connected set.

Second proof of the Theorem. Consider the set

A = {(x, y) : a ≤ x < y ≤ b}

as a metric space with the distance function given by the distance in the Euclidean place.
Then A is a connected metric space.38 The function g(x, y) defined on A by39

g(x, y) =
f(y)− f(x)

y − x

is continuous. We have limy→a+ g(a, y) = f ′+(a) and limx→b− g(x, b) = f ′−(b). Assuming,
for the sake of simplicity that f ′+(a) < c < f ′−(b), it follows that there are x0 ∈ [a, b) and

37Fermat’s Theorem is given in Rosenlicht [Ros, p. 103], as the Proposition at the bottom of the page.
38This is an easy consequence of the second Proposition in Rosenlicht [Ros, p. 60]. However, since this

proposition is often omitted in a discussion of one-dimensional analysis, we will indicate how to avoid using
the connectedness of this set.

39Since the elements of A consist of pairs of form (x, y), the overly pedantic may write g((x, y)) instead
of g(x, y). Also, note that (x, y) can denote an element of the set A, and it can also denote the open interval

(x, y); the fastidious may write 〈x, y〉 for the former, to avoid this notational ambiguity.
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y0 ∈ (a, b] such that g(a, y0) < c and c < g(x0, b).
40 Then, by the form of the Intermediate-

Value Theorem for continuous functions on connected spaces,41 we find that there is a point
(x1, y1) ∈ A such that g(x1, y1) = c. Then, using the Mean-Value Theorem of differentiation
on the interval (x1, y1) with the function f , we can conclude that there is a ξ ∈ (x1, y1) such
that

f ′(ξ) =
f(y1)− f(x1)

y1 − x1
= g(x1, y1) = c.

The proof is complete.

Note. The connectedness of the set A was used to establish the existence of a point
(x1, y1) ∈ A such that g(x1, y1) = c. This can be established also by repeated uses of the
Intermediate-Value Theorem stated only for functions on real intervals as follows.

Starting out the same way as in the above proof, and making the assumption f ′+(a) <
c < f ′−(b) as before, we can conclude the existence of numbers x0 ∈ [a, b) and y0 ∈ (a, b]
such that g(a, y0) < c and c < g(x0, b). Now, if g(a, b) > c, then, using the Intermediate-
Value Theorem for the function h(t) = g(a, t) and noting that h(y0) = g(a, y0) < c and
h(b) = g(a, b) > c, we can see that there is a t0 ∈ (y0, b) such that h(t0) = c. Then we can
take (x1, y1) = (a, t0) in the above proof, since g(a, t0) = h(t0) = c.

If, on the other hand, we have g(a, b) < c, then we can use the Intermediate-Value
Theorem for the function k(t) = g(t, b). Noting that k(a) = g(a, b) < c and k(x0) =
g(x0, b) > c in this case, it follows that there is a t1 ∈ (a, x0) such that k(t1) = c. Then we
can take (x1, y1) = (t1, b) in the above proof, since g(t1, b) = k(t1) = c.

Finally, if g(a, b) = c, we can take (x1, y1) = (a, b) in the above proof.

20. The chain rule for differentiation

The composition g ◦ f of the functions g and f , is defined by stipulating that (g ◦ f)(x) =
g(f(x)) for every x for which the right-hand side is meaningful. More precisely,

Definition. Given any two functions f and g, we define the function g ◦ f by writing

dom(g ◦ f) def
= {x ∈ dom(f) : f(x) ∈ dom(g)},

and putting (g ◦ f)(x) def
= g(f(x)) whenever x ∈ dom(g ◦ f).

There is a simple rule, called the Chain Rule, for differentiating the composition of two
functions saying that

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).
In a naive derivation of the chain rule, one would write

(g ◦ f)′(x0) = lim
x→x0

g(f(x))− g(f(x0))
x− x0

= lim
x→x0

(

g(f(x))− g(f(x0))
f(x)− f(x0)

· f(x)− f(x0)
x− x0

)

,

but this is not correct, since it cannot be guaranteed that there is an η > 0 such that
f(x)− f(x0) 6= 0 for every x ∈ (x0 − η, x0 + η) \ {x0}; i.e., it might not be possible to find
an η > 0 such that the expression after the limit on the right-hand side is defined for every
x ∈ (x0 − η, x0 + η) \ {x0}.

To avoid this difficulty, one has to take a somewhat more refined approach. We start with
giving a precise statement of the result.

40Observe that the points (a, y0) and (x0, b) belong to the set A.
41See the Theorem on p. 82 in Rosenlicht [Ros]; also see the discussion of the theorem on p. 83.
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The Chain Rule for Differentiation. Let U and V be open subsets of R, and let f
and g be real-valued functions such that U ⊂ dom(f) ⊂ R and V ⊂ dom(g) ⊂ R. Let x0 ∈ U
and assume f(x0) ∈ V . Assume, further, that f is differentiable at x0 and g is differentiable
at f(x0). Then

(14) (g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).

Proof. To begin with, notice that there is an open set U ′ ⊂ R such that x0 ∈ U ′

and U ′ ⊂ dom(g ◦ f). Indeed, write y0 = f(x0), and let ǫ > 0 be such that the interval
V ′ = (y0 − ǫ, y0 + ǫ) is a subset of V ; there is such an ǫ since the set V is open and y0 ∈ V .
Observing that f is continuous at x0 since, by our assumptions, it is differentiable there,
there is a δ > 0 such that f(x) ∈ V ′ for every x ∈ (x0−δ, x0+δ). Writing U ′ = (x0−δ, x0+δ),
it is clear that U ′ is an open set such that

x0 ∈ U ′ ⊂ dom(g ◦ f),

as claimed.

Define the function h on V by putting

(15) h(y) =

{

g(y)−g(y0)
y−y0

for y ∈ V with y 6= y0,

g′(y0) for y = y0.

Observe that h is continuous at y0 = f(x0), since limy→y0
h(y) = g′(y0) = h(y0) by the

definition of the derivative (together with the definition of h and the assumption that g is
differentiable at y0).

Now,

(g ◦ f)′(x0) = lim
x→x0

g(f(x))− g(f(x0))
x− x0

= lim
x→x0

h(f(x))
f(x)− f(x0)

x− x0
.

This equation is correct, since it is easy to see from (15) that the two expressions after the
lim signs are equal for every x ∈ U ′ \ {x0} (if f(x) = f(x0) then both expressions are 0).
Using the product rule for limits, the right-hand side here equals

lim
x→x0

h(f(x)) · lim
x→x0

f(x)− f(x0)
x− x0

.

The first limit here is equal to h(f(x0)). Indeed, as noted above, f is continuous at x0,
and h is continuous at y0 = f(x0); thus, their composition h ◦ f is continuous at x0.

42

The second limit equals f ′(x0) by the definition of the derivative, since f was assumed to
be differentiable at x0. By noting that h(f(x0)) = g′(f(x0)) by the definition (15) of h,
equation (14) follows. The proof is complete.

42see Rosenlicht, the Proposition on p. 71.
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21. The inverse of a monotone function

Definition. Given a f function, its inverse f−1 is defined as follows. The domain of
f−1 is the set of those elements x of the range of f for which there is a unique y in the
domain of f such that f(x) = y. For such an x, we put f−1(x) = y.

Formally,

dom(f−1) ={x ∈ ra(f) : (∀y ∈ dom(f))(∀z ∈ dom(f))

((f(y) = x & f(z) = x)→ (y = z))},

and, for every x ∈ dom(f−1),

y = f−1(x)↔ (y ∈ dom(f) & f(y) = x).

Next we will define the concept of monotone functions.

Definition. A real-valued function f defined on a set D ⊂ R is said to be increasing43

if for every x, y ∈ D with x < y we have f(x) < f(y). f is said to be decreasing if for every
x, y ∈ D with x < y we have f(x) > f(y). f is said to be monotone if it is either increasing
or decreasing.

The inverse of a monotone continuous function has important properties.

Theorem. Let [a, b] be an interval, and assume that f is an increasing real-valued con-
tinuous function on the interval [a, b]. Then the domain of its inverse, f−1, is the interval
[f(a), f(b)]. Furthermore, the function f−1 is continuous.

An analogous result can be formulated for decreasing functions. A similar result can
be formulated for other types of intervals (such as open, semi-closed, or infinite intervals),
but there are slight complications. For example, if f is an increasing function on the open
interval (a, b), then the range of f cannot be described as (f(a), f(b)), since f(a) and f(b)
are not defined.44

Proof. Be the Intermediate-Value Theorem, for any x in the interval [f(a), f(b)] there is
a y ∈ [a, b] such that f(y) = x; thus, the range of f is the interval [f(a), f(b)]. Observe that,
for such an x, there cannot be two distinct numbers y, z ∈ [a, b] such that f(y) = f(z) = x,
since we must have either y < z, in which case f(y) < f(z) as f is increasing, or z < y, in
which case f(z) < f(y). Thus the domain of the inverse of f is [f(a), f(b)].

Write g for the inverse of f . We are going to show that g is continuous. Let V ⊂ [a, b] be
an arbitrary set open in [a, b].45 We need to show that the set

g−1[V ] = {x ∈ dom(g) : g(x) ∈ V }
43We use the terms increasing, decreasing, and monotone in the strict sense; some authors use these terms

in the wider sense (with equality of the function values allowed). For increasing in the wider sense can can

use the term nondecreasing, and For decreasing in the wider sense can can use the term nonincreasing.
44The existence of the inverse is easily established in the same way as below by the Intermediate-Value

Theorem for intervals that are not closed. However, the technique used for establishing the continuity of the
inverse does not work for unbounded intervals, since bounded open sets in this interval cannot be represented

as complements of compact sets. The continuity of the inverse in this case can be established with the aid
of the above theorem (as formulated with closed intervals). For example, if a monotone continuous function
f is defined on an unbounded interval I, then for every closed interval J ⊂ I, f restricted to the interval J

has a continuous inverse by the above theorem. From this it can easily be concluded that the inverse of f
is continuous.

45I.e., “open in the sense of [a, b].” Thus, for a number c ∈ (a, b), the interval [a, c) is an open subset of
[a, b], but it is not an open subset of R. To express this distinction, one sometimes says that [a, c) is open

relative to [a, b].
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is open in dom(g) = [g(a), g(b)]46 (but it need not be open in R). Noting that g(x) = y if
and only if f(y) = x, we have

g−1[V ] = f [V ] = {f(y) : y ∈ V }.

Hence,
g−1[V ] = dom(g) \ g−1[[a, b] \ V ] = dom(g) \ f [[a, b] \ V ].

The set [a, b] \ V is compact, so its image f [[a, b] \ V ] under the continuous function f is
compact; thus its complement g−1[V ] in dom(g) is open in dom(g). As V was an arbitrary
open set in [a, b], this shows that g−1 is continuous, completing the proof.

Note. As far as the continuity of the inverse is concerned, from the proof it is clear that
we established the following, somewhat more general statement.

Theorem. Let f be a function defined on a subset of the metric space (E, d) with values
in another metric space (E′, d′). Assume f is continuous and one-to-one, and dom(f) is a
compact set. Then its inverse, f−1, is continuous.

As the domain of f is a compact set, the argument used in the above proof can be used
without change, since for any set V ⊂ dom(f) that is open in dom(f), the set dom(f) \ V
is compact.

Next we present an important result about the derivative of the inverse function.

Theorem. Let f be a real-valued differentiable function on an open interval I, and as-
sume f ′(x) 6= 0 for every x ∈ I. Then f−1 is differentiable for every x ∈ dom(f−1), and

(f−1)′(x) =
1

f ′(f−1(x))

for any such x.

Proof. As a derivative always satisfies the Intermediate-Value Theorem (even if it is
not continuous), we must have either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all x ∈ I; thus,
f is monotone on I. For the sake of simplicity, assume that f is increasing. Note that f
is continuous on I, since differentiability implies continuity. Let a, b ∈ I with a < b, and
restrict f to the interval [a, b]; this is a change of notation: from now on, dom(f) is [a, b],
and not dom(f) = I. This change of notation is harmless, and is done so that we can use
the first Theorem in this section about the inverse of a continuous function without change.

Write g for the inverse of f ; then dom(g) = [f(a), f(b)]. Let x0 ∈ (f(a), f(b)) be arbitrary
(note that we want to avoid choosing x0 as an endpoint of this interval), and write y0 = g(x0).
For y ∈ (a, b) define the function h by

h(y) =

{ y−y0

f(y)−f(y0)
for y 6= y0,

1
f ′(y0)

for y = y0.

First, note that this definition is sound, since f(y) < f(y0) for y < y0, and f(y) > f(y0) for
y > y0; second, f

′(y0) 6= 0 by our assumption, so we do not have zero in the denominator
here. Second, this function is continuous at y0, since

lim
y→y0

y − y0
f(y)− f(y0)

= lim
y→y0

1
f(y)−f(y0)

y−y0

=
1

limy→y0

f(y)−f(y0)
y−y0

=
1

f ′(y0)
.

46The notation here can cause some confusion. Recall that earlier we defined h[V ] as {h(x) : x ∈ V },
and we could have means g−1[V ] as h[V ] with h = g−1. One can avoid this confusion by writing (g−1)[V ].
In the present situation one can show that (g−1)[V ] = g−1[V ], but this need not always be the case; this
equation is true for one-to-one functions g, that is, for functions g such that for each x there is at most one

y such that g(y) = x.
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Observe that we have f(g(x)) = x for any x ∈ [f(a), f(b)] in view of the definition of the
inverse function; recalling that y0 = g(x0), we obtain that

g(x)− g(x0)
x− x0

= h(g(x))

for every x 6= x0 in view of the definition of h; note that only the first alternative in the
definition of h is used for this, since g(x) 6= g(x0) for x 6= x0. Thus

g′(x0) = lim
x→x0

g(x)− g(x0)
x− x0

= lim
x→x0

h(g(x)) = h(g(x0)) =
1

f ′(g(x0))
.

The third equality here holds because g is continuous at x0 (and everywhere else) and h is
continuous at y0 = g(x0); the fourth equality follows from the definition of h. This equality
completes the proof of the theorem.

Note. The argument used in the calculation of g′(x0) above is reminiscent of the proof
of the Chain Rule. This is no accident, since writing i for the identity function on [g(a), g(b)]
(i.e., i(x) = x for every x ∈ [g(a), g(b)]), we have, i(x) = f(g(x)), that is, i = g ◦ f , and so

1 = i′(x0) = (f ◦ g)′(x0) = f ′(g(x0)) · g′(x0)

according to the Chain Rule. Calculating g′(x0) from this equation, we obtain the above
result.

The trouble with this argument is that, in order to use the Chain Rule, we need to know
that g′ is differentiable at x0, and this needs to be established. There are ways to do this,
but it is easier to entirely avoid having to do this, and use the argument presented in the
above proof, without referring to the Chain Rule.

Note that the argument used here (and in the proof of the Chain Rule) looks like a
substitution rule for limits:

lim
x→c

φ(ψ(x)) = lim
t→φ(c)

φ(t).

In an imprecise, intuitive argument, it is useful to think in terms of such a substitution rule.
However, the conditions under which such a rule is valid are somewhat complicated and
artificial, and in a rigorous argument it is usually better to avoid using such a rule, in a way
this was done in the proof of the above theorem and in the proof of the Chain Rule.

To illustrate why this is so, one can formulate the following rule. Assume ψ is a real valued function, c
is a real number, and limx→c ψ(x) = L, and φ is a real-valued function on R \ {L}. Assume, further, that
there is an δ > 0 such that ψ(x) 6= L for all x with 0 6= |x− c| < δ. Then

(16) lim
x→c

φ(ψ(x)) = lim
t→L

φ(t),

provided the right-hand side exists. There are two problems here. First, this would have worked above, in

finding the derivative of the inverse function (with c = x0, ψ = g, and φ(y) = y−L

f(y)−f(y0)
), but it would not

have been sufficient to establish the chain rule. Second, the simplest way to establish this rule is to write

ψ0(x) =

{

ψ(x) for x 6= c,

L for x = c,
and φ0(y) =

{

φ(y) for y 6= L,

limy→L φ(y) for y = L.

Then, assuming that the limit on the right-hand side of (16) exists, the function φ0 is continuous at c and

ψ0 is continuous at φ0(c), and the equality in (16) can be shown to hold by noting that it is is equivalent

to the continuity of φ0 ◦ ψ0 at c. All this is too much effort to expend in order to establish a rule of limited

usability.
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22. l’Hospital’s rule

Rolle’s Theorem. Let [a, b] ⊂ R be a closed interval, and let f be a function that is
continuous on [a, b] and differentiable in (a, b). Assume that f(a) = f(b) = 0. Then there is
a number ξ ∈ (a, b) such that f ′(ξ) = 0.

Cauchy’s Mean-Value Theorem. Let f and g be continuous real-valued functions on
the interval [a, b] that are differentiable on (a, b). Then there is a number ξ ∈ (a, b) such that

f ′(ξ)(g(b)− g(a)) = g′(ξ)(f(b)− f(a)).

Proof. Consider the function F (x) = (f(x)− f(a))(g(b)− g(a))− (g(x)− g(a))(f(b)−
f(a)). It is easy to see that F is continuous on [a, b], differentiable in (a, b), and F (a) =
F (b) = 0; thus, we can use Rolle’s Theorem for the function F . We can conclude that there
is a ξ ∈ (a, b) such that F ′(ξ) = 0. That is,

0 = F ′(ξ) = f ′(ξ)(g(b)− g(a))− g′(ξ)(f(b)− f(a)).

The desired conclusion easily follows from this equality. The proof is complete

Notes. If g′(x) 6= 0 holds for every x ∈ (a, b) then g(b) − g(a) 6= 0, since by the usual
(i.e., not Cauchy’s) Mean-Value Theorem there is an η ∈ (a, b) such that

0 6= g′(η) = g(b)− g(a).

That is, in this case we can divide both sides of the equation expressing Cauchy’s Mean-Value
Theorem by g′(ξ)(g(b)− g(a) to obtain a modified version of

Cauchy’s Mean-Value Theorem (modified version). Let f and g continuous real-
valued functions on the interval [a, b] that are differentiable on (a, b). Assume, further, that
g′(x) 6= 0 for every x ∈ (a, b). Then there is a ξ ∈ (a, b) such that

(17)
f(b)− f(a)
g(a)− g(b) =

f ′(ξ)

g′(ξ)
.

The principal use of Cauchy’s Mean-Value Theorem is to derive l’Hospital’s rule. Before
we state l’Hospital’s rule, we would like to state some definitions involving limits at infinity
and infinite limits.

Definition. Let f : R→ R be a function. Let t ∈ R. We say that

lim
x→t

f(x) = ±∞

if for every M ∈ R there is an δ > 0 such that for every x with 0 6= |x − t| < δ we have
f(x) > M . Formally,

lim
x→t

f(x) = ±∞↔(∀M ∈ R)(∃δ > 0)(∀x ∈ R)

(0 6= |x− t| < δ → |f(x)| > M).

Let L ∈ R. We say that limx→+∞ = L if for every ǫ > 0 there is an N ∈ R such that for all
x > N we have |f(x)− L| < ǫ. Formally,

lim
x→+∞

f(x) = L↔ (∀ǫ > 0)(∃N ∈ R)(∀x > N) |f(x)− L| < ǫ.
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Similar definitions can be given for limx→t f(x) = +∞, limx→t f(x) = −∞, limx→−∞ =
L, and limx→t− f(x) = L, and various combinations of limits or one-sided limits being
infinite. It is a good exercise to write out these definitions. It is easy to show that
limx→t f(x) = ±∞ if and only if limx→t

1
f(x) = 0 (it is instructive to carry out a detailed

verification of this fact). It is easy to see that these definitions make sense even when f is
only defined on an appropriate part of the real line, not on the whole real line (it is a good
exercise to state the exact requirements). An important note is that when a limit is ±∞,
+∞, or −∞, one says that the limit does not exist. That is, one only says that a limit
exists when that limit is a number. When the limit does not exist, then the limit may or
may not be ±∞, +∞, or −∞; to say that it is one of these amounts to giving more precise
information than just saying that the limit does not exist. Also note that when the limit is
+∞, it is also correct to say that the limit is ±∞.

l’Hospital’s rule.

a) Let f and g be real-valued functions differentiable in an open interval I = (a, b), and as-

sume that limx→a+ f(x) = limx→a+ g(x) = 0. Assume, further, that the limit limx→a+
f ′(x)
g′(x)

exists. Then the limit limx→a+
f(x)
g(x) also exists and

(18) lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
.

b) The same conclusion holds if limx→a+ f(x) and limx→a+ g(x) are both ±∞ rather
than 0 and the rest of the assumptions hold.

c) The same conclusion holds if I = (a,+∞) and the limits are taken at +∞ instead of
a+.

Proof. There are other variants of L’Hospital’s rule, such as the case of limits at −∞,
and two-sided limits (i.e., limits such as limx→c) and limits from the left. Finally, the result
remains true when the limit on the right-hand side of (18) is assumed to be +∞, −∞, or
±∞; it needs to be realized, however, that in this case the equality in equation (18) does not
refer to equality of numbers (+∞, −∞, or ±∞ are not numbers) but to the similar behavior
of two functions after the lim symbols on the two sides of the equation. It is a good exercise
to formulate these cases and prove the corresponding assertions. The cases presented are
typical, and the proofs in these cases can easily be adapted to the remaining cases.

Case a) We may extend the definition of f and g to the point a by putting f(a) = g(a) = 0;
then the functions f and g will be continuous on the interval [a, b). Continuity at every
x ∈ (a, b) follows from differentiability, and right-handed continuity at a will hold since
limx→a+ f(x) = limx→a+ g(x) = 0.

Write

lim
x→a+

f ′(x)

g′(x)
= L.

Let ǫ > 0 be arbitrary, and let δ with 0 < δ < b− a (so that (a, a+ δ) ⊂ (a, b)) be such that

∣

∣

∣

∣

f ′(t)

g′(t)
− L

∣

∣

∣

∣

< ǫ

for every t ∈ (a, a + δ). Note that, for this inequality to hold, the left-hand side must be
meaningful, and so we must have g′(t) 6= 0 for every t ∈ (a, a + δ). Let x ∈ (a, a + δ) be
arbitrary. We claim that there is a ξ ∈ (a, x) such that

(19)
f(x)

g(x)
=
f(x)− f(a)
g(x)− g(a) =

f ′(ξ)

g′(ξ)
.

Indeed, the first equality here holds since we made the stipulation f(a) = g(a) = 0, and the
second equality holds by the (modified version of) Cauchy’s Mean-Value Theorem (cf. (17)).
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Thus, we have
∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(ξ)

g′(ξ)
− L

∣

∣

∣

∣

< ǫ.

As ǫ > 0 was arbitrary,

lim
x→a+

f(x)

g(x)
= L

follows. This establishes (18) in Case (a).
Note. It should be clear from this proof that in (18) we cannot conclude the existence

of the limit on the right-hand side from that of the left-hand side. The reason for this is
that equation (19) does not talk about every number ξ > a close to a. It only talks about
those values of ξ that come up in the application of Cauchy’s Mean-Value Theorem; it is
instructive to think through a situation when these values of ξ do not comprise all values of
ξ > a close to a. For example, given f(x) = x2 sin 1

x and g(x) = sinx, it is quite easy to see
that

lim
x→0+

f(x)

g(x)
= lim

x→0+

x2 sin 1
x

sinx
= 0,

while an attempt at applying l’Hospital’s rule leads to

lim
x→0+

f ′(x)

g′(x)
= lim

x→0+

2x sin 1
x − cos 1

x

cosx
,

and it is not hard to see that this limit does not exist.
Case b) The idea for the proof is the following. Let x0 ∈ (a, b) be fixed. Then we ought

to have

lim
x→a+

f(x)

g(x)
= lim

x→a+

f(x)− f(x0)
g(x)− g(x0)

,

since, as x approaches a, the values f(x) and g(x) will be dominate over (i.e., will be much
larger in absolute value than) f(x0) and g(x0); this is so because limx→a+ f(x) = ±∞ and
limx→a+ g(x) = ±∞ by our assumptions. The expression on the right-hand side will allow
us to apply Cauchy’s Mean-Value Theorem. We said that the above equality ought to rather
than it does hold since the existence of the limits in this equality has not been established,
so it is not clear at this point whether this equality makes any sense.

To make this idea precise, assume

L = lim
x→a+

f ′(x)

g′(x)
.

Let {xn}∞n=1 an arbitrary sequence of numbers xn ∈ (a, b) such that limn→∞ xn = a. It is
then enough to show that

lim
n→∞

f(xn)

g(xn)
= L.

This is so in view of the Proposition on p. 74 in Rosenlicht. In applying this Proposition,
we need to take the metric space E to be the interval (a,+∞) (or (a, b)) rather than R,
because we are considering limx→a+ rather than limx→a; the space E′ can (and should) be
taken as R.

Assume, on the contrary, that L is not the limit of the sequence
{

f(xn)
g(xn)

}∞

n=1
(i.e., the

assumption is that either this sequence does not have a limit, or that it does have a limit but
that limit is not equal to L). Then there must be an ǫ′ > 0 such that there are infinitely many
elements of this sequence outside the interval (L− ǫ′, L+ ǫ′). Let {yn}∞n=1 be a subsequence

of {xn}∞n=1 such that all the numbers
{

f(yn)
g(yn)

}∞

n=1
lie outside the interval (L− ǫ′, L+ ǫ′),
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Now, one of two things must happen. First, it is possible that the sequence
{

f(yn)
g(yn)

}∞

n=1
is not bounded, in which case there is a subsequence {zn}∞n=1 of {yn}∞n=1 for which

limn→∞

∣

∣

∣

f(zn)
g(zn)

∣

∣

∣
= +∞, i.e.,

(20) lim
n→∞

g(zn)

f(zn)
= 0;

second, it is possible that this sequence is bounded, in which case, according to the Bolzano–
Weierstrass Theorem, there is a subsequence {zn}∞n=1 of {yn}∞n=1 and a number K such that

(21) lim
n→∞

f(zn)

g(zn)
= K;

further, we must have K 6= L by our assumption. Indeed, all elements of this sequence
belong to the closed set {x ∈ R : x ≤ L− ǫ′ or x ≥ L+ ǫ′}, so its limit K must also belong
there.

We are going to show that neither (20) nor (21) is possible.
As limx→a+ f(x) = ±∞, i.e., limx→a+

1
f(x) = 0, in this case, and limn→∞ zn = a ({zn}∞n=1

is a subsequence of the sequence {xn}∞n=1, and this latter sequence was assumed to converge
to a), we can conclude from the Proposition on p. 74 in Rosenlicht that limn→∞

1
f(zn)

= 0,

i.e., limn→∞ f(zn) = ±∞; similarly, limn→∞ g(zn) = ±∞. Thus, there is a positive integer
N0 such that f(zn) 6= 0 and g(zn) 6= 0 for n ≥ N0.

Let ǫ > 0 be arbitrary, and, recalling that L was defined a the limit limx→a+
f ′(x)
g′(x) , let δ

with 0 < δ < b− a be such that
∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

< ǫ

for every x ∈ (a, a + δ0). Note that for this inequality to hold, we must have g′(x) 6= 0 for
every x ∈ (a, a + δ). Let u ∈ (a, a + δ) be fixed, and let N ≥ N0 be an integer such that
zn < u for n ≥ N ; there is such an N , since the sequence {zn}∞n=1 converges to a. Using (the
modified version of) Cauchy’s Mean-Value Theorem, for every n ≥ N there is a ξn ∈ (zn, u)
such that

f(u)− f(zn)
g(u)− g(zn)

=
f ′(ξn)

g′(ξn)

(cf. (17) with zn and u replacing a and b; recall that we noted above that g′(x) 6= 0 for every
x ∈ (a, a+ δ).) Thus, for any n ≥ N we have

(22)

∣

∣

∣

∣

∣

∣

f(u)
f(zn)

− 1

g(u)
g(zn)

− 1
· f(zn)
g(zn)

− L

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

f(u)− f(zn)
g(u)− g(zn)

− L
∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(ξn)

g′(ξn)
− L

∣

∣

∣

∣

< ǫ.

Now

(23) lim
n→∞

f(u)
f(zn)

− 1

g(u)
g(zn)

− 1
=

limn→∞

(

f(u)
f(zn)

− 1
)

limn→∞

(

g(u)
g(zn)

− 1
) = 1;

to see the second equality here note that limn→∞ f(zn) = ±∞ and limn→∞ g(zn) = ±∞;
hence, for example,

lim
n→∞

f(u)

f(zn)
= lim

n→∞

(

f(u) · 1

f(zn)

)

= f(u) · 0 = 0



22. l’Hospital’s rule 45

(note that u is fixed here).
Assume now that (21) holds. Making n → ∞ in (22) we obtain |K − L| ≤ ǫ. This is

obviously a contradiction, since ǫ > 0 was arbitrary, and this inequality cannot hold with
ǫ = |K − L|/2 (recall that K 6= L). Thus (21) is impossible.

Note. To appreciate why we get |K − L| ≤ ǫ rather than |K − L| < ǫ in the preceding
argument argument, it is worth inspecting how this conclusion was obtained. Namely, the
set

S = {x : |x− L| ≤ ǫ} = {x : L− ǫ ≤ x ≤ L+ ǫ}
is closed; by (22), the elements of the sequence

f(u)
f(zn)

− 1

g(u)
f(gn)

− 1
· f(zn)
g(zn)

belong to S for n ≥ N , hence its limit 1 ·K = K also belongs to S.

Finally, we will show that (20) is also impossible. To this end, assume that (20) holds,

and multiply (22) by
∣

∣

∣

g(yn)
f(zn)

∣

∣

∣ to obtain

∣

∣

∣

∣

∣

∣

f(u)
f(zn)

− 1

g(u)
g(zn)

− 1
− g(zn)

f(zn)
· L

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

g(zn)

f(zn)

∣

∣

∣

∣

· ǫ

for n ≥ N . Note here that the integer N0 was chosen above such that that f(zn) 6= 0 for

n ≥ N0, and we picked N ≥ N0; so multiplying by
∣

∣

∣

g(zn)
f(zn)

∣

∣

∣ was allowed for n ≥ N . Making

n → ∞ and using (20) and (23), we obtain |1 − 0 · L| ≤ 0 · ǫ, i.e., 1 < 0. This is the
contradiction, showing that (20) is also impossible. Having shown that both (20) and (21)
are impossible, the proof is complete in Case (b).

Case c) This case can be reduced to the previous two cases by noting that

lim
x→+∞

f(x)

g(x)
= lim

t→0+

f
(

1
t

)

g
(

1
t

) = lim
t→0+

− 1
t2 f

′
(

1
t

)

− 1
t2 g

′
(

1
t

) = lim
x→+∞

f ′(x)

g′(x)
,

where the second equality is obtained by using the result for the already established Cases
(a) or (b).

Note. The proof of Case (b) was the most difficult among the cases above. We presented
a proof that was “conceptual.” It illustrated a useful technique of using subsequences so
as to use theorems about limits in a situation when the limit either does not exist or is
not known to exist. Another way to go around the nonexistence of limits is to use limit
superior and limit inferior; for sequences, this is described in Problems 18 and 19 on p. 63
in Rosenlicht. For a bounded function f on R and a ∈ R, we define the limit superior as

lim sup
x→a+

f(x)
def
= lim

x→a+
sup{f(y) : a < y < x};

the existence of the limit on the right-hand side is not hard to prove. The limit inferior
can be defined similarly by interchanging sup and inf. The definition in cases of left-sided
limits, two-sided limits, and limits at infinity can be stated similarly. These concepts can be
extended to unbounded functions if we allow +∞ or −∞ as the values of lim inf or lim sup.

Next we present a proof that is based on similar ideas, but rather than being conceptual,
it is based on calculations that look somewhat arbitrary. Note the implicit re-proving of an
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instance of the product rule for limits in the argument (but we cannot explicitly invoke the
product rule, since the existence of the limits in question is not guaranteed).

Alternative proof in Case b). Assume, as before, that

L = lim
t→a+

f ′(t)

g′(t)
.

Let ǫ be arbitrary with 0 < ǫ < 1, and let δ0 with 0 < δ0 < b− a be such that

∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

<
ǫ

4

for every x ∈ (a, a + δ0). For this inequality to hold, we must have g′(x) 6= 0 for every
x ∈ (a, a+ δ0). Thus, by (the modified version of) Cauchy’s Mean-Value Theorem, for every
u and v with a < u < v < a+ δ0 there is a ξ ∈ (u, v) such that

f(v)− f(u)
g(v)− g(u) =

f ′(ξ)

g′(ξ)

(cf. (17) with u and v replacing a and b). Thus, for any such u and v we have

∣

∣

∣

∣

f(v)− f(u)
g(v)− g(u) − L

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(ξ)

g′(ξ)
− L

∣

∣

∣

∣

<
ǫ

4
.

Now, let v ∈ (a, a+ δ0) be fixed. We have

lim
u→a+

g(v)
g(u) − 1

f(v)
f(u) − 1

=
limu→a+

(

g(v)
g(u) − 1

)

limu→a+

(

f(v)
f(u) − 1

) = 1;

the second equality here holds since limu→a+ f(u) = ±∞ and limu→a+ g(u) = ±∞.
Pick a δ with 0 < δ < v − a (note that v − a < δ0, so δ < δ0) such that

∣

∣

∣

∣

∣

∣

g(v)
g(u) − 1

f(v)
f(u) − 1

− 1

∣

∣

∣

∣

∣

∣

<
ǫ

2(|L|+ 1)

holds for every u ∈ (a, a+ δ). As

f(u)

g(u)
=
f(v)− f(u)
g(v)− g(u) ·

g(v)
g(u) − 1

f(v)
f(u) − 1

,

we then have

∣

∣

∣

∣

f(u)

g(u)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

f(v)− f(u)
g(v)− g(u) − L

)

·
g(v)
g(u) − 1

f(v)
f(u) − 1

+ L ·





g(v)
g(u) − 1

f(v)
f(u) − 1

− 1





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

f(v)− f(u)
g(v)− g(u) − L

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

g(v)
g(u) − 1

f(v)
f(u) − 1

∣

∣

∣

∣

∣

∣

+ |L| ·

∣

∣

∣

∣

∣

∣

g(v)
g(u) − 1

f(v)
f(u) − 1

− 1

∣

∣

∣

∣

∣

∣

Noting that we have
∣

∣

∣

∣

∣

∣

g(v)
g(u) − 1

f(v)
f(u) − 1

∣

∣

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

∣

∣

g(v)
g(u) − 1

f(v)
f(u) − 1

− 1

∣

∣

∣

∣

∣

∣

,
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we can see that the first term (i.e., first summand, that is, the first product) on the right-
hand side above less than

ǫ

4

(

1 +
ǫ

2(|L|+ 1)

)

<
ǫ

2
;

the inequality here holds since we assumed ǫ < 1. The second term is less than

|L| · ǫ

2(|L|+ 1)
<
ǫ

2
.

Thus
∣

∣

∣

∣

f(u)

g(u)
− L

∣

∣

∣

∣

< ǫ

holds for every u ∈ (a, a+ δ). As ǫ was arbitrary with 0 < ǫ < 1, limu→a+
f(u)
g(u) = L follows.

Thus (18) is established in this case as well.

23. The remainder term in Taylor’s formula

In Taylor’s formula, a function f(x) is approximated by a polynomial

n
∑

k=0

f (k)(a)

k!
(x− a)k.

The goodness of this approximation can be measured by the remainder term Rn(x, a),
defined as

Rn(x, a)
def
= f(x)−

n
∑

k=0

f (k)(a)

k!
(x− a)k.

To estimate Rn(x, a), we need the following lemma.

Lemma. Let n ≥ 0 be an integer. Let U be an open interval in R and let f : U → R be a
function that is n+ 1 times differentiable. Given any b ∈ U , we have

(24)
d

dx
Rn(b, x) = −

f (n+1)(x)(b− x)n
n!

for every x ∈ U .

Proof. The case n = 0 is obvious, since R0(b, x) = f(b)− f(x). For n ≥ 1 we have

Rn(b, x) = f(b)−
n
∑

k=0

f (k)(x)
(b− x)k

k!
= f(b)− f(x)−

n
∑

k=1

f (k)(x)
(b− x)k

k!
.

We separated out the term for k = 0 since we are going to use the product rule for differen-
tiation, and the term for k = 0 involves no product. We have

d

dx
Rn(b, x) =

d

dx
f(b)− d

dx
f(x)

−
n
∑

k=1

(

df (k)(x)

dx

(b− x)k
k!

+ f (k)(x)
d

dx

(b− x)k
k!

)

= −f ′(x)−
n
∑

k=1

(

f (k+1)(x)
(b− x)k

k!
+ f (k)(x)

−k(b− x)k−1

k!

)

= −f ′(x)−
n
∑

k=1

(

f (k+1)(x)
(b− x)k

k!
− f (k)(x) (b− x)

k−1

(k − 1)!

)

.
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Writing

Ak = f (k+1)(x)
(b− x)k

k!

for k with 0 ≤ k ≤ n, the sum (i.e., the expression described by
∑n

k=1) on the right-hand
side equals47

n
∑

k=1

(Ak −Ak−1) = (A1 −A0) + (A2 −A1) + . . . (An −An−1)

= An −A0 = f (n+1)(x)
(b− x)n

n!
− f ′(x).

Substituting this in the above equation, we obtain

d

dx
Rn(b, x) = −f ′(x)−

(

f (n+1)(x)
(b− x)n

n!
− f ′(x)

)

= −f (n+1)(x)
(b− x)n

n!
,

as we wanted to show.

Corollary 1. Let n ≥ 0 be an integer. Let U be an open interval in R and let f : U → R

be a function that is n+ 1 times differentiable. For any any a, b ∈ U with a 6= b, there is a
ξ ∈ (a, b) (if a < b) or ξ ∈ (b, a) (if a > b) such that

(25) Rn(b, a) =
f (n+1)(ξ)

(n+ 1)!
(b− a)n+1.

Proof. For the sake of simplicity, we will assume that a < b.48 We have b− a 6= 0, and
so the equation

(26) Rn(b, a) = K · (b− a)
n+1

(n+ 1)!

can be solved for K. Let K be the real number for which this equation is satisfied, and write

φ(x) = Rn(b, x)−K ·
(b− x)n+1

(n+ 1)!

Then φ is differentiable in U ; as differentiability implies continuity, it follows that f is
continuous on the interval [a, b] and differentiable in (a, b).49 As φ(a) = 0 by the choice of
K and φ(b) = 0 trivially, we can use Rolle’s Theorem to obtain the existence of a ξ ∈ (a, b)
such that φ′(ξ) = 0. Using (24), we can see that

0 = φ′(ξ) = −f
(n+1)(ξ)(b− ξ)n

n!
−K · −(n+ 1)(b− ξ)n

(n+ 1)!
.

Noting that (n+1)
(n+1)! =

1
n! and keeping in mind that ξ 6= b, we obtain K = fn+1(ξ) from here.

Thus the result follows from (26).

47A sum that exhibits the cancelation that follows is called a telescoping sum.
48This assumption is never really used except that it helps us avoid circumlocutions such as ξ ∈ (a, b) if

a < b or ξ ∈ (b, a) if b < a.
49Naturally, φ is differentiable also at a and b, but this is not needed for the rest of the argument.
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Note. The above argument can be carried out in somewhat more generality. Let g(x)
be a function that is differentiable on (a, b), g′(x) 6= 0 for x ∈ (a, b), and g(b) = 0. Note
that, by the Mean-Value Theorem,

− g(a)

b− a =
g(b)− g(a)
b− a = g′(η)

for some η ∈ (a, b). Since we have g′(η) 6= 0 by our assumptions, it follows that g(a) 6= 0.
Instead of (26), now determine K such that

(27) Rn(b, a) = Kg(a).

As g(a) 6= 0, it is possible to find such a K. Write

φ(x) = Rn(b, x)−Kg(x).

We have φ(a) = 0 by the choice of K. We have φ(b) = 0 since Rn(b, b) = 0 and g(b) = 0
(the latter by our assumptions). As φ is differentiable on (a, b), there is a ξ ∈ (a, b) such
that φ′(ξ) = 0. Thus, by (24) we have

0 = φ′(ξ) = −f
(n+1)(ξ)(b− ξ)n

n!
−Kg′(ξ).

As g′(ξ) 6= 0 by our assumptions, we can determine K from this equation. Substituting the
value of K so obtained into (27), we can see that

Rn(b, a) = −
f (n+1)(ξ)(b− ξ)n

n!
· g(a)
g′(ξ)

.

Note that in the argument we again assumed that a < b, but this was unessential. Further,
note that the function g can depend on a and b. We can restate the result just obtained in
the following

Corollary 2. Let n ≥ 0 be an integer. Let U be an open interval in R and let f : U → R

be a function that is n+1 times differentiable. For any any a, b ∈ U with a < b, let ga,b(x) be
a function such that ga,b is continuous on [a, b] and differentiable on (a, b). Assume, further,
that ga,b(b) = 0 and g′a,b(x) 6= 0 for x ∈ (a, b). Then there is a ξ ∈ (a, b) such that

Rn(b, a) = −
f (n+1)(ξ)(b− ξ)n

n!
· ga,b(a)
g′a,b(ξ)

.

If b < a, then the same result holds, except that one needs to write (b, a) instead of (a, b)
and [b, a] instead of [a, b] for the intervals mentioned (but the roles of a and b should not
otherwise be interchanged).

This result is given in [B]; see also [M]. The Wikipedia entry [Wiki] also discusses the
result (especially under the subheading Mean value theorem), without giving attributions.
Taking ga,b(x) = (b− x)r for an integer r with 0 < r ≤ n+ 1, we obtain that

Rn(b, a) =
f (n+1)(ξ)

rn!
(b− ξ)n−r+1(b− a)r.

This is called the Roche–Schlömilch Remainder Term of the Taylor Series. Here ξ is some
number in the interval (a, b) or (b, a); it is important to realize that the value of ξ depends
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on r. Taking r = n+1 here, we get formula (25); this is called Lagrange’s Remainder Term
of the Taylor Series. Taking r = 1, we obtain

Rn(b, a) =
f (n+1)(ξ)

n!
(b− ξ)n(b− a);

this is called Cauchy’s Remainder Term of the Taylor Series.
Integrating (24) from a to b one can obtain an exact expression for the remainder of the

Taylor formula in an integral form:

Rn(b, a) =

∫ b

a

f (n+1)(x)(b− x)n
n!

dx

if f is n + 1 times continuously differentiable in an interval containing a and b;50 this is
called the integral form of the remainder term of the Taylor formula. In other words, if f
is n + 1 times continuosly differentiable in an interval U (or, less stringently, as remarked
in the footnote above, its n+1st derivative is Rieamann integrable), then for all x and a in
this interval we have

(28) f(x) =

n
∑

k=0

f (k)(a)

k!
(x− a)k +

∫ x

a

f (n+1)(t)

n!
(x− t)n dt.

The different forms of the remainder term of Taylor’s series are useful in different situa-
tions. For example, Lagrange’s Remainder Term is convenient for establishing the conver-
gence of the Taylor series of ex, sinx, and cosx on the whole real line, but it is not suited
to establish the convergence of the Taylor series of (1 + x)α, where α is an arbitrary real
number. The Taylor series of this last function is convergent on the interval (−1, 1), and
on this interval it does converge to the function (1 + x)α (this series is called the Binomial
Series). This can be established by using Cauchy’s Remainder Term.

24. The binomial series

For k ≥ 0 an integer and α a real, define the binomial coefficient
(

α
k

)

as

(

α

k

)

def
=

k−1
∏

j=0

α− j
k − j =

∏k−1
j=0 (α− j)

k!
.

For k = 0 this gives
(

α
k

)

= 1, as the empty product is defined to be 1. For k < 0 it would

also give 1. However, for k < 0, if one defines
(

α
k

)

at all, one should write
(

α
k

) def
= 0 so as

to preserve known identities involving binomial coefficients.51 If α is a positive integer, this
definition agrees with the usual definition of binomial coefficients.

50That is, the n + 1st derivative of f is continuous in this interval. The continuity is needed so that

the integral of the derivative is equal to the function, which is required by the Newton-Leibniz formula. A
weaker requirement saying that the n+1st derivative of f is Riemann-integrable would also suffice. See the
Theorem in Section 28 below.

51See equation (35) below. As mentioned there, to preserve this equation for n = 0, one needs to stipulate

the
(

α
−1

)

= 0.
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Theorem. For any real α and every real x with |x| < 1 we have

(29) (1 + x)α =

∞
∑

n=0

(

α

n

)

xn.

First Proof. The result is obviously correct if x = 0. In what follows, assume that
x 6= 0. Writing f(x) = (1 + x)α, we find for its nth derivative

f (n)(x) = (1 + x)α−n
n−1
∏

j=0

(α− j) = (1 + x)α−nn! ·
(

α

n

)

.

Thus, according to Taylor’s Formula the equation

(1 + x)α =

n
∑

k=0

(

α

k

)

xk +Rn(x, 0)

holds, where, using Cauchy’s Remainder Term, we have52

(30)

Rn(x, 0) =
f (n+1)(ξ)

n!
(x− ξ)nx =

(

α

n+ 1

)

n(1 + ξ)α−n−1(x− ξ)nx

=

(

α

n+ 1

)

n(1 + ξ)α−1x

(

x− ξ
1 + ξ

)n

for some ξ between 0 and x (i.e., 0 < ξ < x if x > 0, and x < ξ < 0 if x < 0). We claim that

∣

∣

∣

∣

x− ξ
1 + ξ

∣

∣

∣

∣

< |x|.

This is clear if 0 < x < 1, since then the numerator on the left is less than x and the
denominator is greater than 1. In case −1 < x < 0 we have

x <
x− ξ
1 + ξ

< 0.

Indeed, the inequality on the right holds since the denominator is positive and the numerator
is negative. The inequality on the left is equivalent to x+ xξ < x− ξ, i.e., to (1 + x)ξ < 0;
the latter inequality holds since the first factor on the left is positive, and the second one is
negative.

Further, it is easy to estimate the factor (1+ ξ)α−1 occurring on the right-hand side (30).
If α− 1 ≥ 0 then we can use the inequality 0 < 1 + ξ < 2, and so53

(1 + ξ)α−1 ≤ 2α−1.

If α− 1 < 0 then we can observe that 1 + ξ > 1− |x| > 0, and so

(1 + ξ)α−1 =

(

1

1 + ξ

)1−α

<

(

1

1− |x|

)1−α

.

52Lagrange’s Remainder Term is not suitable to establish the result claimed in this theorem, at least not
for negative values of x.

53Equality in the next formula will only hold in case α− 1 = 0.
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In any case, there is a number M that may depend on x and α, but that does not depend
on ξ (and it certainly does not depend on n)54 such that

(1 + ξ)α−1 ≤M

holds whether or not α− 1 ≥ 0. Using these estimates we obtain from (30) that

|Rn(x, 0)| ≤
∣

∣

∣

∣

(

α

n+ 1

)∣

∣

∣

∣

nM |x|n+1,

where M does not depend on n (but it may depend on x and α). To obtain the desired
result, first note that if α is a positive integer, then

(

α
k

)

= 0 for k > α, since the product

defining
(

α
k

)

contains a zero factor in the numerator in this case. In this case Rn(x, 0) = 0

for large n, so (29) certainly holds.55

Assuming α is not a positive integer,
(

α
k

)

6= 0 holds for any positive integer k; we have

(31) lim
n→+∞

∣

∣

∣

∣

∣

(

α
n+1

)

(

α
n

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

α− n
n+ 1

∣

∣

∣

∣

= 1.

Hence, writing

An =

∣

∣

∣

∣

(

α

n+ 1

)∣

∣

∣

∣

nM |x|n+1,

we have

lim
n→+∞

An+1

An
= |x| < 1.

From this it is easy to conclude that

(32) lim
n→+∞

An = 0.

One way to do so is to note that the series
∑∞

n=1An converges by the Ratio Test, and so
we must have (32). As |Rn(x, 0)| ≤ An, it follows from (32) that

lim
n→+∞

Rn(x, 0) = 0.

Hence (29) also follows.

Remark. A more direct way to do this is to note if ρ is any (fixed) number with |x| <
ρ < 1, then there is a positive integer N such that Ak+1

Ak
≤ ρ whenever k ≥ N . Hence, for

any n > N we have

An = AN ·
n−1
∏

k=N

Ak+1

Ak
≤ ANρ

n−N ;

thus (32) holds.56

54Dependence of M on n is not as silly as it sounds. In fact, the only thing we know about ξ is that it is
between 0 and x; so ξ may depend on n. Thus, if M were to depend on ξ, then it could, indirectly through
ξ, depend on M . However, as M does not depend on ξ, it cannot depend on n, either.

55In this case, the nonzero terms on the right-hand side of (29) constitute a finite sum, and the assertion
described in (29) is the well-known Binomial Theorem.

56This second way of establishing (32) is not very different from the first way. In fact, the second way
amounts to re-proving the Ratio Test, since the last displayed line just says that the series

∑

∞

n=N+1 An is

dominated by a convergent geometric series.
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Second Proof. First note that the only differentiable function f(x) that satisfies the
equations

(33) (1 + x)f ′(x) = αf(x) and f(0) = 1 (−1 < x < 1).

is f(x)− (1 + x)α = 0. Indeed, let any I ⊂ (−1, 1) be an open interval with 0 ∈ I such that
f(x) 6= 0 for x ∈ I. Then we have

f ′(x)

f(x)
− α

x+ 1
= 0,

i.e.,
(log f(x)− α log(x+ 1))′ = 0.

Thus
log f(x)− α log(x+ 1) = C.

for some constant C. As f(0) = 1, substituting x = 0 here gives C = 0. Thus we have

(34) f(x) = (x+ 1)α (x ∈ I).

In this argument, one can choose the interval I as large as possible. That is, writing I = (a, b)
with

a = inf{t : t ≥ −1 & f(x) 6= 0 for x ∈ (t, 0)}
and57

b = sup{t : t ≤ 1 & f(x) 6= 0 for x ∈ (0, t)},
we must have either a = −1 or f(a) = 0, and, similarly, b = 1 or f(b) = 0 in view of the
continuity of f . Since f(a) = 0 (with a > −1) and f(b) = 0 is not possible in view of (34)
(indeed, (34) must hold also at the endpoints of I, in view of the continuity of f), we must
have a = −1 and b = 1. Thus (34) holds on all of I = (−1, 1).

Hence, to establish (29), we need to show only that the series on the right-hand side of
(29) satisfies (33). First, note that the radius of convergence of the series on the right-hand
side of (29) is 1 in view of (31). Thus, the series on the right-hand side of (29) can be
differentiated termwise for x with −1 < x < 1. Writing f(x) for the function represented
by this series, and noting

(

α
n

)

= α
n

(

α−1
n−1

)

for n ≥ 1, we have

(1 + x)f ′(x) = (1 + x)

∞
∑

n=1

(

α

n

)

nxn−1 = (1 + x)

∞
∑

n=1

α

(

α− 1

n− 1

)

xn−1

= α
∞
∑

n=1

(

α− 1

n− 1

)

xn−1 + α
∞
∑

n=1

(

α− 1

n− 1

)

xn = α
∞
∑

n=0

(

α− 1

n

)

xn + α
∞
∑

n=1

(

α− 1

n− 1

)

xn

= α

∞
∑

n=0

((

α− 1

n

)

+

(

α− 1

n− 1

))

xn,

where, to justify the last equality, we stipulated that
(

α−1
−1

)

= 0. Hence, to show the first

equality in (33), we only need to observe that

(35)

(

α− 1

n

)

+

(

α− 1

n− 1

)

=

(

α

n

)

.

57There is not much reason to require that t ≤ 1 in the definition of the set on the right-hand side next.
Requiring this ensures that this set is bounded; instead of t ≤ 1 we could have required t ≤ c (with any
c ≥ 1). However, in the argument below there is no use in extending f(x) beyond x = 1, so we might as

well require that t ≤ 1.
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Indeed, both sides equal 1 for n = 0. To handle the case n ≥ 1, note that

β − k + 1

k

(

β

k − 1

)

=

(

β

k

)

=
β

k

(

β − 1

k − 1

)

(k ≥ 1)

in view of the defining equation of
(

β
k

)

. Thus,

(

α− 1

n

)

+

(

α− 1

n− 1

)

=
α− n
n

(

α− 1

n− 1

)

+

(

α− 1

n− 1

)

=
α

n

(

α− 1

n− 1

)

=

(

α

n

)

,

establishing (35). Hence (29) follows.

25. The Riemann integral

Definition. A partition P of the interval [a, b] is a finite set of points {x0, x1, . . . , xN}
such that

a = x0 < x1 < x2 < . . . < xN = b.

The width or norm of a partition is

‖P‖ def
= max{xi − xi−1 : 1 ≤ i ≤ N}.

That is, a partition P of [a, b] is just a finite subset of [a, b] such that a, b ∈ P . The
rest of the above definition sets up the notation in a way that is helpful for introducing
related concepts.58 The numbers xi, x1, . . . , xN are called partition points, or points of the
partition, and the intervals Ii = [xi−1, xi] are called the intervals of the partition. One often
writes ∆xi or |Ii| for the length xi − xi−1 of the ith interval.

Definition. Given a partition

P : a = x0 < x1 < x2 < . . . < xN = b

of the interval [a, b], a tag for the interval [xi−1, xi] with 1 ≤ i ≤ N is a number ξi ∈ [xi−1, xi]
for each i. A partition with a tag for each interval [xi−1, xi] is called a tagged partition.
Given a tagged partition as described, and given a real-valued function f on [a, b], the
corresponding Riemann sum is

S =
n
∑

i=1

f(ξi)(xi − xi−1).

Definition. If there is a real number A such that for every ǫ > 0 there is a δ > 0 such
that for any Riemann sum S for f associated with a partition of width < δ of [a, b] we have

|A − S| < ǫ, then we call A the Riemann integral of f on [a, b], and we write A =
∫ b

a
f . In

this case we call f Riemann integrable on [a, b].

The definition of Riemann sums above immediately implies the following

58Other sources define partition as a sequence of points; yet others, as a set of nonoverlapping intervals
covering [a, b]. While formally different, these definitions all describe the same concept. The one we chose

allows some technical simplifications in the concept of refinement below.
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Boundedness Lemma. Assume there is a partition P of the interval [a, b] such that the
set values of Riemann sums for f associated with P is bounded. Then f is bounded on [a, b].

Proof. Let M be such that for any Riemann sum S for the partition

P : a = x0 < x1 < · · · < xN = b

we have |S| ≤ M . Let the numbers ξi, ηi ∈ [xi−1, xi], to be specified later, for i with
1 ≤ i ≤ N form two sets of tags for the partition P , and let S1 and S2 be the corresponding
Riemann sums. Then we have |S1| ≤M and |S2| ≤M , and so

|S1 − S2| < 2M.

Let k be a fixed integer with 1 ≤ k ≤ N and pick ξi and ηi such that ξi = ηi for all i with
i 6= k and 1 ≤ i ≤ N . Then all but one term in the difference S1 − S2 cancel, so the above
inequality becomes

|S1 − S2| = |(f(ξk)− f(ηk))(xk − xk−1)| < 2M.

That is,

|f(ξk)− f(ηk)| <
2M

xk − xk−1
.

Hence

|f(ξk)| = |f(ηk) + (f(ξk)− f(ηk))| ≤ |f(ηk)|+ |f(ξk)− f(ηk)| < |f(ηk)|+
2M

xk − xk−1
,

i.e.,

|f(ξk)| < |f(ηk)|+
2M

xk − xk−1
.

Picking a fixed ηk ∈ [xk−1, xk] and letting ξk ∈ [xk−1, xk] be arbitrary, this inequality shows
that f is bounded on the interval [xk−1, xk]. Since this is true for each k with 1 ≤ k ≤ N ,
and the union of these intervals is [a, b], it follows that f is bounded on [a, b].

Corollary. If the real-valued function f is Riemann integrable on the interval [a, b],
then f is bounded on [a, b].

Proof. Given an arbitrary ǫ > 0 (ǫ = 1 will do), let δ > 0 such that |
∫ b

a
f − S| < ǫ for

every Riemann sum S for f associated with a partition of width < δ of [a, b]. Then, given
a partition P of width < δ of [a, b], the set of values of Riemann sums for f associated with
P is bounded. Thus f is bounded on [a, b] by the Boundedness Lemma.

First Criterion for Riemann Integrability. A real-valued function f on [a, b] is
Riemann integrable if and only if for every ǫ > 0 there is a δ > 0 such that for any two
Riemann sums S1 and S2 for f associated with partitions of [a, b] we have |S1 − S2| < ǫ.

It is important to note that it is not assumed that S1 and S2 are associated with the same
partition. More about this soon. The proof of this criterion is given in Rosenlicht [Ros, p.
118]; here we only present a

Proof of Necessity. Assume f is Riemann integrable on f and write A =
∫ b

a
f . Let

ǫ > 0 be arbitrary. According to the definition of the Riemann integral, there is a δ > 0 such
that |A − S| < ǫ/2 for any Riemann sum S for f associated with a partition of width < δ
of [a, b]. Thus S belongs to the interval (A− ǫ/2, A+ ǫ/2). Hence, if S and S′ are Riemann
sums for f associated with partitions of width < δ of [a, b], then both S and S′ belong to
this interval; thus |S′ − S| < ǫ.
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Note. There are several modified versions of the above criterion. For example

Modified First Criterion for Riemann Integrability. A real valued function f
on [a, b] is Riemann integrable if and only if for every ǫ > 0 there is a partition P of [a, b]
such that for any two Riemann sums S1 and S2 for f associated with the partition P we
have |S1 − S2| < ǫ.

Note two differences here with the above criterion. First, no condition is imposed on the
width of the partition P , second, here the two Riemann sums S1 and S2 are associated with
the same partition, and in the earlier version this was not assumed.

The necessity of the present condition is clear from the earlier criterion, since if the
condition of the earlier criterion is satisfied, then the condition in the present criterion is
also satisfied (by taking P to be any partition of width < δ with the δ of the earlier criterion).
It is somewhat harder to show that the criterion is also sufficient.

To prove the sufficiency, we need to discuss refinements of a partition. A partition P ′ is
called a refinement of the partition P of the interval [a, b] if P ⊂ P ′. The following is an
important result concerning refinements:

First Refinement Lemma. Let f be a function defined on the interval [a, b], let P be a
partition of [a, b] and let the partition P ′ be a refinement of P . Let S′ be a Riemann sum for
f associated with the partition P ′. Then there are Riemann sums S1 and S2 for f associated
with the partition P such that S1 ≤ S′ ≤ S2.

Note that the integrability of f is not assumed.

Proof. Assume first that P ′ has just one additional point not in P . That is, write

P : a = x0 < x1 < . . . < xN = b,

and assume that in addition to these points, P ′ contains an additional partition point c in
the interval (xk−1, xk) for some k with 1 ≤ k ≤ N .

Now, consider the set of tags giving rise to the Riemann sum S′ associated with the
partition P ′. Write ξi ∈ [xi−1, xi] for i 6= k with 1 ≤ i ≤ N and η1 ∈ [xi−1, c], and η2 ∈ [c, xi]
for these tags. For the partition P , pick the same tags ξi for i 6= k with 1 ≤ i ≤ N , and
pick the tag ξk ∈ [xk−1, xk] in a way about to be determined. Write S for the Riemann sum
for f corresponding to the partition P that is associated with these tags. When forming
the difference S′ − S, all terms in S corresponding to the intervals [xi−1, xi] with i 6= k will
cancel:

S′ − S = f(η1)(c− xk−1) + f(η2)(xk − c)− f(ξk)(xk − xk−1).

If we define ξk by

ξk =

{

η1 if f(η1) ≤ f(η2),
η2 if f(η1) > f(η2),

then we have S′ − S ≥ 0. That is, if we define S1 as S with this choice of ξk, we have
S1 ≤ S′. If we define ξk by

ξk =

{

η1 if f(η1) ≥ f(η2),
η2 if f(η1) < f(η2),

then we have S′ − S ≤ 0. That is, if we define S2 as S with the latter choice of ξk, we have
S2 ≥ S′. This establishes the assertion of the lemma if the partition P ′ contains just one
point not in P .

To prove the assertion in the general case, let {cj : 1 ≤ j ≤ m} be the set of points in P ′

that are not in P , and for each integer l with 0 ≤ l ≤ m consider the partition

P (l) = P ∪ {cj : 1 ≤ j ≤ l}.
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Then P (0) = P , P (m) = P ′, and for each l with 1 ≤ l ≤ m the partition P (l) is obtained
by adding the single point cl to the partition P (l−1). Thus, writing S1(m) = S2(m) for the
Riemann sum S′ associated with the partition P ′ = P (m), the special case of the assertion
of the lemma already proven allows us, for each l = m− 1,m− 2 . . . , 1, 0, to find Riemann
sums S1(l) and S2(l) associated with the partition P (l) such that S1(l) ≤ S1(l + 1) and
S2(l) ≥ S2(l + 1). The Riemann sums S1 = S1(0) and S2 = S2(0) associated with the
partition P = P (0) will then satisfy S1 ≤ S ≤ S2. This establishes the conclusion of the
lemma in its full generality.

Another technical result that allows us to navigate between partitions is the following.

Second Refinement Lemma. Let f be a bounded real-valued function on [a, b], and let
M be a bound for |f |; that is, assume we have |f(x)| ≤M for every x ∈ [a, b]. Let δ > 0, let
P be a partition of width < δ of [a, b], and let S be a Riemann sum for f associated with the
partition P . Let m ≥ 0 be an integer, and assume that the refinement P ′ of the partition P
results by the addition of m partition points to P . Then there is a Riemann sum S′ for f
associated with P ′ such that

|S′ − S| < 2mMδ.

Proof. It is sufficient to prove the result in case of m = 1. Indeed, once the result is
established for m = 1, the general result can be obtained by the going from the partition P
to P ′ by the successive additions one point at a time, similarly to the way this was done in
the proof of the preceding lemma.

As before, write
P : a = x0 < x1 < . . . < xN = b,

and assume that in addition to these points, P ′ contains an additional partition point c in the
interval (xk−1, xk) for some k with 1 ≤ k ≤ N . Let ξi ∈ [xi−1, xi] for 1 ≤ i ≤ N be the tags
giving rise to the Riemann sum S associated with the partition P . Determine the Riemann
sum associated with the partition P ′ by using the same tags for i 6= k, and pick η1 ∈ [xi−1, c]
and η2 ∈ [c, xi] arbitrarily as tags associated with the two new intervals bordering on c. Then,
as before, when forming the difference S′ − S, all terms in S corresponding to the intervals
[xi−1, xi] with i 6= k will cancel:

S′ − S = f(η1)(c− xk−1) + f(η2)(xk − c)− f(ξk)(xk − xk−1)

= (f(η1)− f(ξk))(c− xk−1) + (f(η2)− f(ξk))(xk − c).

As |f(x)| ≤M for all x ∈ [a, b] and xi − xi−1 < δ by out assumptions, it follows that

|S′ − S| ≤ 2M · (xk − c) + 2M · (c− xk−1) = 2M · (xk − xk−1) < 2Mδ.

This proves the result for m = 1, and thus, as we remarked above, the result for any integer
m ≥ 0 also follows. The proof is complete.

Next we can turn to the proof of the missing part of the Modified First Criterion for
Riemann Integrability.

Proof of Sufficiency of the Modified First Criterion of Riemann Integra-

bility. Assume that the described criterion holds for the function f on the interval [a, b].
Then f is bounded on [a, b] by the Boundedness Lemma. Let M be such that |f(x)| ≤ M
for all x ∈ [a, b]. Let ǫ > 0 be arbitrary, and let P0 be a partition such that for any two
Riemann sums S1 and S2 for f associated with the partition P0 we have |S1 − S2| < ǫ/2.
Let m + 2 be the number of partition points in P0 (m ≥ 0). Let δ = ǫ

8mM+1 . Let P be a
partition of width < δ and let S be a Riemann sum for f associated with the partition P .
Let P ′ be the partition P ∪ P0; then P

′ is obtained from P by adding at most m partition
points (since the elements a and b of P0 also belong to P ; there may be other elements of P0
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that also belong to P ). Thus, by the Second Refinement Lemma above, there is a Riemann
sum for f associated with the partition P ′ such that

|S′ − S| ≤ 2mMδ <
ǫ

4
,

where the second inequality holds in virtue of the choice of δ. By the First Refinement
Lemma, there are Riemann sums S1 and S2 for f associated with the partition P0 such that
S1 ≤ S′ ≤ S2. Thus

S1 −
ǫ

4
≤ S′ − ǫ

4
< S < S′ +

ǫ

4
≤ S2 +

ǫ

4
,

i.e.,

S1 −
ǫ

4
< S < S2 +

ǫ

4
.

Similarly, if R is another Riemann for f sum associated with a partition of width < δ, then
there are Riemann sums R1 and R2 for f associated with the partition P0 such that

R1 −
ǫ

4
< R < R2 +

ǫ

4
.

To show from these inequalities that |S−R| < ǫ, first assume that S ≤ R. By the assumption
on P0, we have |R2−S1| < ǫ/2 for the Riemann sums R2 and P1 associated with the partition
P0. Thus

S1 −
ǫ

4
< S ≤ R < R2 +

ǫ

4
< S1 +

ǫ

2
+
ǫ

4
= S1 +

3ǫ

4
.

Thus R − S < ǫ follows in this case. Similarly S − R < ǫ follows in case R ≤ S. Thus
|R − S| < ǫ holds for any two Riemann sums R and S for f associated with partitions of
width < δ of [a, b]. Thus f is Riemann integrable on [a, b] according to the First Criterion
for Riemann Integrability. The proof is complete.

26. The Riemann integral: an example

Example. Let a, b, α, and β be real numbers with a ≤ α < β ≤ b, and define the
function f on [a, b] by

f(x) =

{

1 if x ∈ (α, β),

0 otherwise.

Then
∫ b

a

f = β − α.

Proof. In order to make it easier to follow the arguments below, we restate the definition
of f as

f(x) =

{

1 if α < x < β,

0 if a ≤ x ≤ α or β ≤ x ≤ b.
Let ǫ > 0 be arbitrary, and let

P : a = x0 < x1 < x2 < . . . < xN = b



26. The Riemann integral: an example 59

be a partition of [a, b] with width < δ, where the number δ > 0 will be determined later.
Further, let ξi ∈ [xi−1, xi] for i with 1 ≤ i ≤ N be tags for this partition. Let the integers p
and q with 1 ≤ p, q ≤ N be determined by the inequalities

(36) xp−1 ≤ α < xp and xq−1 < β ≤ xq.
Then f(ξi) = 0 if i < p or i > q, and f(ξi) = 1 if p < i < q.59 Thus, for the corresponding
Riemann sum

S =

N
∑

i=1

f(ξi)(xi − xi−1)

we have

(37)
∑

i : p<i<q

(xi − xi−1) ≤ S ≤
∑

i : p≤i≤q

(xi − xi−1).

Since we have p ≤ q by the definitions of p and q, the sum on the right-hand side telescopes:60

(38)

∑

i : p≤i≤q

(xi − xi−1) =

q
∑

i=p

(xi − xi−1) = (xp − xp−1) + (xp+1 − xp)

+ (xp+2 − xp+1) + · · ·+ (xq − xq−1) = xq − xp−1.

Similarly, for the sum on the left-hand side we have

(39)
∑

i : p<i<q

(xi − xi−1) =

q−1
∑

i=p+1

(xi − xi−1) ≥ xq−1 − xp.

One expects equality on the right-hand side here, but equality does not always hold. One
has equality when p+1 ≤ q−1 (i.e., when q ≥ p+2), in which case the sum on the left-hand
side is not an empty sum, and therefore it telescopes. One also has equality in case q = p+1,
when the sum on the left is the empty sum, and so it is zero, but the right-hand side is also
zero in this case. However, in case q = p, the sum on the left-hand side is the empty sum,
so it is zero, while the right-hand side is xq−1 − xp = xq−1 − xq < 0, so the inequality in
this case still holds. Of course, q < p is not possible according to (36), as α < β. So the
inequality in (39) certainly holds.

Now, taking (38) and (39) into account, (37) becomes

xq−1 − xp ≤ S ≤ xq − xp−1;

thus
(xq−1 − β)− (xp − α) ≤ S − (β − α) ≤ (xq − β)− (xp−1 − α).

We have |xq−1−β| < δ, |xp−α| < δ, |xq−β| < δ, and |xp−1−α| < δ according to (36) (and
the assumption that the width of P is < δ). Thus, the last displayed inequality implies that

−2δ < S − (β − α) < 2δ,

i.e., that |S − (β − α)| < 2δ. Hence we will have |S − (β − α)| < ǫ in case δ ≤ ǫ/2. As ǫ > 0
was arbitrary, this shows that

∫ b

a

f = β − α.

The proof is complete.

59To see this, it is important to remember that f(α) = f(β) = 0 by the definition of f . For i = p or
i = q we may have f(ξi) = 0 or f(ξi) = 1.

60I.e., all its terms except for the extreme ones will cancel. The significance of the inequality p ≤ q is

that it guarantees that the sum in question is not the empty sum, so we indeed do have cancelations.
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27. Integrability of monotonic and of continuous functions

In this section we establish basic results about the integrability of certain functions. We
start with the

Second Criterion for Riemann Integrability. A real valued function f on [a, b]
is Riemann integrable if and only if for every ǫ > 0 there are step functions f1 and f2 on

[a, b] such that
∫ b

a
(f2 − f1) < ǫ and f1(x) ≤ f(x) ≤ f2(x) for every x ∈ [a, b]

As for the sufficiency of this criterion, there is no need to assume that the functions f1
and f2 are step functions; it is enough to assume that they are Riemann integrable:

Lemma. Let f be a real-valued function on the interval [a, b]. Assume that for every ǫ > 0
there are Riemann-integrable functions f1 and f2 on [a, b] such that f1(x) ≤ f(x) ≤ f2(x)

and
∫ b

a
(f2 − f1) < ǫ. Then f is Riemann integrable on [a, b].

First Proof. Let ǫ > 0 be arbitrary. Then, according to the assumptions, there are
Riemann integrable functions f1 and f2 such that f1(x) ≤ f(x) ≤ f2(x) for all x ∈ [a, b] and
∫ b

a
(f2−f1) < ǫ/3. Let δ1 > 0 be such that for any partition P of width < δ1, every Riemann

sum S1 for f1 associated with the partition P is such that |
∫ b

a
f1 − S1| < ǫ/3. Similarly,

Let δ2 > 0 be such that for any partition P of width < δ2, every Riemann sum S2 for f2
associated with the partition P is such that |

∫ b

a
f2 − S2| < ǫ/3.

Now, let δ = min{δ1, δ2}, and let

P : a = x0 < x1 < . . . < xN

be an arbitrary partition of width < δ, and for each i with 1 ≤ i ≤ N let ξi ∈ [xi−1, xi] be
an arbitrary tag. Let S, S1, and S2 be the corresponding Riemann sums for f , f1, and f2,
respectively, that is,

S =

n
∑

i=1

f(ξi)(xi − xi−1), S1 =

n
∑

i=1

f1(ξi)(xi − xi−1),

and S2 =
n
∑

i=1

f2(ξi)(xi − xi−1).

Then we have
∫ b

a

f1 −
ǫ

3
< S1 ≤ S ≤ S2 <

∫ b

a

f2 +
ǫ

3
.

Thus, for any Riemann sum S for f associated with a partition of width < δ of the interval
[a, b] we have

S ∈
(

∫ b

a

f1 −
ǫ

3
,

∫ b

a

f2 +
ǫ

3

)

;

the length of this interval is

∫ b

a

f2 −
∫ b

a

f1 +
2ǫ

3
≤ ǫ

3
+

2ǫ

3
= ǫ.

Now, any two Riemann sums S and S′ for f associated with partitions of width < δ of the
interval [a, b] belong to this interval. Thus |S′ − S| < ǫ. Since ǫ > 0 was arbitrary, the
Riemann integrability of f follows from the First Criterion for Riemann Integrability. The
proof is complete.
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Note. The statement just proved differs from the sufficiency of the Second Criterion for
Riemann Integrability merely in that instead of assuming that f1 and f2 are step functions
it is assumed only that they are Riemann integrable. This makes no practical difference in
the proof, and the above proof is virtually identical to the way sufficiency of the Second
Criterion for Riemann Integrability can be derived from the the First Criterion for Riemann
Integrability. A proof of the above statement based on the Second Criterion of Riemann
integrability is much shorter, but perhaps it gives less insight:

Second Proof. Let ǫ > 0 be arbitrary, and let f1 and f2 be Riemann integrable func-

tions on [a, b] such that f1(x) ≤ f(x) ≤ f2(x) for all x ∈ [a, b] and
∫ b

a
(f2 − f1) < ǫ/3; such

f1 and f2 exist according to the assumptions.
As f1 is Riemann integrable on [a, b], by the Second Criterion for Riemann Integrability

there are step functions φ1 and φ2 on [a, b] such that φ1(x) ≤ f1(x) ≤ φ2(x) for all x ∈ [a, b]

and
∫ b

a
(φ2 − φ1) < ǫ/3. Similarly, as f2 is Riemann integrable on [a, b] by the Second

Criterion for Riemann Integrability there are step functions ψ1 and ψ2 on [a, b] such that

ψ1(x) ≤ f2(x) ≤ ψ2(x) for all x ∈ [a, b] and
∫ b

a
(ψ2 − ψ1) < ǫ/3.

Then φ1 and ψ2 are step functions on [a, b] such that φ1(x) ≤ f(x) ≤ ψ2(x) for all
x ∈ [a, b], and

∫ b

a

(ψ2 − φ1) ≤
∫ b

a

(ψ2 − ψ1) +

∫ b

a

(ψ1 − f2) +
∫ b

a

(f2 − f1)

+

∫ b

a

(f1 − φ2) +
∫ b

a

(φ2 − φ1) <
ǫ

3
+ 0 +

ǫ

3
+ 0 +

ǫ

3
= ǫ.

Thus f is Riemann integrable according to the Second Criterion for Riemann Integrability.

Lemma. Assume that f is an increasing function on the interval [a, b]. Then f is Rie-
mann integrable on [a, b].

Proof. Let N be a positive integer, and consider the partition PN : a = x0 < x1 <
. . . < xN = b obtained by dividing the interval [a, b] into N equal parts; that is, put
xi = a+ (b− a)i/N for i with 1 ≤ i ≤ N . Consider the sums

LN =

N
∑

i=1

f(xi−1)(xi − xi−1) and UN =

N
∑

i=1

f(xi)(xi − xi−1).

As xi−1, xi ∈ [xi−1, xi], these are Riemann sums for the partition PN . In fact, as f is
increasing, we have f(xi−1) ≤ f(x) ≤ f(xi) for every x ∈ [xi−1, xi]; thus, LN is the smallest
and UN is the largest Riemann sum for f associated with the partition PN . Now, noting
that xi − xi−1 = b−a

N , we have

UN − LN =
N
∑

i=1

(f(xi)− f(xi−1))(xi − xi−1) =
b− a
N

N
∑

i=1

(f(xi)− f(xi−1))

=
b− a
N

(f(xN )− f(x0)) =
b− a
N

(f(b)− f(a)).

From here one can conclude that f is integrable in at least two different ways. First, defining
the step functions f1 and f2 on [a, b] by putting f1(a) = f2(a) = f(a) and

f1(x) = f(xi−1) and f2(x) = f(xi) for x ∈ (xi−1, xi] (1 ≤ i ≤ N),

we have f1(x) ≤ f(x) ≤ f2(x) for all x ∈ [a, b] and

∫ b

a

f1 = LN and

∫ b

a

f2 = UN .
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Thus, if we start with an arbitrary ǫ > 0 and pick N such that N > b−a
ǫ (f(b) − f(a)), we

have
∫ b

a
(f2 − f1) = UN − LN < ǫ. Thus, the integrability of f follows from the Second

Criterion for Riemann Integrability.
More directly, the integrability of f follows from the Modified First Criterion for Riemann

Integrability, since for any Riemann sum S for f associated with the partition PN we have
LN ≤ S ≤ UN . Thus, if S1 and S2 are two Riemann sums associated with the partition PN ,
we have |S2 − S1| ≤ UN − LN < ǫ.

The following theorem says that every continuous function is integrable.

Theorem. Let a, b be real numbers, a < b, and assume the function f : [a, b] → R is
continuous. Then f is Riemann integrable on [a, b].

Proof. As f is continuous on the closed interval [a, b], it follows that f is uniformly
continuous on [a, b].61 Let ǫ > 0 be arbitrary, and let δ > 0 such that for any x, y ∈ [a, b] we
have

(40) |f(x)− f(y)| < ǫ

b− a whenever |x− y| < δ.

Let
P : a = x0 < x1 < . . . < xN = b

be a partition of [a, b] of width < δ. Let

mi = min{f(x) : x ∈ [xi−1, xi]} and Mi = max{f(x) : x ∈ [xi−1, xi]}

for i with 1 ≤ i ≤ N .62 Observe that

(41) Mi −mi <
ǫ

b− a for each i with 1 ≤ i ≤ N.

This is because, given i, mi = f(ξ) and Mi = f(η) for some ξ, η ∈ [xi−1, xi]. Then
|η − ξ| ≤ xi − xi−1 < δ, and so Mi −mi = f(η) − f(ξ) < ǫ/(b − a) according to (40), as
claimed.

For x ∈ [a, b], let

f1(x) =

{

mi if x ∈ (xi−1, xi) for some i with 1 ≤ i ≤ N,
f(x) if x = xi for some i with 0 ≤ i ≤ N

(note that the ranges of i are different in the two cases), and

f2(x) =

{

Mi if x ∈ (xi−1, xi) for some i with 1 ≤ i ≤ N,
f(x) if x = xi for some i with 0 ≤ i ≤ N.

Then f1(x) and f2(x) are step functions such that f1(x) ≤ f(x) ≤ f2(x) for all x ∈ [a, b].
Furthermore,

∫ b

a

(f2 − f1) =
∫ b

a

f2 −
∫ b

a

f1

=
N
∑

i=1

Mi(xi − xi−1)−
N
∑

i=1

mi(xi − xi−1) =
N
∑

i=1

(Mi −mi)(xi − xi−1)

<
N
∑

i=1

ǫ

b− a (xi − xi−1) =
ǫ

b− a

N
∑

i=1

(xi − xi−1) =
ǫ

b− a (b− a) = ǫ;

61A closed interval on the real line is compact, and a continuous function on a compact space is uniformly
continuous.

62The definitions of mi and Mi are meaningful, since a continuous function on a closed interval has both

a minimum and a maximum, according to the Maximum Value Theorem.
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The inequality here follows from (41), and the last but one equality here follows since the
sum on the left of this equality telescopes to xN −x0 = b− a. Since ǫ > 0 was arbitrary, the
step functions f1 and f2 witness the integrability of f , according to the Second Criterion of
Riemann Integrability. The proof is complete.

28. The Newton–Leibniz formula

The following is a version of the Newton–Leibniz formula.

Theorem. Assume F is continuous and f is Riemann-integrable on the interval [a, b].
Assume, further, that f(x) = F ′(x) for every x ∈ (a, b). Then

∫ b

a

f = F (b)− F (a).

In the usual form of the Newton–Leibniz formula the continuity of f is assumed. That is
necessary if the result is derived from the Fundamental Theorem of Calculus, saying that,
under the additional assumption that f is continuous on [a, b] we have

d

dx

∫ x

a

f(t) dt = f(x)

for all x ∈ (a, b) (the formula is also true at x = a if we take differentiation from the left,
and at x = b if we take differentiation from the right). Here we derive the formula from the
Mean-Value Theorem for differentiation.

Proof. Let ǫ > 0, and let δ > 0 such that for any partition

P : a = x0 < x1 < . . . < xN = b

with norm ‖P‖ = max{xi−xi−1 : 1 ≤ i ≤ N} we have
∣

∣

∣

∫ b

a
f − S

∣

∣

∣
< ǫ for any Riemann sum

for f associated with the partition P .
Fix a partition P as above with norm less that δ. For each i with 1 ≤ i ≤ N pick ξi

in the interval (xi−1, xi) such that F (xi) − F (xi−1) = F ′(ξi)(xi − xi−1); there is such a ξ
according to the Mean-Value Theorem for differentiation. Noting that F ′(ξi) = f(ξi) by our
assumptions, we have

S =

N
∑

i=1

f(ξi)(xi − xi−1) =

N
∑

i=1

(F (xi)− F (xi−1))

= F (xN )− F (x0) = F (b)− F (a)

for the corresponding Riemann sum S. A graphic description for the cancelation in the
second sum used to obtain the second equality is to say that the second sum telescopes (the
image here is a telescope consisting of pipes of increasing diameters, so that these pipes can
be pushed into one another so as to collapse the telescope); such a sum is called a telescoping
sum.

By the choice of δ, we have
∣

∣

∣

∫ b

a
f − S

∣

∣

∣
< ǫ, i.e.,

∣

∣

∣

∫ b

a
f − (F (b)− F (a))

∣

∣

∣
< ǫ. Since the

above argument can be carried out for any ǫ > 0, the latter inequality is valid for every

ǫ > 0; thus we must have
∫ b

a
f = F (b)− F (a). The proof is complete.
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The above theorem is applicable with [a, b] = [−1, 1],

F (x) =

{

x2 sin 1
x if x 6= 0,

0 if x = 0,

and

f(x) = F ′(x) =

{

2x sin 1
x − cos 1

x if x 6= 0,

0 if x = 0.

f(x) is not continuous at x = 0. It is not hard to show, however, that f is Riemann-integrable
on [−1, 1].

Indeed, let ǫ be arbitrary with 0 < ǫ < 1, and determine the step functions f1 and f2 on
[−1,−ǫ/16] such that f1(x) ≤ f(x) ≤ f2(x) as follows:

∫ ǫ/16

−1

(f2(x)− f1(x)) dx <
ǫ

4
;

this is possible, since f is continuous, and therefore integrable, on the interval [−1,−ǫ/16].63
Similarly, determine f1 and f2 on the interval [ǫ/16, 1] such that

∫ 1

ǫ/16

(f2(x)− f1(x)) dx <
ǫ

4
.

Finally, put

f1(x) = −2 and f2(x) = 2 for x ∈
[

− ǫ

16
,
ǫ

16

]

.

It is easy to see that
∫ 1

−1

(f2(x)− f1(x)) dx <
ǫ

4
+
ǫ

2
+
ǫ

4
= ǫ.

Since ǫ > 0 was arbitrary, it follows that f is integrable on [1,−1].
Thus, by the above Theorem we have

∫ 1

−1

f = F (1)− F (−1) = sin 1− sin(−1) ≈ .84147− (−.04147) = 1.68294.

29. Integration by parts

Given a real-valued function f , write

f+(x) =

{

f(x) if f(x) ≥ 0,

0 if f(x) < 0,
and f−(x) =

{

0 if f(x) ≥ 0,

−f(x) if f(x) < 0.

f+ is called the positive part, and f−, the negative part, of f . We have

63see the integrability criterion given in the Proposition on p. 120 in Rosenlicht.



29. Integration by parts 65

Lemma. Let f be a real-valued function on the interval [a, b], and assume f is Riemann
integrable. Then the functions f+, f−, |f |, and f2 are also Riemann integrable.

Proof. We will use the Second Criterion of Riemann Integrability. Let ǫ > 0 be ar-
bitrary, and let g and h be step functions on [a, b] such that g(x) ≤ f(x) ≤ h(x) for all

x ∈ [a, b] and
∫ b

a
(h− g) < ǫ.

Then g+ and h+ are step functions such that g+(x) ≤ f+(x) ≤ h+(x) and h+(x)−g+(x) ≤
h(x)−g(x) for all x ∈ [a, b]. The latter inequality implies that

∫ b

a
(h+−g+) ≤

∫ b

a
(h−g) < ǫ.

Thus f+ is integrable.
The integrability of f− can be shown in a similar way, or, more simply, by observing that

f−(x) = (−f)+(x) for all x ∈ [a, b]. As we have |f | = f+ + f−, the integrability of |f | also
follows.

To show the integrability of f2, we may now assume that f ≥ 0 (since f2 = |f |2). As
f is integrable, it is bounded; write M for an upper bound of f . Let ǫ > 0 be arbitrary,
and let g and h be step functions such that g(x) ≤ f(x) ≤ h(x) for all x ∈ [a, b] and
∫ b

a
(h− g) < ǫ/(2M). We may also assume that g(x) ≥ 0 (since we may replace g with g+).

Furthermore, we may assume that h(x) ≤ M for all x ∈ [a, b] (since we may replace h(x)
with min{h(x),M}). Then (g(x))2 ≤ (f(x))2 ≤ (h(x))2 for all x ∈ [a, b]. Furthermore,

∫ b

a

(h(x)2 − (g(x)2) dx =

∫ b

a

(h(x) + g(x))(h(x)− g(x)) dx

≤
∫ b

a

2M(h(x)− g(x)) dx ≤ 2M · ǫ

2M
= ǫ.

Thus the integrability of f2 also follows.

Corollary. Let f and g be Riemann-integrable functions on [a, b]. Then fg is also
Riemann integrable.

Proof. We have

fg =
(f + g)2 − (f − g)2

4
,

and so the integrability of fg follows from the above Lemma.

Given a function f on the interval [a, b], we will say that f is differentiable on [a, b] if
f is differentiable for every x ∈ (a, b), and f is differentiable from the right at a, and it is
differentiable from the left at b. When there is no danger of misunderstanding, we will write
f ′(a) for the derivative of f at a from the right, and f ′(b) for its derivative at b from the
left.64 If f is differentiable on [a, b] then f is also continuous on [a, b], since differentiability
implies continuity.65

Integration by Parts Theorem. Let f and g be real-valued functions that are dif-
ferentiable on [a, b]. Assume that f ′ and g′ are Riemann-integrable on [a, b]. Then f ′g and
fg′ are also Riemann-integrable on [a, b], and

∫ b

a

f ′g = f(b)g(b)− f(a)g(a)−
∫ b

a

fg′.

In the usual formulation if this Theorem, one assumes that f ′ and g′ are continuous, even
though the weaker assumption of their integrability also suffices.

64When there is a need to protect against misunderstanding, one can write f ′+(x) for the derivative of f

at x from the right, and f ′
−
(x) of for its derivative at x from the left.

65One-sided differentiability implies one-sided continuity, as shown by an argument similar to the one

showing that differentiability implies continuity.
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Proof. As f and g are differentiable, they are also continuous, hence integrable, since
continuous functions are integrable. The integrability of f ′g and fg′ then follows from the
Corollary. As (fg)′ = f ′g + fg′ is then also integrable, we can use the Newton–Leibniz
formula:

∫ b

a

(f ′g + fg′) = f(b)g(b)− f(a)g(a).

This equation is equivalent to the one claimed in the Theorem, completing the proof.

30. Change of variable

Given a function g on the interval [a, b], we will say that g is differentiable on [a, b] if
g is differentiable for every x ∈ (a, b), and g is differentiable from the right at a, and it is
differentiable from the left at b. When there is no danger of misunderstanding, we will write
g′(a) for the derivative of g at a from the right, and g′(b) for its derivative at b from the
left.66 Assuming that g is differentiable on [a, b], it is easy to see that the set

{g(x) : x ∈ [a, b]}.

is a closed interval. Indeed, since differentiability implies continuity, the function g is con-
tinuous on [a, b].67 Hence the above set is connected and compact, it being a continuous
image of a connected compact set, and as such it must be a closed interval.

In order to establish our main result, we will need the following

Lemma. Let f be a function on the interval [a, b], let ǫ > 0, let ǫ > 0, and let

P : x0 < x1 < . . . < xN

be a partition of [a, b] such that for any two Riemann sums S1 and S2 associated with this
partition we have |S1 − S2| < ǫ. Let ξ, ηi ∈ [xi−1, xi] be a pair of tags for the interval
[xi−1, xi] for each i with 1 ≤ i ≤ N . Then

N
∑

i=1

|f(ξi)− f(ηi)|(xi − xi−1) < ǫ.

Proof. For each i with 1 ≤ i ≤ N put

ui =

{

ξi if f(ξi) ≥ f(ηi),
ηi if f(ξi) < f(ηi),

and vi =

{

ξi if f(ξi) < f(ηi),

ηi if f(ξi) ≥ f(ηi).
We have

N
∑

i=1

|f(ξi)− f(ηi)|(xi − xi−1) =

N
∑

i=1

f(ui)(xi − xi−1)−
N
∑

i=1

f(vi)(xi − xi−1) < ǫ;

the inequality holds because on the left-hand side of this inequality we have the difference
between two Riemann sums associated with the partition P .

The following is a version of the Change of Variable Theorem for the Riemann Integral.

66When there is a need to protect against misunderstanding, one can write g′+(x) for the derivative of g

at x from the right, and g′
−
(x) of for its derivative at x from the left.

67One-sided differentiability implies one-sided continuity, as shown by an argument similar to the one

showing that differentiability implies continuity.
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Change of Variable Theorem. Let [a, b] be a closed interval in R, and let g be a
function that is differentiable on [a, b]. Let f be a bounded function defined on the interval

[c, d]
def
= {g(x) : x ∈ [a, b]}.

Assume, further, that the integrals

∫ b

a

f(g(x))g′(x) dx,

∫ b

a

g′(x) dx, and

∫ g(b)

g(a)

f(t) dt

exist. Then the first and the last of these integrals are equal, that is,

∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(t) dt.

In the usual statement of this result, the continuity of f on [c, d] and that of g′ on [a, b] is
assumed; under these assumptions, the existence of the three integrals in question is assured.

Proof. Assume g(b) > g(a) for the sake of simplicity. At the end, we will comment on
what modifications are needed in case g(b) < g(a) or g(b) = g(a). For now, this assumption
allows us to talk about the interval [g(a), g(b)].

LetM be a bound for |f | on [c, d]. Let ǫ > 0 be arbitrary. Let δ1 > 0 be such that for any
Riemann sum S for the function (f ◦ g) · g′ associated with a partition of width < δ1 of the

interval [a, b] we have
∣

∣

∣S −
∫ b

a
(f ◦ g) · g′

∣

∣

∣ < ǫ/3. Let δ2 > 0 be such that for any Riemann

sum S for the function g′ associated with a partition of width < δ2 of the interval [a, b] we

have
∣

∣

∣S −
∫ b

a
g′
∣

∣

∣ < ǫ/(6M); then, for any two Riemann sums S1 and S2 for the function g′

associated with a partition of width < δ2 of the interval [a, b] we have |S1 − S2| < ǫ/(3M).
Similarly, let Let δ3 > 0 be such that for any Riemann sum S for the function f associated

with a partition of width < δ3 of the interval [g(a), g(b)] we have
∣

∣

∣S −
∫ g(b)

g(a)
f
∣

∣

∣ < ǫ/3. As g

is differentiable on [a, b], it is continuous there, and so it is also uniformly continuous. Let
δ with 0 < δ ≤ min{δ1, δ2} be such that we have |g(x)− g(y)| < δ3 for any x, y ∈ [a, b] with
|x− y| < δ.

Let P0 : a = s1 < s2 < . . . < sN0
= b be a partition of width < δ of the interval [a, b]. We

may assume that there are i and i′ with 1 ≤ i, i′ ≤ N0 such that g(si) = c and g(si′) = d; if
this not already the case, then we may add two additional partition points to ensure this.

We will add further partition points to P0 as follows: Let i with 1 ≤ i ≤ N0 be arbitrary.
If g(si−1) < g(si) and there is a k with 0 ≤ k ≤ N0 such that g(si−1) < g(sk) < g(si) then
add the least number s with si−1 < s < si such that g(s) = g(sk) as a new partition point;
that there is such an s can be seen by the Intermediate-Value Theorem, as g is continuous.
That there is a least such s can also be easily seen. Indeed, we can take

s = inf{x : si−1 < x < si & g(x) = g(sk)}.

Similarly, if g(si−1) > g(si) and there is a k with 0 ≤ k ≤ N0 such that g(si−1) > g(sk) >
g(si) then add the largest number s with si−1 < s < si such that g(s) = g(sk) as a new
partition point; that there is such an s can be seen by the Intermediate-Value Theorem, as
g is continuous. That there is a largest such s can also be easily seen. Indeed, we can take

s = sup{x : si−1 < x < si & g(x) = g(sk)}.

Let
P : a = x0 < x1 < . . . < xN = b
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be the partition so obtained. An important consequence of the construction of the partition
P is that, for each i with 1 ≤ i ≤ N , g(xi−1) and g(xi) are adjacent elements of the set

{g(xk) : 0 ≤ k ≤ N};
i.e., there is no k with 0 ≤ k ≤ N such that g(xk) lies strictly between g(xi−1) and g(xi).

68

For each interval [xi−1, xi] (1 ≤ ξ ≤ N) let the tag ξi be defined as

ξi =

{

xi−1 if g(xi−1) > g(xi),

xi if g(xi−1) ≤ g(xi).
This will ensure that

(1) g(ξi) = max{g(xi−1), g(xi)}.
Let S be the Riemann sum

S =

N
∑

i=1

f(g(ξi))g
′(ξi)(xi − xi−1).

Then we have

(2)

∣

∣

∣

∣

∣

∫ b

a

f(g(x))g′(x) dx− S
∣

∣

∣

∣

∣

<
ǫ

3

by our assumptions. Furthermore, writing69

S1 =

N
∑

i=1

f(g(ξi))(g(xi)− g(xi−1)),

we claim that

(3) |S − S1| <
ǫ

3
.

Indeed, for each i with 1 ≤ i ≤ N let ui ∈ [xi−1, xi] be such that

(4) g′(ui)(xi − xi−1) = g(xi)− g(xi−1);

such a ui exists in view of the Mean-Value Theorem for Differentiation. Using this equation,
by our assumptions (and the Lemma above), we have

|S − S1| =
∣

∣

∣

∣

∣

N
∑

i=1

f(g(ξi))g
′(ξi)(xi − xi−1)−

N
∑

i=1

f(g(ξi))(g(xi)− g(xi−1))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

f(g(ξi))g
′(ξi)(xi − xi−1)−

N
∑

i=1

f(g(ξi))g
′(ui)(xi − xi−1)

∣

∣

∣

∣

∣

≤
N
∑

i=1

|f(g(ξi))| |g′(ξi)− g′(ui)| (xi − xi−1)

≤M
N
∑

i=1

|g′(ξi)− g′(ui)| (xi − xi−1) < M · ǫ

3M
=
ǫ

3
.

68One may also observe, for whatever it is worth, that this set is the same as

{g(sk) : 0 ≤ k ≤ N0}.

69This sum is a Riemann-Stieltjes sum for the Stieltjes integral
∫ b

a

f(g(x)) dg(x);

however, we do not really need to get involved with Stieltjes integrals for our present purposes.
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Indeed, the second equality follows by (4), the second inequality holds since M is an upper
bound for f on [c, d], and the third inequality is valid in view of the assumptions on the
Riemann sums for g′ and by virtue of the Lemma above.

Now, let
Q : g(a) = t0 < t1 < . . . < tK = g(b)

be the partition whose partition points are exactly the elements of the set

{g(xi) : 0 ≤ i ≤ N & g(a) ≤ g(xi) ≤ g(b)}.
We then have

(5) S1 =

K
∑

i=1

f(ti)(ti − ti−1).

This can be seen as follows. For each interval [xi−1, xi] such that g(xi−1) > g(xi), where
1 ≤ i ≤ N , we have a matching interval [xi′−1, xi′ ] for some i′ with 1 ≤ i′ ≤ N such that
g(xi′−1) = g(xi) and g(xi′) = g(xi−1); to ensure that this is the case was the reason that we
inserted additional points into the starting partition P0 of [a, b]. According to the definition
of the ξi’s, we then have ξi = xi−1 and ξi′ = xi′ . Therefore the terms

f(g(ξi))(g(xi)− g(xi−1)) and (g(ξi′))(g(xi′)− g(xi′−1))

cancel each other. This will cause the the cancelation of all terms in S1 for which g(xi) or
g(xi−1) are outside the interval [g(a), g(b)]. Furthermore, for each i with 1 ≤ i ≤ K there
will be only one j with 1 ≤ j ≤ N such that ti−1 = g(xj−1), ti = g(xj) and for which the
term

f(g(ξj))(g(xi)− g(xj−1))

in S1 survives; in this case ξj = ti (cf. (1)); that is, if there is more than one j satisfying
these requirements, the corresponding terms for all but one of them will be canceled. We
then have

f(g(ξj))(g(xj)− g(xj−1)) = f(ti)(ti − ti−1).

Thus, (5) follows. Moreover, we have

ti − ti−1 = g(xj)− g(xj−1) < δ3

since |xj − xj−1| < δ (recall the definition of δ to see this). Therefore, the width of the
partition Q is < δ. Hence, by (5) we have

∣

∣

∣

∣

∣

S1 −
∫ g(b)

g(a)

f

∣

∣

∣

∣

∣

<
ǫ

3

by the choice of δ3. This inequality, together with (2) and (3) implies
∣

∣

∣

∣

∣

∫ b

a

f(g(x))g′(x) dx−
∫ b

a

f(t) dt

∣

∣

∣

∣

∣

< ǫ.

Since ǫ > 0 was arbitrary, this establishes the equality claimed in the theorem.
As for the assumption g(a) < g(b), no serious use of this assumption was made in the

proof. In particular, in case g(a) = g(b), when deriving equation (5), all terms occurring in
the definition of S1 cancel, yielding S1 = 0 instead of (5), as expected; the only reason for
not including the possibility g(a) = g(b) above was to ensure that we can talk about the
interval [g(a), g(b)]. The case g(b) > g(a) can be discussed in a similar way, or else, we can
eliminate this case by using the change of variable t = −τ and working with the function g̃
defined as g̃(t) = g(−t) instead of g.70

70The change of variable t = −τ does not rely on the Change of Variable Theorem. Instead, it relies on

the fact that
∫ b

a
f = −

∫ a

b
f , true by the definition of

∫ b

a
f in case a > b.
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31. Compactness product spaces

The Cartesian product of two sets S1 and S2 is defined as the set of pairs

S1 × S2
def
= {(p1, p2) : p1 ∈ S1 and p2 ∈ S2}.

If S1 and S2 are underlying sets of metric spaces, then a distance function can be introduced
on their Cartesian product:71

Definition. Let (S1, d1) and (S2, d2) be metric spaces. The Cartesian product , or,
shortly, the product (S, ρ) of these spaces is defined by putting S = S1 × S2 and

d((p1, p2), (q1, q2))
def
=
√

(d1(p1, q1))2 + (d2(p2, q2))2.

For example, if E1 denotes the metric space (R, d) with the usual distance d(x, y) = |y−x|,
then the Euclidean E2 with the usual distance can be written as E2 = E1 × E1. For this
reason, one often writes R2 for the Euclidean plane.72

To show that the above definition is sound, we need to show that the distance d defined above satisfies
the triangle inequalities, i.e., that for p1, q1, r1 ∈ S1 and p2, q2, r2 ∈ S2 we have

(42) d((p1, p2), (r1, r2)) ≤ d((p1, p2), (q1, q2)) + d((q1, q2), (r1, r2)).

Writing A1 = d1(p1, q1), A2 = d2(p2, q2), B1 = d1(q1, r1), and B2 = d2(q2, r2), we have d(p1, r1) ≤ A1+B1

and d(p2, r2) ≤ A2 +B2 and by the triangle inequality in S1 and S2, respectively, so we have

d((p1, p2), (r1, r2)) =
√

(d1(p1, r1))2 + (d2(p2, r2))2 ≤
√

(A1 +B1)2 + (A2 +B2)2.

Note that d((p1, p2), (q1, q2)) =
√

A2
1 +A2

2 and d((q1, r2), (r1, r2)) =
√

B2
1 +B2

2 . Thus (42) will follow if we

establish

(43)
√

(A1 +B1)2 + (A2 +B2)2 ≤
√

A2
1 +A2

2 +
√

B2
1 +B2

2

for all nonnegative reals A1, A2, B1, and B2. Squaring both sides and making obvious cancelations, we can
see that this inequality is equivalent to the following:

A1B1 +A2B2 ≤
√

A2
1 +A2

2 ·
√

A2
1 +A2

2.

Again, squaring both sides (since the numbers A1, A2, B1, and B2 are nonnegative, both sides are nonneg-

ative), and making cancelations, this is seen to be equivalent to

2A1B1A2B2 ≤ A2
1B

2
2 +A2

2B
2
1 .

This latter inequality is certainly true, since it can also be written as

0 ≤ (A1B2 −A2B1)
2.

Thus the equivalent inequality (43) follows. Hence (42) holds a fortiori.73

71The habit of using the letter E for metric spaces seems to originate with the French word espace for
space; for example, Rosenlicht usually uses the letter E to denote metric space. Here we broke the habit.

72Note the notational confusion that one often uses the same symbol, such as e.g. E2, to denote a metric

space as well as its underlining set. Thus, R2 is used both to denote the set of pairs of reals and the Euclidean
plane with the usual distance function. Most of the time, such notational confusion is harmless – at other
times, it can be avoided by using different fonts, such as, e.g., E2 for the space and E2 for the underlying
set.

73The Latin phrase a fortiori , meaning “even more so,” is frequently used in the mathematical literature.
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A base of a metric space. Many properties of a metric space can be derived solely
from knowing what the open sets are in the space, and the distance function itself is not
used directly (i.e., beyond using it to determine the open sets). In fact, in the mathematical
discipline of topology, one dispenses with the distance function entirely and studies the
properties of the space describable in terms of open the open sets.74 It is often useful to
describe the open sets with the aid of the concept of a base:

Definition. Let (S, d) be a metric space. A set B of open subsets of S is called a base
of (S, d) if for every point p ∈ S and every open set U ⊂ S with p ∈ U there is a B ∈ B
such that p ∈ B ⊂ U .

It is clear that B of S can be used to describe the open sets of S. As can be easily shown,
a set U ⊂ S is open if for every p ∈ U there is a B in B such that p ∈ B ⊂ U . Note that the
point here is somewhat subtle and requires careful reading, since the last sentence is almost
the same as the sentence defining the concept of a base.

An example for base in a metric space is the set of open balls of that space. For the product
of two metric spaces, a useful base is the set of open rectangles, which we will proceed to
describe. Let (S1, d1) and (S2, d2 be metric spaces, and let (S, d) be their Cartesian products.
Denoting by O1 and O2 the set of open subsets of S1 and S2, respectively, the

{U1 × U2 : U1 ∈ O1 and U2 ∈ O2}

is a base of (S, d). Indeed, if U ⊂ S is an open set and (p1, p2) ∈ U , then there is an ǫ > 0
such that the open ball {(q1, q2) : (q1, q2) ∈ S and d((p1, p2), (q1, q2)) < ǫ} of center (p1, p2)
and radius ǫ is a subset of U . Then, writing U1 = {q1 : q1 ∈ S1 and d(p1, q1) < ǫ/

√
2} and

U2 = {q2 : q2 ∈ S2 and d(p2, q2) < ǫ/
√
2}, these sets are open balls of radius ǫ/

√
2 in S1

and S2, respectively. We clearly have U1 × U2 ⊂ U . We will call elements of the base just
described open rectangles.75

A simple but important application of bases is the following.

Lemma. Let (S, d) be a metric space and let B be a base of S. Let C be a subset of S.
Assume that for any subset B′ of B such that C ⊂ ⋃B′ there is a finite set B′′ ⊂ B′ such
that C ⊂ ⋃B′′. Then C is compact.

The statement of the Lemma is almost identical to the definition of a compact set, except
that instead of open covers only covers by members of a base are considered.

Proof. For each open set U of S and for every point p ∈ U let B(p, U) ∈ B such that

p ∈ B(p, U) ∈ U.

Let Uι : ι ∈ I be an arbitrary collection of open sets76 I may not be a countable set such
that C ⊂ ⋃ι∈I Uι. Then the set

B′ = {B(p, Uι) : ι ∈ I and p ∈ Uι}

covers C; indeed, it is clear from the definition of a base that

⋃

B′ =
⋃

ι∈I

Uι.

74The above meaning of topology is often described as point set topology. Another meaning of the word
is differential topology; this is a sub-discipline of differential geometry.

75Other authors use the term open rectangle to describe the Cartesian products of open balls; it is easy
to see that these sets also form a base of the product space.

76The symbol ι is the lower case Greek letter iota. It, rather than the letter i, is used to suggest that
the set I may possibly be too large to be put into a one-to-one correspondence with the integers – i is often,

but not always, reserved to denote integers.
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Thus, by our assumption, a finite set B′′ ⊂ B′ such that C ⊂ ⋃B′′. The set B′ can be
written in the form

B′′ = {B(p, Uι) : ι ∈ I ′ and p ∈ Xι}
where I ′ is a finite subsets of I and, for each ι ∈ I ′, Xι is an appropriate finite subset of Uι.
Then we have

C ⊂
⋃

ι∈I′

Uι.

Thus the finite collection {Uι : ι ∈ I ′} covers C. This shows that C is indeed compact,
completing the proof.

Compactness of products. The following is a special case of a much more general
result, called Tychonoff’s Theorem. This latter asserts the compactness of the product of
infinitely many spaces, but in order to discuss this result we would first need to define
the product of infinitely many spaces. Here we will deal with the product of only two
spaces; the result will be useful for us in discussing the interchangeability of integration and
differentiation.

Theorem. Let (S1, d1) and (S2, d2) be metric spaces and let (S, d) be their Cartesian
product. Assume that S1 and S2 are compact. Then S is also compact.

Proof. Let B be the set of open rectangles, described above, of the space (S, d), and let
{Bι : ι ∈ I} be a subset of B such that S ⊂ ⋃ι∈I Bι. In view of the Lemma above, we need
to prove that there is a finite set I ′ ⊂ I such that S ⊂ ⋃ι∈I′ Bι also holds.

For each ι ∈ I write Bι = Uι × Vι, where Uι and Vι are open subsets of S1 and S2,
respectively. For each p ∈ S1, write

Ip = {ι ∈ I : p ∈ Uι}
Then {p} × S2 ⊂

⋃

ι∈Iι
Uι × Vι, and so S2 ⊂

⋃

ι∈I Vι. Since S2 is compact, there is a finite

set I ′p ⊂ Ip such that S2 ⊂
⋃

ι∈I′

p
Vι. Write Op =

⋂

ι∈I′

p
Uι; the set Op, being the intersection

of finitely many open sets of the space S1, is an open set of the space S1.
Clearly

S1 ⊂
⋃

p∈S1

Op,

since p ∈ Op for each p ∈ S1. The space S1 being compact, this cover has a finite subcover.
That is, there is a finite set X ⊂ S1 such that

S1 ⊂
⋃

p∈X

Op.

Since we have Op × S2 ⊂
⋃

ι∈I′

p
Uι × Vι in view of the definition of Op, it follows that

S1 × S2 ⊂
⋃

p∈X

⋃

ι∈I′

p

Uι × Vι =
⋃

{Uι × Vι : ι ∈
⋃

p∈X

I ′p}.

Thus, the set on the right-hand side after the union sign is a finite open cover of S1 × S2,
showing that this space is compact. The proof is complete.

As a consequence, for any reals a, b, c, d with a ≤ b and c ≤ d, the product

[a, b]× [c, d]

is a compact subset of E2. Since a closed subset of a compact set is compact, it follows that
any bounded closed subset of E2 is compact. Since for any positive integer n we have77

En+1 = En × R, we obtain by induction the following.

77In a strictly formal sense, the equation En+1 = En×R may not be true. There is no universally agreed

definition of the Cartesian product A × B × C of the sets A, B, and C. With some of the definitions, the
equation A × B × C = (A × B) × C is true, with others it is not. No definition satisfies the associativity
rule (A × B) × C = A × (B × C). The failure of these equations, is, however, only formal; in a practical
sense, these equations are as good as true. That is, there is a one-to-one mapping from (A × B) × C onto

A× (B × C), for example.
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Corollary. Given an positive integer n, any bounded closed subset of the Euclidean
space En is compact.

32. Interchanging integration and differentiation

Consider a function f : E2 → R, where E2 is the Euclidean plane. The value of such a
function at the point (x, y) of E2 should properly be denoted as f((x, y)). Usually, however,
one uses the notation f(x, y), and one also calls f a function of two variables. For a fixed
value of x ∈ R, the function fx : R → R is defined as fx(y) = f(x, y). Similarly, for
fixed y ∈ R, the function fy : R → R is defined as fy(x) = f(x, y). If these functions are

differentiable, their derivatives are called the partial derivatives of f : (fx)
′(y) = ∂f

∂y (x, y) and

(fy)′(x) = ∂f
∂x (x, y). If we write out the definition of the derivative, the partial derivatives

can be defined as the following limits:

∂f

∂x
(x, y) = lim

t→x

f(t, y)− f(x, y)
t− x ,

∂f

∂y
(x, y) = lim

t→y

f(x, t)− f(x, y)
t− y .

This notation for partial derivatives is easy to object to, as the association between x and
y and the arguments of f is a loose one (since one can certainly talk about f(u, v)), so a

better notation would be ∂1f instead of ∂f
∂x and ∂2f instead of ∂f

∂y .

The following result discusses the interchange of differentiation and integration. There
are many results of this type.

Theorem. Let a, b, c, and d be real numbers with a < b and c < d. Let f be a continuous
real-valued function on the set [a, b]×(c, d) such that ∂f

∂y is also continuous on this set. Then,

for each fixed y with c < y < d we have

d

dy

∫ b

a

f(x, y) dx =

∫ b

a

∂f

∂y
(x, y) dx.

The right-hand side contains an integral of a continuous function, and we know that such
an integral exists. Similarly, the integral on the left-hand side exists, it being the integral of
a continuous function. The equation in the theorem asserts that this integral, that is, the
function

F (y) =

∫ b

a

f(x, y) dx,

is differentiable, and its derivative F ′(y) equals the right-hand side. For the proof, we need
a lemma about integrals involving a uniformly convergent sequence of functions.

Lemma. Assume that the real-valued functions fn (1 ≤ n < ∞) are continuous on the
interval [a, b]. Assume, further, that limn→∞ fn = f uniformly on [a, b]. Then

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Proof. First, f is continuous on [a, b], since the continuous functions fn converge to f
uniformly on [a, b]. Continuous functions are integrable, so the functions f and fn (1 ≤ f <
∞) are integrable. Let ǫ > 0 be arbitrary. As the functions fn converge to f uniformly,
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there is an integer N > 0 such that |f(x)− fn(x)| < ǫ
2(b−a) for every x ∈ [a, b] and for every

integer n > N . That is,

fn(x)−
ǫ

2(b− a) < f(x) < fn(x) +
ǫ

2(b− a)

holds for every n > N and for every x ∈ [a, b]. Therefore,78

∫ b

a

fn −
ǫ

2
=

∫ b

a

(

fn −
ǫ

2(b− a)

)

≤
∫ b

a

f

≤
∫ b

a

(

fn +
ǫ

2(b− a)

)

=

∫ b

a

fn +
ǫ

2
.

Thus |
∫ b

a
f −

∫ b

a
fn| < ǫ

2 < ǫ for n > N . Hence
∫ b

a
fn converges to

∫ b

a
f . The proof is

complete.

Note. In the proof above, we used the statement that if f and g are Riemann integrable on [a, b] and

f(x) ≤ g(x) for all x ∈ [a, b], then we have
∫ b

a
f ≤

∫ b

a
g. Since we actually had f(x) < g(x) for all x ∈ [a, b]

for the functions in question, we could have obtained the stronger conclusion
∫ b

a
f <

∫ b

a
g (provided a < b).

However, proving that the assumption f(x) < g(x) for all x ∈ [a, b] implies that
∫ b

a
f <

∫ b

a
g involves some

technical complications that we wanted to avoid.

Next we turn to the

Proof of the Theorem. Let c′ and d′ be reals with c < c′ < y < d′ < d. Then the
set [a, b]× [c′, d′] is compact. Since the function ∂f

∂y is continuous on this set, it is uniformly

continuous there. Let {tn}∞n=1 be an arbitrary sequence of reals different from y in the
interval [c′, d′] such that limn→∞ tn = y. Then

(44) lim
n→∞

f(x, tn)− f(x, y)
tn − y

= lim
t→y

f(x, t)− f(x, y)
t− y =

∂f

∂y
(x, y).

Indeed, the second equation is the definition of the partial derivative, while the first equation
is the description of limits of functions in terms of limits of sequences.79 We claim that the
convergence of the sequence on the left is uniform in the interval [a, b] (that is, for x ∈ [a, b];
note that y is fixed here).

To see this, let ǫ > 0 be arbitrary, and let δ > 0 be such that for any two points (x1, y1)
and (x2, y2) in the set [a, b]× [c′, d′] with d((x1, y1), (x2, y2)) < δ we have

∣

∣

∣

∣

∂f

∂y
(x1, y1)−

∂f

∂y
(x2, y2)

∣

∣

∣

∣

< ǫ

(here d(., .) denotes the Euclidean distance in E2). In particular, if we choose δ < min{y −
c′, d′ − y}, then for every x ∈ [a, b] and every y1 with |y1 − y| < δ we have

∣

∣

∣

∣

∂f

∂y
(x, y1)−

∂f

∂y
(x, y)

∣

∣

∣

∣

< ǫ

(note that the inequality above involving y1 guarantees that y1 ∈ [c′, d′] in view of our
choice of δ). Pick N > 0 such that we have |tn − y| < δ for n > N . Consider a fixed n > N

78See the note after the proof.
79See Rosenlicht [Ros], the Proposition on p. 74. That Proposition is stated in terms of continuous

functions, but it can easily be restated in terms of limits of functions.
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and a fixed x ∈ [a, b] By the Mean-Value Theorem, there is a ηn,x between y and tn (i.e.,
ηn,x ∈ (tn, y) if tn < y, and ηn,x ∈ (y, tn) if tn > y) such that

∂f

∂y
(x, ηn,x) =

f(x, tn)− f(x, y)
tn − y

.

Observing that |ηn,x − y| < |tn − y| < δ, we have

∣

∣

∣

∣

f(x, tn)− f(x, y)
tn − y

− ∂f

∂y
(x, y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂f

∂y
f(x, ηn,x)−

∂f

∂y
(x, y)

∣

∣

∣

∣

< ǫ.

This inequality shows that the convergence on the left-hand side of (44) is uniform on [a, b].
Using the lemma about the integral of a uniformly convergent sequence of continuous

functions, we obtain that

lim
n→∞

∫ b

a

f(x, tn)− f(x, y)
tn − y

dx =

∫ b

a

∂f

∂y
(x, y) dx.

As the this is true for every sequence {tn}∞n=1 with tn 6= y and tn ∈ [c′, d′], it follows in view
of the proposition describing the limits of functions in terms of limits of sequences80 that

lim
t→y

∫ b

a

f(x, t)− f(x, y)
t− y dx =

∫ b

a

∂f

∂y
(x, y) dx.

The left-hand side here can be written as

lim
t→y

1

t− y

(

∫ b

a

f(x, t) dx−
∫ b

a

f(x, y) dx

)

=
d

dy

∫ b

a

f(x, y) dx.

Remark. The assumptions of the above theorem are unnecessarily restrictive. In fact,
we have the following

Theorem. Let a, b, c, and d be real numbers with a < b and c < d, and let y ∈ (c, d).

Let f be a continuous a real-valued function on the set [a, b] × (c, d) such that ∂f
∂y exists

everywhere in this set and is continuous at every point of the set [a, b]×{y}. Then we have

d

dy

∫ b

a

f(x, y) dx =

∫ b

a

∂f

∂y
f(x, y) dx.

The proof of this theorem is close to that of the above theorem, but there are some
changes. First, let (E, d) and (E′, d′) be metric spaces, and let A and B be subsets of E
with A ⊂ B. Call a function f : B → E′ continuous uniformly over A within B if for
every ǫ > 0 there is a δ > 0 such that for every p ∈ A and q ∈ B with d(p, q) < δ we
have d′(f(p), f(q))) < ǫ. Call f continuous over A within B if for every p ∈ A and every
ǫ > 0 there is a δ > 0 such that for every q ∈ B, if we have d(p, q) < δ then we also have
d′(f(p), f(q) < ǫ. We have

Lemma. Let (E, d) and (E′, d′) be metric spaces, and let A and B be subsets of E with
A ⊂ B. Assume f : B → E′ is continuous over A within B. If A is compact then f is
continuous uniformly over A within B.

The proof is identical to the usual proof of uniform continuity of a function that is
continuous on a compact set.81 This lemma can be used to carry out a proof of the above

80Cf. Rosenlicht [Ros], the Proposition on p. 74.
81Cf. the first proof of the Theorem on p. 80 in Rosenlicht [Ros].
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theorem. In addition to obtaining a stronger result, there is an additional advantage to this
approach. In this proof, only the compactness of the subset [a, b] × {y} of E2 is used, and
the compactness of this set is equivalent to that of the interval [a, b] of R, whereas in the
proof above of the first theorem of this section the compactness of the subset [a, b]× [c′, d′]
of E2 was used, and the compactness of this set is significantly harder to establish than the
compactness of the interval [a, b] of R.

The use in the proof of the lemma about integration of uniformly convergent sequences
of functions was at the price of restating limits of functions in terms of limits of sequences;
this could easily have been avoided by implicitly redoing the proof of the lemma.
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LIST OF SYMBOLS

Page numbers usually refer to the place where the symbol in question was introduced. In
certain cases, where important discussion concerning the symbol occurs at several places,
the number of the page containing the main source of information is printed in italics.

⋃ U , 20

∁, 9

def
=, 26
dom(f), 36

∃, 1

f [E], 26
f−1, 38
f−1[V ], 26
f ′−, 34
f ′+, 34
∀, 1

g ◦ f , 36

l2, 18

lim inf an, 11

limx→+∞ = L, 41

limx→−∞ = L, 42

limx→t− f(x), 34

limx→t+ f(x), 34

lim sup an, 11

Rn(x, a), error term of Taylor’s
formula, 47

ra(f), 38

R, the set of real numbers, 9,
47

sup(S), 8
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SUBJECT INDEX

Page numbers in italics refer to the main source of information about whatever is being
indexed. Often, they refer to the statement of a theorem, while the other page numbers
listed refer to various applications of the same.

Axiom of Completeness, 6

Bernoulli’s inequality, 10
biconditional, 3
binomial series, 50–54
Bolzano–Weierstrass Theorem,
23

proof by interval halving,
24

Cartesion product, 70
Cauchy’s Mean-Value Theo-
rem, 41
Chain Rule, 36
closed set, see set, closed
cluster point, 23
collection (synonym for set),
20
compact, 15

—ness of closed intervals,
20
complement, 9
composition of functions, 36
conditional, 2
conjunction, 2
continuity

and differentiability, see
differentiability implies conti-
nuity
continuous, 25
continuous function, see func-
tion, continuous

definition of, 31
uniformly, 31

contrapositive, 4
convergence

— of a monotone se-
quence, 9

of functions
pointwise, 32
uniform, 32

converse, 3
cut, 6

derivative
one-sided, 34

differentiability
implies continuity, 33

disjunction, 2

function
—s, composition of, see

composition of functions
continuous, 26
on a closed interval, 34

real-valued, 27

Heine–Borel Theorem, 20
proof by interval halving,

22

if and only if
in definitions, 9

implication, 4
infimum, 8
integrability

First Criterion of, 55
Modified, 56

of continuous functions,
62

of monotone functious, 61
Second Criterion of, 60
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integration by parts, 65
Intermediate-Value Theorem,
27

for derivatives, 35
proof by interval halving,

28
inverse

function, 38
continuity of, 38
differentiation of, 39

of a monotone function,
38

l’Hospital’s rule, 42
limit

at infinity, 41
inferior, 11
infinite, 41
lower, 11
one-sided, 34
superior, 11
upper, 11

lower bound, 8
greatest, 8

lower limit, see limit, lower

maximum
— of a closed bounded

set, 9
Maximum-Value Theorem, 29
metric space, 9

negation, 3
Newton–Leibniz formula, 63
nondecreasing

sequence, 22

open set, see set, open
open statement, see statement
(in logic), open

product
Cartesian, see Cartesian

product

quantifier, 1
—s, interchanging, 1

real-valued function, see func-
tion, real-valued
Riemann integrability, see in-
tegrability
Riemann integral

change of variable, 66
Rolle’s Theorem, 41
Rosenlicht, Maxwell, v

sentence (in logic), 1
set

closed, 9
open, 9

space
metric, see metric space

statement (in logic), 1
open, 4

supremum, 8

tautology, 3
Taylor series

Cauchy’s remainder term,
50

integral remainder term,
50

Lagrange’s remainder
term, 50

Roche–Schlömilch re-
mainder term, 49
telescoping sum, 48, 59, 63
totally bounded, 18
truth table, 2
truth value, 2

uniform convergence, see con-
vergence of functions, uni-
form
upper bound, 8

least, 8
upper limit, see limit, upper


