
CARDINALITIES1

The sets A and B are called equinumerous if there is a one-to-one function f : A → B onto B. Writing
N = {1, 2, 3, . . . }, we say that A is countably infinity if N and A are equinumerous. A is said to be countable

if A is finite or countably infinite.

Lemma 1. If X ⊂ N is infinite then X is countably infinite.

Proof. Define the function f : X → N as follows. For each n ∈ X put

f(n) = min{i ∈ N : i 6= f(k) for k < n with k ∈ X}.

Observe that this is a recursive definition; that is, the definition of f(n) relies on the definition of f(k) for
k < n with k ∈ X.2

We claim that f is one-to-one. In fact, if n, k ∈ X and k < n, then the definition explicitly asserts that
f(n) 6= f(k). Further, we claim that f is onto N. In fact, assume, on the contrary, that, for some m ∈ N,
there is no k ∈ X such that f(k) = m. Then, for every n ∈ X we have

m ∈ {i ∈ N : i 6= f(k) for k < n with k ∈ X}.

As f(n) is the least element of the set on the right-hand side, this implies that f(n) ≤ m. That is, f(n) ≤ m
for every n ∈ X. Since f is one-to-one and X is infinite, this is not possible.3 �

Corollary. Assume A is countably infinite and B ⊆ A is infinite. Then B is countably infinite.

Proof. Let f : N → A be a one-to-one function onto A. Put

X = {n ∈ N : f(n) ∈ B}.

Then X is infinite, so it is countably infinite by the above lemma. Let g : N → X be a one-to-one function
onto X. Then the function f ◦g : N → A is4 one-to-one and onto B, showing that B is countably infinite. �

Lemma 2. The set Z of all integers is countably infinite.

Proof. For a real number x, write ⌊x⌋ for the largest integer ≤ x. The function f : N → Z defined by

f(n) = (−1)n
⌊n

2

⌋

(n ∈ N)

is one-to-one and onto Z. Indeed, we have f(1) = 0, for k ∈ N we have f(2k) = k and f(2k + 1) = −k. �

1Notes for Course Mathematics 9.5 at Brooklyn College of CUNY. Attila Máté, April 21, 2009.
2One might reflect that this definition gives f(n) = 1 for the least element of n of X, in which case the restriction on i after

the colon is vacuous, since there is no k < 1 with k ∈ X; that is, the clause after the colon is true for every i ∈ N in this case.
3If we take m to be the least integer for which no k ∈ X exists such that f(k) = m, then we can in fact conclude by this

argument that the range of the function f is the set {1, 2, . . . ,m− 1}; i.e., that X has exactly m− 1 elements.
4We could have written f ◦ g : N → B instead of f ◦ g : N → A, since it is easy to verify that all values of f ◦ g are in B. The

emphasis here, however, is on the word “verify”; however easy the verification of this fact is, to see that the values of f ◦ g are
in A can be seen much more directly, since all values of f are in A.
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Note. We have
⌊n

2

⌋

=
n

2
+

(−1)n − 1

4
.

Indeed, for even n, the right-hand side gives n/2, and for odd n it gives (n− 1)/2. Hence we can also define the above function

f as

f(n) = (−1)n
2n+ (−1)n − 1

4
(n ∈ N).

Lemma 3. The Cartesian product N× N is countably infinite.

Proof. A one-to-one function f : N× N → N can be defined as follows. Given (m,n) ∈ N× N, put5

f(m,n) =
(m+ n− 1)(m+ n)

2
+ n− 1

for m,n ∈ N.
We claim that f is one-to-one. To show this, let (m,n) and (k, l) be two pairs of positive integers such

that (m,n) 6= (k, l).6 Without loss of generality, we may assume that m+ n ≤ k + l. If m+ n = k + l then
we must have n 6= l, so

f(m,n) =
(m+ n− 1)(m+ n)

2
+ n− 1 =

(k + l − 1)(k + l)

2
+ n− 1

6=
(k + l − 1)(k + l)

2
+ l − 1 = f(k, l).

If m+ n < k + l then we have m+ n ≤ k + l − 1 and m+ n+ 1 ≤ k + l, and so

f(m,n) =
(m+ n− 1)(m+ n)

2
+ n− 1 <

(m+ n− 1)(m+ n)

2
+m+ n− 1

=
(m+ n− 1)(m+ n) + 2(m+ n)

2
− 1 =

(m+ n+ 1)(m+ n)

2
− 1

=
(m+ n)(m+ n+ 1)

2
− 1 ≤

(k + l − 1)(k + l)

2
− 1

<
(k + l − 1)(k + l)

2
+ l − 1 = f(k, l),

so again f(m,n) 6= f(k, l). This shows that f is one-to-one.
Write

X = {n ∈ N : n = f(k, l) for some k, l ∈ N}.

Then X ⊆ N is infinite, and so X is countably infinite. Since f : N× N → X is a one-to-one mapping that
is onto X, this shows that N× N is also countably infinite, which is what we wanted to prove. �

Note. The function f defined in the last proof is not onto N. The function g : N× N → N defined by

g(m,n) =
(m+ n− 2)(m+ n− 1)

2
+ n

for m,n ∈ N is onto N. The calculations showing that g is one-to-one are slightly more complicated than the ones showing that
f is one-to-one, and showing that g is onto N requires extra effort. Since it was not important in the above proof that f be

onto N, it was simpler to work with the function f instead of g.

5Strictly speaking, an element of N×N has the form (m,n) for positive integers m and n. The value of f at such an element

should be denoted as f
(

(m,n)
)

. However, it visually more pleasing to use the notation f(m,n) at the price of some inaccuracy.
6That is, m 6= n or k 6= l.
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Corollary. If A and B are countably infinite sets then A×B is also countably infinite.

Proof. Let f : N → A onto A, g : N → B onto B, and h : N → N × N onto N × N be one-to-one functions.
Such functions exist since A and B are countably infinite by assumption, and N×N is countably infinite by
the last lemma.

We define the function φ : N → A × B as follows. Given n ∈ N, let k, l ∈ N be such that h(n) = (k, l),
and let φ(n) = (f(k), g(l)). It is easy to show that φ is one-to-one and onto A×B. �

In what follows, Q will denote the set of rational numbers, and Q+ will denote the set of positive rationals.
We have

Lemma 4. Q+ is countably infinite.

Proof. Write

S = {(m,n) : m,n ∈ N and the greatest common divisor of m and n is 1}.

The set S is an infinite subset of the countably infinite set N×N, so it is countably infinite by the Corollary
to Lemma 1. The function f defined as

f(m,n) =
m

n
for (m,n) ∈ S

is a one-to-one function from S onto Q+, showing that Q+ is also countably infinite. �

For a set A, the power set P(A) of A is defined as the set of all subsets of A. The following theorem and
its proof is valid for any set A, be A finite or infinite; the proof is valid even when A is the empty set.7 But
only the case when A is infinite is of real interest, since for finite A a much more precise statement can be
made.

Theorem. Let A be an arbitrary set. Then A and P(A) are not equinumerous.

Proof. We will show that there is no one-to-one function from A onto P(A); in fact, no function from A onto
P(A) exist, whether or not we require it to be one-to-one. To see this, let f : A → P(A) be an arbitrary
function, and consider the subset C of A defined as

C = {x ∈ A : x /∈ f(x)}.

Then there is no y ∈ A for which f(y) = C. Indeed, for an arbitrary y ∈ A, if y ∈ f(y) then y /∈ C by the
definition of C, and if y /∈ f(y) then y ∈ C. This shows that f(y) and C do not have the same elements (y is
an element of exactly one of these two sets), so f(y) 6= C, as claimed. �

A related argument can be given that N and the set of real numbers, R, are not equinumerous. On the
other hand, we have the following

Theorem. The set R and the interval (−1, 1) are equinumerous.

Proof. The function f : (−1, 1) → R such that

f(x) =
x

x2 − 1
for x ∈ (−1, 1)

is one-to-one and onto R. Indeed, let y ∈ R be arbitrary. We need to show that there is exactly one
x ∈ (−1, 1) such that f(x) = y. If y = 0 then we have f(x) = y only for x = 0. Assume now that y 6= 0.
Then the equation f(x) = y can be equivalently written as y(x2 − 1) = x.

Observe that this latter equation makes sense for x = ±1 while the equation f(x) = y does not. The
important point, however, is that x = ±1 does not satisfy the latter equation, since for this choice of x the
left-hand side is 0 while the right-hand side is ±1. That is, the exceptional case of x = ±1 does not affect
the equivalence of the two equations.

7As one might expect, the case when A is the empty set involves a number of vacuously true statements.
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Keeping in mind that we assumed that y 6= 0, the latter equation can also be written as

x2 −
1

y
x− 1 = 0.

This is a quadratic equation for x. We can solve this equation for x as

x =

1

y
±
√

1

y2 + 4

2
.

Given that the discriminant (the expression under the square root) of this equation is positive, this equation
has two distinct real solutions; call them x1 and x2. The product of these two solutions is the constant term
of the equation; that is, x1x2 = −1. Therefore |x1||x2| = 1. Given that |x1|, |x2| 6= 1, as we remarked above,
one of x1 and x2 must be inside the interval (−1, 1) and the other one must be outside. That is, there is
exactly one x ∈ (−1, 1) for which f(x) = y, as we wanted to show. �

THE CANTOR-SCHRÖDER-BERNSTEIN THEOREM

Consider the sets A = R and B = [−1, 1], the closed interval from −1 to 1. There there are functions
f : A → B into B and g : B → A into A that are one-to-one. Namely, A is equinumerous to (−1, 1) according
to the last theorem; so we can take f to be the one-to-one function from A onto (−1, 1). For the function
g we can simply take the identity function on B. Since B ⊂ A, g is into A. The next theorem asserts that
under these conditions A and B are equinumerous.

Cantor-Schröder-Bernstein Theorem. Let A and B be sets and assume there are one-to-one functions

f : A → B and g : B → A. Then A and B are equinumerous.

In the theorem, it is of course not required that f be onto B or g be onto A; in fact, there would be
nothing to prove if this were the case. The result is intuitively obvious if A or B are finite sets, but for
infinite sets the result is not at all obvious, and a proof is needed. The proof, however, works regardless
whether A or B are finite or infinite. We will give two proofs. The first proof gives a much better insight
why the result is true, especially if one follows along the first proof by drawing a picture. The second proof
can be presented more concisely, but it gives little insight why the result is true. The second proof is the one
that is usually given in textbooks. Before giving the formal version of the first proof, we include an intuitive
description.

Imagine the sets A and B as two vertical lines, A on the left, B on the right. From each point, left or
right, draw one, and if possible, two edges, one forward edge to the image of the point under the function f
or g (whichever is applicable), and one backward edge, to the the inverse image. The forward image always
exists, the backward image may not exist, since the inverses need not be defined everywhere. These edges
can be continued to complete paths containing the given point. Two different paths may not have points in
common, since the functions f and g are one-to-one. A path may have a starting point, where the inverse
image does not exist, or may go back indefinitely (when it may loop back on itself, forming a cycle, or may
not; a cycle will always contain an even number of edges). Select alternate edges of these paths, making
sure that the starting point of the path is incident to an edge. (When the path has no starting point, it is
immaterial how the edges are selected, but below we select the edge going backward from left to right, since
this slightly simplifies the formal description). The selected edges form a one-to-one mapping from A to B
(when redirected from left to right if necessary). The mapping is defined on all of A and is onto B for the
same reason: each point is incident to a path.

We will now give a formal description of the proof.

First Proof. For a function φ one usually denotes by φ(x) the value of φ at x, but one sometimes uses the
notation φx instead. It will be advantageous for us to use this latter notation in what follows in order to
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avoid having to write too many parentheses.8 Denote by f−1 and g−1 the inverses of the functions f and g.
For every a ∈ A, form the sequence

a, g−1a, f−1g−1a, g−1f−1g−1a, f−1g−1f−1g−1a, . . . .

Note that g−1 maps a subset of A into B, and f−1 maps a subset of B into A. Hence g−1a may or may not
be defined. Even if g−1a ∈ B is defined f−1g−1a may not be defined, and if f−1g−1a ∈ A is defined, the
element g−1f−1g−1a may then not be defined. That is, the above sequence may terminate at some point.
Call the sequence associated with an a ∈ A in this way σ(a).

The elements of this sequence need not be distinct; for example, we can have f−1g−1a = a, in which case
the sequence never terminates, but it has only two distinct elements, a and g−1a. When talking about the
number of elements of this sequence, we will mean its length, and not the number of its distinct elements.
For example, in case f−1g−1a = a we will say that the above sequence has infinitely many elements, even
though the number of its distinct elements is only two.

Now, define a function h : A → B as follows. For an arbitrary a ∈ A, consider the above sequence. If
(i) the sequence σ(a) has infinitely many elements, or a finite even number of elements, then put ha = g−1a,
and if (ii) the σ(a) has an odd number of elements then put ha = fa. First, observe that this defines ha for
every a ∈ A. Indeed, in case (i), the sequence σ(a) has at least two elements, so g−1a is defined; so ha is
defined in case (i); since fa is defined for every a ∈ A, ha is also defined in case (ii).

We show that h is one-to-one. To this end, let a1, a2 ∈ A such that a1 6= a2. If both ha1 and ha2 are
defined according to clause (i), then ha1 = g−1a1 6= g−1a2 = ha2. Similarly, if both ha1 and ha2 are defined
according to clause (ii), then ha1 = fa1 6= fa2 = ha2. So assume one of ha1 and ha2 is defined according
to clause (i), and the other according to clause (ii). Without loss of generality, we may assume that ha1
is defined according to clause (i) and ha2 is defined according to clause (ii). Assume, that ha1 = ha2, i.e.,
g−1a1 = fa2. Then a2 = f−1g−1a1. Hence the sequence σ(a1) can be written as

a1, g−1a1, σ1(a2), σ2(a2), σ3(a2), . . . ,

where σ1(a2), σ2(a2), σ3(a2), . . . denote the first, second, third, . . . elements of the sequence σ(a2). Now,
σ(a2) has an odd number of elements, since clause (ii) was used to define ha2, and σ(a1) has either an infinite
number of elements or a finite even number of elements, since clause (i) was used to define ha1. This is a
contradiction, since we just saw that σ(a1) has exactly two more elements than σ(a2). This contradiction
shows that h is one-to-one.

To show that h is onto B, let b ∈ B be arbitrary, and define the sequence

b, f−1b, g−1f−1b, f−1g−1f−1b, g−1f−1g−1f−1b, . . . .

Call this sequence ρ(b). Let a1 = gb. Then b = g−1a1, and so the sequence σ(a1) can be written as

a1, ρ1(b), ρ2(b), ρ3(b), . . . ,

where ρ1(b), ρ2(b), ρ3(b), . . . denote the first, second, third, . . . elements of the sequence ρ(b). That is, σ(a1)
has one more elements than ρ(b). Hence, if ρ(b) has an infinite number of elements or a finite odd number
of elements then σ(a1) has either an infinite number of elements or a finite even number of elements, and so
ha1 = g−1a1 = b.

Assume now that ρ(b) has a finite even number of elements. Then it has at least two elements, so
a2 = f−1b is defined. Then the elements of the sequence ρ(b) can be written as

b, σ1(a2), σ2(a2), σ3(a2), . . . ,

showing that σ(a2) has one fewer element than ρ(b). That is, σ(a2) has an odd number of elements, and so
ha2 = fa2 = b. This shows that h is onto B. �

8The notation φx could be confusing where juxtaposition (i.e., placing next to each other) of letters can indicate multiplica-

tion; this is why one usually uses the notation φ(x) instead. In the present case, multiplication is not used, so there is no such
danger.

5



The second proof defines the same one-to-one function h : A → B, but it describes this function in a
different way. After carefully reading both proofs, one should realize that the two proofs are essentially the
same, presented differently.

Second Proof. Write A0 = A, B0 = B, and if An and Bn for n ≥ 0 have been defined, put

An+1 = {g(b) : b ∈ Bn} and Bn+1 = {f(a) : a ∈ An}.

Note that since f is one-to-one, this means that, for every n ≥ 0, a ∈ An if and only if f(a) ∈ Bn+1.
9

Similarly, b ∈ Bn is and only if g(b) ∈ An+1.
We clearly have A1 ⊆ A0 and B1 ⊆ B0. By induction, it is then easy to prove that An+1 ⊆ An and

Bn+1 ⊆ Bn. Indeed, if we assume that for some n > 1 we have both An ⊆ An−1 and Bn ⊆ Bn−1, then
An+1 ⊆ An follows from the latter of these relations, and Bn+1 ⊆ Bn follows from the former. Let

C =
∞
⋂

n=0

An.

Define the function h on A as follows. If (i) a ∈ An\An+1 for some odd n or a ∈ C then put h(a) = g−1(a),
where g−1 is the inverse of g, and if (ii) a ∈ An \An+1 for some even n, then put h(a) = f(a). We then have
to show that (1) the definition of h is meaningful, (2) h is defined for every a ∈ A, (3) h is one-to-one, and
(4) h is onto B.

As for (1) and (2), let a ∈ A. Then either a ∈ C or there is an k for which a /∈ Ak. Assume that a /∈ C,
and let k ≥ 0 be the least integer for which a /∈ Ak. Then a ∈ Am for every nonnegative integer m < k and
a /∈ Am for every m ≥ k. Hence for the integer n such that a ∈ An \ An+1 we must have n = k − 1. That
is, this integer n is uniquely determined. This makes the definitions given in (i) and (ii) meaningful, except
that we need to show that g−1(a) is defined in case (i). However, g−1(a) is defined unless a ∈ A0 \ A1, and
a ∈ A0 \A1 is not true in case (i).

As for (3), assume h(a1) = h(a2) for some a1, a2 ∈ A such that a1 6= a2. Since f and g−1 are one-to-
one, this is not possible if both h(a1) and h(a2) are both defined by clause (i) or if they are both defined
by clause (ii). Assume, therefore, that they are defined by different clauses. Without loss of generality,
we may assume that h(a1) is defined by clause (i) and h(a2) is defined by clause (ii). We then have
g−1(a1) = h(a1) = h(a2) = f(a2). Since we used clause (ii) to define h(a2), we have a2 ∈ An \ An+1 for
some even n. Writing b = f(a2), we have b ∈ Bn+1 \ Bn+2. Since we also have b = g−1(a1), i.e., a1 = g(b),
it follows that a1 ∈ An+2 \ An+3. As n+ 2 is even, this contradicts the assumption that h(a1) was defined
according to clause (i).

As to (4), let b ∈ B. If b ∈ Bn for all n ≥ 0 then, writing a = g(b), we have a ∈ An for all n ≥ 0, and so
a ∈ C. Therefore, h(a) = g−1(a) = b according to clause (i). Assume that this is not the case, and let n ≥ 0
be the unique integer such that b ∈ Bn \ Bn+1. If n is even then, with a = g(b), we have a ∈ An+1 \ An+2.
Since n + 1 is odd, we have h(a) = g−1(a) = b according to clause (i). If n is odd, then n ≥ 1; thus
b ∈ Bn ⊆ B1, which implies that b = f(a) for some a ∈ A. Then a ∈ An−1 \ An, and h(a) = f(a) = b
according to clause (ii). This completes the proof. �

9The important point here is that if a /∈ An then f(a) /∈ Bn+1. Indeed, if we had f(a) ∈ Bn+1, there would have to be

an a′ ∈ An for which f(a′) = f(a). But this is not possible, since f is one-to-one, and so we would have to have a′ = a, but
a /∈ An.
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