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1 Introduction

Given a square matrix A and writing I for the identity matrix of the same size, the characteristic
polynomial of A is the determinant of the matrix λI −A, which is a polynomial of λ. The Cayley–
Hamilton Theorem asserts that if one substitutes A for λ in this polynomial, then one obtains the
zero matrix. This result is true for any square matrix with entries in a commutative ring.

∗Written for the course Mathematics 4101 at Brooklyn College of CUNY.
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For a matrix of a given size, this theorem can be restated as a number of polynomial identities
in terms of the entries of the matrix A – namely, one identity for each entry being 0 of the matrix
resulting by substituting A for λ; if such an identity is satisfied over the ring of integers then it is
satisfied over any commutative ring (see Subsection 1.1). Therefore, in proving the Cayley–Hamilton
Theorem it is permissible to consider only matrices with entries in a field, since if the identities are
true in the field of reals then they are also true in the ring of integers.

There are two basic approaches to proving such a result. In one approach, one considers A

as representing a linear transformation on a vector space, and obtains the result as a consequence
of studying the structure of linear transformations on vector spaces. In such an approach it is
important to make sure that A is a matrix over a field, since structures similar to vector spaces
over rings (called modules) lack many of the basic properties of vector spaces. Another approach
establishes the result directly as a consequence of properties of matrices and determinants. This
type of approach may work directly for matrices over commutative rings.

Below we describe a proof using the second approach. When one wants to substitute the matrix
A for λ in the determinant of λI − A, one cannot do this directly, since a determinant must have
scalar entries; so first one needs to rewrite the determinant as a polynomial. In the approach we use,
the determinant λI−A will be written as a product of two polynomials with matrix coefficients, and
the result of substituting A for λ will clearly give the zero matrix. The argument completely avoids
calculations, but to follow it there are subtle points of algebra that need to be clearly understood.
To this end we need to make a detour into a formal discussion as to what a polynomial is, and what
kind of an algebraic structure they form.

1.1 A multivariate polynomial zero on all integers is identically zero

Let P (x1, x2, . . . , xk) be a polynomial with integer coefficients, i.e., a sum of integer multiples of
products formed with the variables x1, x2, . . ., xk, and assume that P (u1, u2, . . . , uk) = 0 for any
choice of the integers u1, u2, . . ., uk. We claim that then P (x1, x2, . . . , xk) = 0 identically, i.e., after
all cancelations everything will cancel, that is, P (x1, x2, . . . , xk) will be a sum of a number zero of
products.

Indeed, we can write

P (x1, x2, . . . , xk) =

n
∑

i=0

Pi(x1, x2, . . . , xk−1)x
i
k

Choosing x1 = u1, x2 = u2, . . ., xk−1 = uk−1 for some integers u1, u2, . . ., uk−1, this is a polynomial
in the single variable xk. Since a polynomial of degree n can have at most n zeros, this polynomial
being zero for all xk means that all the coefficients Pi(u1, u2, . . . , uk−1) are zero. Since this is true
for any choice of the integers u1, u2, . . ., uk−1, this implies by induction on the number k of variables
in P (x1, x2, . . . , xk) that all coefficients Pi(x1, x2, . . . , xk−1) are identically zero.
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2 Polynomials over a ring

Definition 1. A ring is a set equipped with two binary operation, called addition (symbol +) and
multiplication (symbol ·, usually omitted) with the following properties. For all a, b, c ∈ R we have

(a+ b) + c = a+ (b+ c),

a+ b = b+ a,

(ab)c = a(bc),

a(b+ c) = ab+ ac,

(a+ b)c = ac+ bc,

i.e., the addition is associative and commutative, and the multiplication is associative and distribu-
tive over addition. Further, there are elements 0, 1 ∈ R such that

a+ 0 = a,

a · 1 = 1 · a = a

for all a ∈ R (additive and multiplicative identities, respectively), and, finally, for every a ∈ R there
is an element −a ∈ R such that

a+ (−a) = 0

(−a is called an additive inverse of a).

Not every author requires the existence of a multiplicative identity in a ring, but recently it has
been common to require the existence of a multiplicative identity. A ring without a multiplicative
identity might be called a pseudo-ring. There are simple proofs that the additive and multiplicative
identities and the additive inverse of an element are unique. A commutative ring is a ring in which
the multiplication is commutative.

A formal power series over a ring R is intuitively described as a sum

∞
∑

i=0

aiλ
i (ai ∈ R),

where λ is a formal variable; the ai’s are called coefficients. If all but a finite number of the coefficients
are 0, then a formal power series is called a polynomial. The addition addition and multiplication
of formal power series is defined as

∞
∑

i=0

aiλ
i +

∞
∑

i=0

biλ
i =

∞
∑

i=0

(ai + bi)λ
i,

∞
∑

i=0

aiλ
i ·

∞
∑

i=0

biλ
i =

∞
∑

i=0

(

i
∑

k=0

akbi−k

)

λi.

The sum notation here is merely formal, no actual addition is meant. A more formal definition can
be given as follows.
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2.1 A formal definition of polynomials

Write N for the set {0, 1, 2, . . .} of natural numbers (nonnegative integers).1 Given a function f ,
write f ‘x for the value of the function at x.2

Definition 2. A formal power series over a ring R is defined as a function f : N → R, with the
operations + and · defined as follows. Given formal power series f and g over R, we define f + g

and fg as formal power series such that for all n ∈ N

(f + g)‘n = f ‘n+ g‘n,

(fg)‘n =

n
∑

k=0

(f ‘k)
(

g‘(n− k)
)

.

A polynomial over a ring R is a formal power series p such that p‘n = 0 for all but finitely many
n ∈ N.

Writing λ for the formal power series over R such that λ‘1 = 1 and λ‘n = 0 for n 6= 1 (n ∈
N), the intuitive description above of a formal power series can be given a precise meaning. λ is
called a formal variable. We will mostly use the more suggestive notation given in this intuitive
description rather than the formal description given in the definition above, except when we want to
be meticulously precise. The polynomials over a ring R with operations given in the above definition
form a ring. If λ is the name of the formal variable, this ring is denoted as R[λ]. If p is a polynomial,
p‘n for n ∈ N will be called the nth coefficient of p.

2.2 The evaluation operator

An operator assigns objects to certain given objects. While a distinction can be made between
operators and functions, such a distinction will not be necessary for our purposes.

Definition 3. Given a ring R, the evaluation operator is a function ev : R[λ] × R → R such that,
for p ∈ R[λ] a ∈ R we have

ev ‘(p, a) =

∞
∑

n=0

(p‘n)an.

Since we did not assume that R is commutative, one needs to be a little careful, since if p

and q are polynomials over R, one does not in general have ev ‘(pq, a) =
(

ev ‘(p, a)
)(

ev ‘(q, a)
)

. In
fact, we could have called the operator ev the right-evaluation operator (since the formal variable
is substituted on the right), and we could have similarly defined a left-evaluation operator. The
reason we need to deal with noncommutative rings here is that we will consider polynomials with
matrix coefficients. An important exception where the equality ev ‘(pq, a) =

(

ev ‘(p, a)
)(

ev ‘(q, a)
)

does indeed hold is described by the following

Lemma 1 (Evaluation Lemma). Let R be a ring, and let a ∈ R and p, q ∈ R[λ]. Assume that the

element a commutes with the coefficients of q, that is

a · (q‘n) = (q‘n) · a for all n ∈ N.

1The number 0 is sometimes considered a natural number, sometimes it is not. In these notes we will always
regard 0 as a natural number.

2This is the notation used by Kurt Gödel [1]. We will use the notation f(x) as the result of the application
evaluation operator (see below), to be distinguished from the value of a function.
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Then

ev ‘(pq, a) =
(

ev ‘(p, a)
)(

ev ‘(q, a)
)

.

Proof. The proof is a fairly simple calculation. We will give the details, using informal notation.
Writing bn = p‘n and cn = q‘n for the coefficients p and q, we have

pq =

∞
∑

n=0

(

n
∑

k=0

bkcn−k

)

λn;

the outside sum is of course finite, since only finitely many among the bn and cn are not zero. Noting
that acn = cna for all n by our assumptions, we have

ev ‘(pq, a) =

∞
∑

n=0

(

n
∑

k=0

bkcn−k

)

an =

∞
∑

n=0

n
∑

k=0

(bka
k)(cn−ka

n−k)

=
(

∞
∑

k=0

bka
k
)(

∞
∑

l=0

cla
l
)

=
(

ev ‘(p, a)
)(

ev ‘(q, a)
)

,

establishing the desired equality.

One customarily writes p(a) = ev ‘(p, a). The use of this notation necessitated for us to change
the notation for the value of a function, since the result of the evaluation operation needs to be
distinguished from the value of a function.

2.3 R as a subring of R[λ]

The way we defined polynomials, R is not a subset of R[λ]. It is, however, natural to identify a
constant polynomial aλ0 with a; with this identification, R becomes a subring of R[λ]. One could
modify the definition of polynomials in such a way that one would indeed have the inclusion R ⊂ R[λ]
at the price of some additional complications. In informal or semi-formal discussions we will indeed
assume that R ⊂ R[λ].

If R is a ring and R[λ] is the ring of polynomials over R, one can introduce a new formal variable
µ and consider the ring of polynomials R[λ][µ] over R[λ]. If, using intuitive notation, we have

p =

∞
∑

n=0

anλ
n,

then, identifying an element a of R with the polynomial aλ0,

q =

∞
∑

n=0

anµ
n,

is polynomial with coefficients in R[λ], i.e., it is an element of R[λ][µ]. Writing evR[λ][µ] for the
evaluation operator evR[λ][µ] : R[λ][µ] → R[λ], we have

evR[λ][µ] ‘(q, λ) = p.

The reader is encouraged to work out the formal details. On account of this observation, attention
is called to the notational confusion in the uses of p(λ) and p(a): sometimes, p(λ) indicates the
polynomial p itself, at other times one uses the same notation for the polynomials p and q above,
and writes p(µ) and p(λ) instead of writing q and evR[λ][µ] ‘(q, λ), and at yet other times one loosely
considers p as a function p : R → R, and p(a) denotes the value of this function for some a ∈ R.
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3 Determinants and the adjugate matrix

3.1 Matrices

Given positive integers m and n, an m× n matrix over R is a rectangular arrangement of elements
of R with the well-known definition of matrix operations. To give a more formal definition, such a
matrix A is defined as a function

A : {i : 1 ≤ i ≤ n} × {j : 1 ≤ j ≤ n} → R,

and when one writes A = (aij) one means aij = A‘(i, j).

3.2 Determinants

The theory of determinants can in a natural way developed over commutative rings [2, Chapter 5,
pp. 140–156] or [3, §17, pp. 152–159]. Much of discussion in [4, Chapter 4, pp. 161–201] can also
be developed in rings, but the proof of the product theorem for determinants3 given in [4, (4.1.5)
Theorem, p. 171] relies on the row-echelon form of a matrix, and so it works only for matrices over
a field.

Let n be a positive integer, and A = (aij) be an n × n matrix over a ring R (aij ∈ R). The
determinant of A is defined as

(1) det ‘A =
∑

σ

(sgn ‘σ)

n
∏

i=1

aiσ‘i,

where σ runs over all permutations (one-to-one mappings of a set onto itself) of the set {1, 2, . . . , n},
and sgn ‘σ is the sign of the permutation σ (i.e., 1 for an even permutation and −1 for an odd
permutation); this is called the Leibniz formula for determinants.

For the matrix A, the cofactor Aij can be obtained as follows. Let A(i|j) denote the matrix
obtained by deleting the ith row and the jth column of A, and put

Aij = (−1)i+j det ‘A(i|j).

For any i with 1 ≤ i ≤ n we have

det ‘A =

n
∑

k=1

aikAik and det ‘A =

n
∑

k=1

akiAki.

This is called the Laplace expansion of determinants, and it can be used instead of Leibniz’s formula
in a recursive definition of determinants if one starts by saying that for a ∈ A and the 1×1 matrix (a)
we put det ‘(a) = a. Write

δij =

{

1 if i = j,

0 if i 6= j;

δij is called Kronecker’s delta. It is well known that a determinant with two equal rows or two equal
columns is 0. Therefore, for any i, j with 1 ≤ i, j ≤ we have

(2)
n
∑

k=1

aikAjk = δij det ‘A and
n
∑

k=1

akiAki = δij det ‘A.

3Saying that if A and B are two square matrices of the same size, then, det ‘(AB) = (det ‘A)(det ‘B), where det ‘·
denotes the determinant of a square matrix.
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Indeed, if i = j, these formulas give Laplace expansion of the determinant of A, and if i 6= j, they
give Laplace expansions of a determinant with two equal rows or two equal columns. The matrix

adj ‘A
def
= (Aij)j,i = (Aij)

T

is called the adjugate of the matrix A.4 Equations (2) can also be expressed in matrix form as

(3) (adj ‘A)A = A(adj ‘A) = (det ‘A)I

for any n × n matrix over a ring R, where I denotes the n × n identity matrix. If det ‘A has a
multiplicative inverse, then the inverse matrix of A can be given as (det ‘A)−1 adj ‘A; we will not use
this latter formula, since, dealing with rings, we wil not be interested in multiplicative inverses.

4 The Cayley–Hamilton Theorem

Definition 4. Given a positive integer n and an n × n matrix over a commutative ring R, the
characteristic polynomial of A is the polynomial det ‘(λI −A), where I is the n×n identity matrix.

Assuming that R is a commutative ring, the polynomial ring R[λ] is commutative. The entries
of the matrix λI−A are elements of the ring R[λ]. Since determinants can be defined for any square
matrix over a commutative ring, the determinant of this matrix is well defined.5

Theorem 1 (Cayley–Hamilton Theorem; informal version). Let n be a positive integer, let R be a

commutative ring, and let A be an n× n matrix over R. Then A is a zero of its own characteristic

polynomials; that is,

(4) ev ‘
(

det ‘(λI −A), A
)

= 0

There is a minor problem with the interpretation of the evaluation operator in the last formula:
We have det ‘(λI −A) ∈ R[λ], i.e. the coefficients of this polynomial are elements of R, yet we want
to evaluate this polynomial for a matrix, that is, for an element of Rn×n. While intuitively it is
clear what is being meant, the formal interpretation is a little more delicate; this is why we called
the theorem above the informal version of the Cayley–Hamilton theorem.

The Cayley–Hamilton Theorem asserts that the matrix A itself is a zero of this polynomial. In
other words, if A = (aij), then

(5) det ‘(λI −A) =

∣

∣

∣

∣

∣

∣

∣

∣

λ− a11 −a12 . . . −a1n
−a21 λ− a22 . . . −a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−an1 −an2 . . . λ− ann

∣

∣

∣

∣

∣

∣

∣

∣

Now, here one cannot directly substitute A for λ, since the matrices we are dealing with are not
supposed to have matrices for entries. However, when we expand this determinant, we obtain a
polynomial of degree n, and if we substitute A for λ in that polynomial, then we obtain zero,
according to the Cayley–Hamilton theorem.

4For a matrix A we write AT for the transpose of the matrix A. If A = (aij) then we also indicate the transpose
by writing AT = (aij)j,i. The order of the subscripts j and i outside the parentheses indicate that j is used to index
rows and i, to index columns. The adjugate matrix was used to be called the adjoint of A, but later, in the theory of
Hilbert spaces, the adjoint of an operator was defined with a different meaning. This different meaning is now also
used to describe the adjoint of a matrix; to avoid conflicting terminology, the matrix adjA was renamed the classical

adjoint of A, or, more recently, the adjugate of A.
5Some authors call the determinant of the matrix A− λI the characteristic polynomial.
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Informal proof. Using equation (3), we have

(6)
(

det ‘(λI −A)
)

I =
(

adj ‘(λI −A)
)

(λI −A).

The matrix adj ‘(A − λI) is a matrix whose entries are polynomials of λ, and this matrix can be
written as a polynomial of λ with matrix coefficients. This seems intuitively clear; as an illustration,
here is an example 2× 2 matrices showing how to write a matrix of polynomials as a polynomial of
matrices.

(7)

(

a11λ
2 + b11λ+ c11 a12λ

2 + b12λ+ c12
a21λ

2 + b21λ+ c21 a22λ
2 + b22λ+ c22

)

=

(

a11 a12
a21 a22

)

λ2 +

(

b11 b12
b21 b22

)

λ+

(

c11 c12
c21 c22

)

.

Now, after such rewriting as polynomials of matrices, if one substitutes λ = A in equation (6), one
indeed gets 0, since the second factor on the right-hand side is indeed 0. Noting that the coefficients
of the of the polynomials in equation (6) are matrices, and matrix multiplication is not commutative,
the evaluation on the right-hand side needs to invoke Lemma 1.

5 A formal restatement of the proof

The informal version of the proof of the Cayley–Hamilton Theorem is not up to formal standards:
a matrix of polynomials is not a polynomial of matrices, and to say that it can be written as a
polynomial of matrices is somewhat vague. Further, instead of substituting A for λ, it is more
rigorous to refer to the evaluation operator. This is especially so because one might object that one
can only substitute scalars (i.e., elements of R) for λ directly in the determinant on the left-hand
side of (6); how come we are allowed to substitute a matrix on the right-hand side when rewritten
as a polynomial?

5.1 Isomorphism between matrices of polynomials and polynomials of

matrices; an informal description

Equation (7) gave an example as to how a matrix of polynomials can be written as a polynomial of
matrices. More generally, an n× n matrix of polynomials in R[λ] can informally be written as

(

m
∑

k=0

aij,kλ
k
)

i,j
,

where aij,k ∈ R, m is the maximum degree of the polynomial entries of this matrix, and 1 ≤ i, j ≤ n

are the row and column indices of the matrix. This matrix can be written as

(

m
∑

k=0

aij,kλ
k
)

i,j
=

m
∑

k=1

(aij,k)i,j λ
k =

m
∑

k=1

(aij,k)i,j (λI)
k,

where I is the n × n identity matrix. On the right-hand side we replaced λ with λI so that only
the ring operations will be used for matrices (i.e., only matrix addition and matrix multiplication
will be used, and no scalar multiplications of matrices except in forming λI). The isomorphism φ

from matrices of polynomials to polynomials of matrices will be obtained, informally, by replacing
λI with the formal variable Λ; that is,

φ‘
(

m
∑

k=0

aij,kλ
k
)

i,j
= φ‘

(

m
∑

k=1

(aij,k)i,j (λI)
k
)

=
m
∑

k=1

(aij,k)i,j Λ
k.
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The mapping φ is one-to-one, since from the polynomial on the right-hand side one can reconstruct
the matrix of polynomials in the argument of φ on the left-hand side. It is also easy to show that for
two matrices P and Q of polynomials we have φ‘(P+Q) = (φ‘P )+(φ‘Q) and φ‘(PQ) = (φ‘P )(φ‘Q),6

showing that the mapping φ is indeed an isomorphism.

5.2 Isomorphism between the matrix of polynomials and polynomials of

matrices; the formal description

We will give a formal description of the isomorphism φ from the ring R[λ]n×n of n × n matrices
over R[λ], and the ring Rn×n[Λ] of polynomials over the ring Rn×n of matrices over R described
above informally. To this end, we need the formal descriptions of a matrices in Subsection 3.1
and of polynomials given in Definition 2. According to this, a matrix of polynomials is a function
A : {i : 1 ≤ i ≤ n} × {j : 1 ≤ j ≤ n} → R[λ], and given i and j with 1 ≤ i, j ≤ n, A‘(i, j) is a
function A‘(i, j) : N → R. On the other hand, a polynomial of matrices as described is a function
p : N → Rn×n, and given k ∈ N, p‘k is a function p‘k : {i : 1 ≤ i ≤ n} × {j : 1 ≤ j ≤ n} → R. The
isomorphism φ will be defined such that φ‘A = p is and only if, for any i, j with 1 ≤ i, j ≤ n and
for any k ∈ N we have

(A‘(i, j))‘k = (p‘k)‘(i, j) (∈ R).

Finally, to restrict this mapping to polynomials only rather than formal power series, we need to
stipulate that (A‘(i, j)‘k = 0 except for finitely many k’s.

Writing a function f with domain N as a sequence

(f ‘0, f ‘1, f ‘2, . . .),

the formal variable of polynomials over R will be the sequence

(0, 1, 0, 0, . . .),

whereas the formal variable of polynomials over the ring Rn,n of matrices will be the

(0I, I, 0I, 0I, . . . ),

where we wrote 0I for the zero matrix, to distinguish it from the element 0 of R. If we call the
former formal variable λ, the latter formal variable needs a new name; we will call it Λ.7

5.3 The formal proof of the Cayley–Hamilton Theorem

Next we will restate Theorem 1 and we will complete its proof. The formal proof will be followed
by an example in the next section, where the delicate steps of the proof are illustrated.

Theorem 2 (Cayley–Hamilton Theorem; formal version). Let n be a positive integer, let R be a

commutative ring, and let A be an n× n matrix over R. Then A is a zero of its own characteristic

polynomials; that is,

(8) ev ‘
(

φ‘
(

det ‘(λI −A)I
)

, A
)

= 0

6Informally, the second equation holds since the formal variable Λ commutes with matrices.
7One might be tempted to write Λ = λI. This, however, would create the false impression that, when using Lemma

1, we can evaluate a polynomial in Rn,n[Λ] only for an aI with a ∈ R. In actual fact, we can evaluate a polynomial
in Rn,n[Λ] for any A ∈ R[n, n].
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The formal proof of the Cayley–Hamilton Theorem. Under the isomorphism φ described above, equa-
tion (6) becomes

(9) φ‘
(

(

det ‘(λI −A)
)

I
)

= φ‘
(

(

adj ‘(λI −A)(λI −A)
)

I
)

= φ‘
(

adj ‘(λI −A)
)

φ‘(λI −A)

The left-hand side here is the characteristic polynomial, a polynomial with scalar coefficients (i.e.,
the coefficients are of form aI with a ∈ R). The first factor on the right-hand side is a polynomial
with matrix coefficients, and the second factor is the polynomial φ‘(λI −A) = Λ−A. Applying the
evaluation operator with Λ = A to this latter polynomial we clearly have

ev ‘
(

φ‘(λI −A), A
)

= ev ‘(ΛI −A), A) = A−A = 0.

Therefore, noting that the coefficients of this polynomial commute with A (since the only coefficients
are I and −A), by Lemma 1 we have

ev ‘

(

φ‘
(

(

det ‘(λI −A)
)

I
)

, A

)

= ev′
(

φ‘
(

adj ‘(λI −A)
)

, A
)

ev ‘
(

φ‘(λI −A), A
)

= 0,

which is the assertion of the Cayley–Hamilton theorem.

6 An example

As an illustration, we will follow through the steps of the proof above with an example. We believe
that it is not necessary for the reader to check the calculations in detail to benefit from this. The
example should be helpful simply by allowing the reader to visualize the concrete forms of the
abstract formulas above. Let

A =





1 2 1
3 2 −1

−2 4 2





be a matrix over the ring of integers. Writing I for the 3× 3 identity matrix, we have

λI −A =





λ− 1 −2 −1
−3 λ− 2 1
2 −4 λ− 2



 .

The characteristic polynomial of A is

det ‘(λI −A) =

∣

∣

∣

∣

∣

∣

λ− 1 −2 −1
−3 λ− 2 1
2 −4 λ− 2

∣

∣

∣

∣

∣

∣

= λ3 − 5λ2 + 8λ− 16.

For the adjugate matrix we have

adj ‘(λI −A) =





λ2 − 4λ+ 8 2λ λ− 4
3λ− 4 λ2 − 3λ+ 4 −λ+ 4

−2λ+ 16 4λ− 8 λ2 − 3λ− 4





=





1 0 0
0 1 0
0 0 1



λ2 +





−4 2 1
3 −3 −1

−2 4 −3



λ+





8 0 −4
−4 4 4
16 −8 −4



 .

(10)
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Equation (6) then becomes

(λ3 − 5λ2 + 8λ− 16)I

=











1 0 0
0 1 0
0 0 1



λ2 +





−4 2 1
3 −3 −1

−2 4 −3



λ+





8 0 −4
−4 +4 4
16 −8 −4










(λI −A).

Applying the isomorphism φ to both sides of this equation, we obtain

IΛ3 − 5IΛ2 + 8IΛ− 16I

=











1 0 0
0 1 0
0 0 1



Λ2 +





−4 2 1
3 −3 −1

−2 4 −3



Λ +





8 0 −4
−4 +4 4
16 −8 −4










(Λ−A).

Note that the first factor on the right-hand side cannot be written as a single matrix in the middle
member of (10) with Λ replacing λ, since, intuitively, the formal variable λ is a scalar while Λ is a
matrix. Substituting Λ = A in this equation, we obtain that A3 − 5IA2 + 8IA− 16I = 0, i.e., that

A3 − 5A2 + 8A− 16I = 0.

7 Final comments

7.1 The adjugate polynomial also commutes

In using Lemma 1 to prove Theorem 2, we needed to make sure that in equation (9) the coefficients
of the second factor, i.e., that of φ‘(λI − A) = Λ − A commute with A. This is of course obvious,
the only coefficients being I and −A. While it was not needed in the proof, it is easy to establish

that the coefficients of the first factor, φ‘
(

(

adj ‘(λI − A)
)

)

also commute with A. This is because,

according to (3) we also have
(

det ‘(λI −A)
)

I = (λI −A)
(

adj ‘(λI −A)
)

,

and so
φ‘
(

(

det ‘(λI −A)
)

I
)

= φ‘(λI −A) φ‘
(

(

adj ‘(λI −A)
)

)

in addition to equations (6) and (9). Using the last equation together with (9) it easily follows that

the coefficients of φ‘
(

(

adj ‘(λI −A)
)

)

commute with A. We will omit the details.

7.2 Use versus mention

In the sentences “cat is and animal” and “cat is a three-letter word,” the word cat occurs in two
different meanings. First it is used the refer to the animal, second the word itself is mentioned. It
would be more correct to say that “ ‘cat’ is a three-letter word.” The source of the confusion is that
in the second sentence you use the word cat itself instead of using its name ‘cat’ (in quotes). Such
a confusion is not possible with the first sentence, since one cannot put a cat (the animal itself) in
the sentence; one is forced to use the name of the animal. The situation is similar in mathematics.
When one writes the equation 3+ 2 = 5, one does not put the actual number 3 in the equation; one
uses its name, which is 3. In other words, one mentions the number 3, i.e., uses its name, and does
not use the number itself. Such a distinction is important in some mathematical contexts.
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7.3 What are polynomials, really?

In Subsection 2.1 we described the formal definition of a polynomial, but a polynomial is really
not what was described in that subsection. A polynomial is really an expression, or a term in an
appropriate language. Given a ring R, we can more appropriately define a polynomial as follows.
First, we need to give a name to every element of the ring R, and we also need to give a name λ to
a fixed new variable. Then a polynomial is an expression of the form

n
∑

k=0

akλ
k,

where a1, a2, . . . an are names of elements of the ring R. In the definition of polynomials we will
also assume that the variable λ commutes with every element of the ring R. The evaluation operator
substitutes the name of an element of R for the variable λ. Lemma 1 describes conditions under
which certain polynomial identities are preserved under such a substitution.

Such a definition more appropriately represents what is meant by a polynomial. In such a
definition, polynomials belong to the syntax of the language describing the ring. When one studies
algebraic properties of polynomials, one needs to introduce an algebraic formalism to study the
syntax. This was done in the formal definition of polynomials above in a way that the syntactic
aspect of polynomials was only mentioned as an aside.
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