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1 The Cauchy problem for a partial differential equation

Let n be a fixed positive integer. Let t, x1, x2, . . ., xn be independent variables, where, intuitively,
t stands for time, and xi stand for position variables, and let u be the dependent variable. Consider
the differential equation

∂mu

∂tm
= F

(

t, x1, x2, . . . , xn, u, . . . ,
∂ku

∂k0t ∂k1x1 . . . ∂knxn

. . .

)

k = k0 + k1 + . . . + kn ≤ m, k0 < m;

(1)

in other words, this equation has order m, and the mth partial derivative of u by t is explicitly
expressed in a way that only involves lower derivatives with respect to t. This equation is to be
solved for t > 0 if u, ∂u/∂t,. . . , ∂tm−1/∂tm−1 are given for t = 0. The problem of solving the above
equations under these condition is called the initial value problem or Cauchy problem. There are a
number of theorems asserting the existence and uniqueness of the solutions of these type of problems
under various assumptions, the simplest being the Cauchy–Kowalevski Theorem.1 Intuitively, such
equations describe the time-evolution of a system, given the initial state of the system.

∗Written for the course Mathematics 4211 at Brooklyn College of CUNY.
1The second name refers to Sophie Kowalevski (the transliteration she herself used). There are several other

transliterations of her name. See http://en.wikipedia.org/wiki/Sofia_Kovalevskaya for the various translitera-
tions.
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2 The generalized Cauchy problem for a linear partial dif-

ferential equation

Let n be a fixed positive integer. We will consider (possibly higher order) linear differential equations
with dependent variables u and independent variables x0, x1, . . ., xn. To simplify the notation, a
sequence α = (α0, α1, . . . , αn) of nonnegative integers will be called a multi-index. The length |α|
of α will be defined as |α| = α0 + α1 + . . . + αn. For a sequence z = (z0, z1, . . . , zn) we write
zα = (zα0

0 , zα1

1 , . . . , zαn

n ). For 0 ≤ i ≤ n, we will write Di for the differential operator ∂i/∂x, and we
will write Dα = (Dα0

0 ,Dα1

1 , . . . ,Dαn

n ). Let m be a positive integer. We will consider the differential
equation

(2) P (x,D)u = f(x),

where f is a given function,

(3) P (x,D) = Pm(x,D) + lower order terms,

and

(4) Pm(x,D) =
∑

|α|=m

aα(x)Dα;

here x = (x0, x1, . . . , xn), and aα(x) are given functions. Pm(x,D) is called the principal part of
the differential operator Pm(x,D).

Let S be a smooth surface (i.e., and n dimensional submanifold of the space R
n+1 of independent

variables),2 and let n = n(x) be the normal vector (directed to a given side of the surface S) at
the point x of S. Assume that at each point x of S, u and the directional derivatives of order 1, 2,
. . ., m− 1 in the direction of S are given.3 Solving the differential equation P (x,D)u = f(x) under
these conditions is called the generalized Cauchy problem.

2.1 Transforming the generalized Cauchy problem

We introduce new variables t = φ0(x0, x1, . . . , xn), y1 = φ1(x0, x1, . . . , xn), . . ., yn = φn(x0, x1,

. . . , xn) in a neighborhood Σ of the point (x
(0)
0 , x

(0)
1 , . . . , x

(0)
n ) in such a way that in the new coordi-

nates this point is (0, 0, . . . , 0), and, in this neighborhood, the equation of the surface S is t = 0 and
the equation of a normal half-line to S in the direction of the normal vector is t = s, x1 = c1, . . . ,
xn = cn, for s ≥ 0, where s is a parameter. According to the chain rule, for any i with 0 ≤ i ≤ n we
have

(5) Di =
∂t

∂xi

∂

∂t
+

n
∑

j=1

∂yi

∂xi

∂

∂yi

.

2For easy visualization, it is best to assume that n = 2, i.e., that R
n+1 is the ordinary three-dimensional space.

3By specifying u in S and all its directional derivatives up to order m − 1 in the direction of the normal to S,
all partial derivatives of S up to order m − 1 at any point of S can be calculated, since these derivatives can be
expressed in terms of the directional derivatives normal to S and the directional derivatives in directions inside S;
the latter of course are known, because u in S is given. For all this, it is sufficient to assume the continuity of the
partial derivatives of u up to order m−1. Instead of specifying the directional derivatives in the normal direction, one
could specify the directional derivatives pointing outside the surface S – these would also be sufficient to determine
all partial derivatives of u at any point of S.

2



Hence, for α = (α0, α1, . . . , αn) with |α| = m we have

Dαu = Dα0

0 Dα1

1 . . . Dαn

n u =
∂mu

∂xα0

0 ∂xα1

1 . . . ∂xαn

n

=





n
∏

i=0

( ∂t

∂xi

∂

∂t
+

n
∑

j=1

∂yj

∂xi

∂

∂yj

)αi



 u

=
∂mu

∂tm

(

∂t

∂x0

)α0
(

∂t

∂x1

)α1

. . .

(

∂t

∂xn

)αn

+ . . . ,

where terms that only involve derivatives lower than m with respect to t are represented by the dots
at the end.4 Thus, noting that

ν = ν(x) = (ν0(x), ν1(x), . . . νn(x)) =

(

∂t

∂x0
,

∂t

∂x1
, . . . ,

∂t

∂xn

)

is the normal vector to S at a point x, we have Pm(x,D)u = P̃m(y,n)∂mu/∂tn + . . .. where
y = (t, y1, y2, . . . , yn), and, for any n + 1-tuple ξ = (ξ0, x2, . . . , ξn) we wrote ãα(y) = aα(x) and

P̃m(y, ξ) =
∑

|α|=m

ãα(y)ξα.

It is easy to see that

(6) P̃m(y, ξ) = Pm(x, ξ).

So, after transforming to the new variables, equation (2) can be written in the neighborhood Σ as

P̃m(y,n) ∂mu/∂tn + . . . = g(y),

where g(y) = f(x) is the way the function f can be written in terms of the new variables. So,
assuming Pm(x,n) 6= 0, in view of (6) we can solve this equation for ∂mu/∂tm, to obtain an
equation of form (1) in terms of the new variables.

That is, in case, the normal n of the surface S satisfies Pm(x,n) 6= 0, the generalized Cauchy
problem for S behaves nicely (as in the original Cauchy problem). If Pm(x,n) = 0, the Cauchy
problem is not expected to be solvable. The vectors n for which Pm(x,n) = 0 are called characteristic
vectors. The surfaces (more precisely, n-dimensional submanifolds of Rn+1) which are normal to
characteristic vectors are called characteristic surfaces. It is important to note that the characteristic
surfaces defined here are related, but not identical, to the characteristic curves defined for solving
first order differential equations.

In the present discussion, we only considered linear equations, though the definition of characteristic

surface can also be extended to nonlinear equations at the price of some complications; see [1, pp. 32–34]. In

case n = 1 (i.e., when there are two independent variables) “surfaces” are curves, the characteristic surfaces

are called characteristic curves, and for first order equations these are indeed identical to the characteristic

curves used for solving these equations.

4Some care must be exercised in evaluating the power of the sum of differential operators in the above equation,
since the multinomial theorem (the generalization of the binomial theorem to more than two terms) does not apply,
because the proof of that theorem relies on the commutativity of product. See §3 below.
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3 A note on noncommuting partial differential operators

Observe that the terms in the partial differential operator D in (5) do not commute. To illustrate
what happens in a simpler example, consider the differential operator

(7) D = fDx + gDy,

where f = f(x, y) and g = g(x, y) are given functions, and Dx = ∂/∂x and Dy = ∂/∂y. Multiplica-
tion by the operators D, Dx, and Dy on the right acts as simple multiplication, and multiplication
on the left acts as differentiation. For example, for functions u and v we have uDxv = uvx. Note
that fDx and gDy do not commute. In fact

(fDx)(gDy)u = fDxgDyu = fDx(gDyu) = (fDxg)(Dyu) + fgDxDyu = fgxuy + fguyx,

where the first equation is to indicate that dropping the parentheses does not affect the meaning of
the expression; the expression after the second equation is to indicate what exactly the operator Dx

acts upon; the third equation involves the use of the product rule of differentiation; also note that
in the first term after the third equation, the right parenthesis in (fDxg) terminates the scope of
Dx. On the other hand

(gDy)(fDx)u = (gDyf)(Dxu) + gfDyDxu = gfyux + gfuxy = fygux + fguyx,

where the last equation assumes that u is a nice enough function allowing the interchange of the
order of partial derivatives; for example, the continuity of uxy and uyx suffices.5 That is

(fDx)(gDy)u − (gDy)(fDx)u = fgxuy − fygux,

which can also be written as

(8) (fDx)(gDy) − (gDy)(fDx) = fgxDy − fygDx.

In calculating powers of D in (7) we can use the usual rules of algebra except that we need to take
into account that fDx and gDy do not commute. Thus

D2 = (fDx + gDy)2 = (fDx + gDy)(fDx + gDy)

= fDxfDx + fDxgDy + gDyfDx + gDygDy

= f(fDxDx + (Dxf)Dx) + f(gDxDy + (Dxg)Dy)

+ g(fDyDx + (Dyf)Dx) + g(gDyDy + (Dyg)Dy)

= f2D2
x + ffxDx + fgDxDy + fgxDy + gfDyDx + gfyDx + g2D2

y + ggyDy

= f2D2
x + 2fgDxDy + g2D2

y + (ffx + fyg)Dx + (fgx + ggy)Dy;

after the fourth equation, we used the product rule of differentiation, and in the last equation we
assume that DyDx = DxDy, which is true, assuming that these operators are applied to a function
u for which uxy and uyx are continuous, as we pointed out above. If f and g are constant functions,
then the coefficients of Dx and Dy are zero on the right-hand side; thus, in this case, we have

Dm = (fDx + gDy)m =
m

∑

k=0

(

m

k

)

fkgm−kDk
xDm−k

y

5See e.g. http://www.sci.brooklyn.cuny.edu/~mate/misc/mixedpartial.pdf for details and more subtle condi-
tions.
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for any positive integer m according to the binomial theorem. Indeed, for constant f and g the
operators fDx and gDy do commute, so the binomial theorem is applicable,6 assuming that Dm is
applied to a function whose mth partial derivatives are continuous, so that in any mth derivative
the order of Dx and Dy makes no difference. Even when f and g are not constant, we have

(9) Dm = (fDx + gDy)m =
m

∑

k=0

(

m

k

)

fkgm−kDk
xDm−k

y + lower order terms,

where the lower order terms are of form ck,lD
k
xDl

y for k + l < m, with ck,l = ck,l(x, y) being certain
functions of x and y. This is because, in calculating the power (fDx + gDy)m, when using the
product rule of differentiation, if Dx or Dy is diverted to differentiate other parts of the product,
the “unused” part Dk

xDl
y on the right of the term will have total power k + l < m.

One can say this in a different way. For a function H from the set M = {1, 2, . . . , m} into the set

{fDx, gDy} (i.e., H(k) = fDx or gDy for k with 1 ≤ k ≤ m), write D(H)
def
= H(1)H(2) . . . H(m).

That is, D(H) is a product of m differential operators, each of which is either fDx or gDy. If σ is
a permutation of the set M , i.e., if σ is a one-to-one function from M onto M , we can then write
D(H ◦ σ) = H(σ(1))H(σ(2)) . . . H(σ(m)). Then the operator D(H) − D(H ◦ σ) has order lower than
m. More generally, if σ1 and σ2 are two permutations of M then

(10) D(H ◦ σ1) − D(H ◦ σ2)

has order lower than m. This is clear from (8) if σ1 and σ2 are identical except for one interchange of
adjacent values; that is, if there is an i with 1 ≤ i < m such that σ1(i) = σ2(i + 1), σ1(i + 1) = σ2(i),
and σ1(j) = σ2(j) for every j with 1 ≤ j ≤ m such that j 6= i, i + 1. Since for any two permutations σ1

and σ2 there is a sequence of permutations ρ1, ρ2, . . ., ρN such that ρ1 = σ1, ρN = σ2, and for any k with
1 ≤ k < N , the permutations ρk and ρk+1 are identical except for one interchange of adjacent values. Hence
(10) follows for any two permutations σ1 and σ2. Therefore, ignoring lower order terms in the proof of the
binomial theorem, we obtain

D
m = (fDx + gDy)m =

m
X

k=0

 

m

k

!

(fDx)k(gDy)m−k + lower order terms

instead of (9), which is a more natural form of essentially the same equation.

That is, the principal part of the power Dm = (fDx + gDy)m is still given by the binomial
theorem. This observation about the principal part of powers of partial differential operator in (7)
can be extended to powers of sums containing more than two terms, such as the operator in (5), by
using the multinomial theorem instead of the binomial theorem.7
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