
DETERMINANTS1

Cyclic permutations. A permutation is a one-to-one mapping of a set onto itself. A cyclic permutation,
or a cycle, or a k-cycle, where k ≥ 2 is an integer, is a permutation σ where for some elements i1, i2, . . . ,
ik, we have σ(i1) = i2, σ(i2) = i3, . . . , σ(ik−1) = ik, σ(ik) = i1. A standard notation for this permutation
is σ = (i1i2 . . . ik). One often considers this σ as being a permutation of some set M that includes the set
{i1, i2, . . . , ik} such that σ(i) = i for any element of M that is not in this set. The two-cycle (ii) is the
identity mapping. Such a two-cycle is not a proper two-cycle, a proper two-cycle being a two-cycle (ij) for
i and j distinct. A proper two-cycle is also called a transposition.

Lemma. Every permutation of a finite set can be written as a product of transpositions.

Proof. It is enough to consider permutations of the set Mn
def
= {1, 2, . . . , n}. We will use induction on n.

The Lemma is certainly true for n = 1, in which case every permutation of Mn (the identity mapping being
the only permutation) can be written as a product of zero number of transpositions (the empty product of
mappings will be considered to be the identity mapping). Let σ be a permutation of the set Mn, and assume
σ(n) = i. Then

(in)σ(n) = n

(since i = σ(n) and (in)(i) = n). So the permutation ρ = (in)σ restricted to the set Mn−1 is a permutation
of this latter set. By induction, it can be written as a product τ1 . . . τm of transpositions, and so

σ = (in)−1ρ = (in)ρ = (in)τ1 . . . τm,

where for the second equality, one needs to note that, clearly, the inverse (in)−1 of (in) is (in) itself. �

One can use the idea of the proof of the above Lemma, or else one can use direct calculation, to show
that if i, j, and k are distinct elements then

(ijk) = (ik)(ij).

For example, (ij)(j) = i and (ik)(i) = k, and so (ik)(ij)(j) = k, which agrees with the equation (ijk)(j) = k.

Even and odd permutations. We start with the following

Lemma. The identity mapping cannot be written as a product of an odd number of transpositions.

Proof. We will assume that the underlying set of the permutations is Mn, and we will use induction on
n. For n = 1 the statement is certainly true; namely, there are no transpositions on M1, so the identity
mapping can be represented only as a product of a zero number of transpositions. According to the last
displayed equation, if i, j, and n are distinct elements of Mn, we have (nij) = (nj)(ni), and we also have
(nij) = (ijn) = (in)(ij) = (ni)(ij), and so

(nj)(ni) = (ni)(ij).

Moreover, in a similar way, (nij) = (jni) = (ji)(jn) = (ij)(nj). Comparing this with one of the expressions
equal to (nij) above we obtain

(ij)(nj) = (ni)(ij).
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Further, we clearly have
(ni)(ni) = ι,

where ι (the Greek letter iota) stands for the identity mapping (often represented by the empty product.
Finally, if i, j, k, n are distinct, then we have

(ij)(nk) = (nk)(ij).

Using these four displayed equation, all transpositions containing n in the product can be moved all the way
to the left in such a way that in the end either no transposition will contain n, or at most one transposition
containing n will remain all the way to the left. Each application of these identities changes the number
of transpositions in the product by an even number; in fact, the third of these identities decreases the the
number of transpositions by two, and the others do no change the number of transpositions.

A product σ = (ni)τ1 . . . τm, where i is distinct from n, and the transpositions τ1, . . . τm do not contain
n cannot be the identity mapping (since σ(n) = i), so the only possibility that remains is that we end up
with a product of transpositions representing the identity mapping where none of the transpositions contain
n. Then we can remove n from the underlying set; since, by the induction hypothesis, the identity mapping
on Mn−1 can only be represented as a product of an even number of transpositions, we must have started
with an even number of transpositions to begin with.

Corollary. A permutation cannot be written as a product both of an even number of transpositions and of
an odd number of transpositions.

Proof. Assume that for a permutation σ we have σ = τ1 . . . τk and σ = ρ1 . . . ρl where k is even, l is odd,
and τ1, . . . , τk, and ρ1, . . . , ρl, are transpositions. The the identity mapping can be written as a product

ι = σσ−1 = τ1 . . . τk(ρ1 . . . ρl)
−1 = τ1 . . . τk(ρl)

−1 . . . (ρ1)
−1 = τ1 . . . τkρl . . . ρ1.

Since the right-hand side contains an odd number of transpositions, this is impossible according to the last
Lemma. �

A permutation that can be written as a product of an even number of transpositions is called an even
permutation, and a permutation that can be written as a product of an odd number of transpositions is called
an odd permutation. The function sgn (sign, or Latin signum) on permutations of a finite set is defined as
sgn(σ) = 1 if σ is an even permutation, and sgn(σ) = −1 if σ is an odd permutation, Often, it is expedient
to extend the signum function to mappings of a finite set into itself that are not permutations (i.e, that are
not one-to-one) by putting sgn(σ) = 0 if σ is not one-to-one.

The distributive rule. Let (aij) be an n× n matrix. Then
n
∏

i=1

n
∑

j=1

aij =
∑

σ

n
∏

i=1

aiσ(i),

where σ runs over all mappings (not necessarily one-to-one) of the set Mn = {1, 2, . . . , n} into itself. The
left-hand side represent a product of sums. The right-hand side multiplies out this product by taking one
term out of each of these sums, and adding up all the products that can be so formed. The equality of these
two sides is obtained by the distributivity of multiplication over addition. For example, for n = 2, the above
equation says that

(a11 + a12)(a21 + a22) = a1σ1(1)a2σ1(2) + a1σ2(1)a2σ2(2) + a1σ3(1)a2σ3(2) + a1σ4(1)a2σ4(2),

where σ1(1) = 1, σ1(2) = 1, σ2(1) = 1, σ2(2) = 2, σ3(1) = 2, σ3(2) = 1, σ4(1) = 2, σ4(2) = 2.

Determinants. The determinant detA of an n× n matrix A = (aij) is defined as

detA =
∑

σ

sgn(σ)
n
∏

i=1

aiσ(i),

where σ runs over all mappings (not necessarily one-to-one) of the set Mn = {1, 2, . . . , n} into itself. The
above formula is called the Leibniz formula for determinants. Sometimes one writes det(A) instead of detA.
Since sgn(σ) = 0 unless σ is a permutation, one may say instead that σ runs through all permutations
of the set of the set Mn = {1, 2, . . . , n}. However, for some considerations (e.g., for the application of the
distributive rule above) it may be expedient to say that σ runs through all mappings, rather than just
permutations.
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Multiplications of determinants. The product of two determinants of the same size is the determinant
of the product matrix; that is:

Lemma. Let A = (aij) and B = (bij) be two n× n matrices. Then

det(AB) = det(A) det(B).

Proof. With σ and ρ running over all permutations of Mn, we have

det(A) det(B) =
∑

σ,ρ

sgn(σ) sgn(ρ)

( n
∏

i=1

aiσ(i)

)( n
∏

i=1

biρ(i)

)

=
∑

σ,ρ

sgn(ρ) sgn(σ)

( n
∏

i=1

aiσ(i)

)( n
∏

i=1

bσ(i)ρσ(i)

)

=
∑

σ,ρ

sgn(ρσ)

n
∏

i=1

aiσ(i)bσ(i)ρσ(i)

On the right-hand side of the second equality, the product
∏n

i=1 bσ(i)ρσ(i) is just a rearrangement of the prod-

uct
∏n

i=1 biρ(i), since σ is a one-to-one mapping. The third equality takes into account that sgn(ρ) sgn(σ) =
sgn(ρσ) (since, if ρ can be written as the product of k transpositions and σ as the product of l transpositions,
ρσ can be written as the product of k+l transpositions). Writing ρσ = π, the permutations π and σ uniquely
determine ρ, so the right-hand side above can be written as

∑

σ,π

sgn(π)
n
∏

i=1

aiσ(i)bσ(i)π(i) =
∑

σ

∑

π

sgn(π)
n
∏

i=1

aiσ(i)bσ(i)π(i).

Here σ and π run over all permutations of Mn. Now we want to change our point of view in that we want
to allow σ to run over all mappings of Mn into itself on the right-hand side, while we still restrict π to
permutations.2 To show that this is possible, we will show that the inner sum is zero whenever σ is not a
permutation. In fact, assume that for some distinct k and l in Mn we have σ(k) = σ(l). Then, denoting by
(kl) the transposition of k and l, the permutation π(kl) will run over all permutations of Mn as π runs over
all permutations of Mn. Hence, the first equality next is obvious:

∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) =
∑

π

sgn(π(kl))

n
∏

i=1

aiσ(i)bσ(i)π(kl)(i)

= −
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(kl)(i) = −
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i).

The second equality expresses the fact that sgn(π(kl)) = − sgn(π), and the third equality expresses the fact
that σ(k) = σ(l), and the equation just reflects the interchange of the factors corresponding to i = k and
i = l in the product. Rearranging this equation, it follows that

2
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) = 0,

and so
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) = 0,

as we wanted to show.3

2One might ask why did we not extend the range of σ to all mappings earlier, when this would have been easy since we had
sgn(σ) in the expression, which is zero if σ is not one-to-one. The answer is that we wanted to make sure that π = ρσ is a
permutation, and if σ is not one-to-one then π = ρσ is not one-to-one, either.

3The theory of determinants can be developed for arbitrary rings. For rings of characteristic 2 (in which one can have
a + a = 0 while a 6= 0 – in fact, a + a = 0 holds for every a), the last step in the argument is not correct. Is is, however,
easy to change the argument in a way that it will also work for rings of characteristic 2. To this end, one needs to split up the

summation for π into two parts such that in the first part π runs over all even permutations; then π(kl) will run over all odd
permutations, and then one needs to show that these two parts of the sum cancel each other.
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Therefore, in the last sum expressing det(A) det(B) one can allow σ to run over all mappings of Mn into
itself, and not just over permutations (while π will still run over all permutations). We have

det(A) det(B) =
∑

σ

∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) =
∑

π

sgn(π)
∑

σ

n
∏

i=1

aiσ(i)bσ(i)π(i)

=
∑

π

sgn(π)

n
∏

i=1

n
∑

k=1

aikbkπ(i) = det

( n
∑

k=1

aikbkj

)

i,j

= det(AB);

the third equality follows by the distributive rule mentioned above, and the last equality holds in view of
the definition of the product matrix AB. �

Simple properties of determinants. For a matrix A, detA = detAT , where AT denotes the transpose
of A. Indeed, if A = (aij) then, with σ running over all permutations of Mn, we have

detAT =
∑

σ

sgn(σ)

n
∏

i=1

aσ(i)i =
∑

σ

sgn(σ)

n
∏

i=1

aiσ−1(i) =
∑

σ

sgn(σ−1)

n
∏

i=1

aiσ−1(i)

=
∑

σ

sgn(σ)

n
∏

i=1

aiσ(i) = detA;

here the second equality represents a change in the order in of the factors in the product, the third equality
is based on the equality sgn(σ) = sgn(σ−1), and the fourth equality is obtained by replacing σ−1 with σ,
since σ−1 runs over all permutations of Mn, just as σ does.

If one interchanges two columns of a determinant, the value determinant gets multiplied by −1. Formally,
if k, l ∈ Mn are distinct, then det(aij)i,j = − det(ai (kl)(j))i,j , where, as usual, (kj) denotes a transposition.
Indeed, with σ running over all permutations of Mn, we have

det(ai (kl)(j))i,j =
∑

σ

sgn(σ)

n
∏

i=1

ai σ(kl)(i) = −
∑

σ

sgn(σ(kl))

n
∏

i=1

ai σ(kl)(i)

= −
∑

σ

sgn(σ)
n
∏

i=1

aiσ(i) = − detA;

the second equality holds, since sgn(σ(kl)) = − sgn(σ), and the third equality is obtained by replacing σ(kl)
by σ, since σ(kl) runs over all permutations of Mn, just as σ does. Of course, since detAT = detA, a similar
statement can be made when one interchanges rows.

If two columns of A are identical, then detA = 0. Indeed, by interchanging the identical columns, one
can conclude that detA = − detA.4

If we multiply a row of a determinant by a number c, then the determinant gets multiplied by c. Formally:
if A = (aij) B = (bij), and for some k ∈ Mn and some number c, we have bij = aij if i 6= k and we have
bkj = cakj then detB = c detA. This is easy to verify by factoring out c from each of the products in the
defining equation of the determinant detB.

If two determinants are identical except for one row, then the determinant formed by adding the elements
in the different rows, while keeping the rest of the elements unchanged, the two determinants get added.
Formally, if A = (aij) B = (bij), and for some k ∈ Mn we have bij = aij if i 6= k,and C = (cij), where we
have cij = aij if i 6= k,and and ckj = akj + bkj , then detC = detA+detB. This is again easy to verify from
the defining equation of determinants.

If one adds the multiple of a row to another row in a determinant, then the value of the determinant does
not change. To see this, note that adding c times row l to row k to a determinant amounts to adding to the
determinant c times a second determinant in which rows k and l are identical; since this second determinant
is zero, nothing will change.

4This argument does not work for rings of characteristic 2. In order to establish the result for this case as well, one needs

to split up the sum representing the determinant into sums containing even and odd permutations, respectively, as pointed out
in the previous footnote.
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Expansion of a determinant by a row. Given an n × n matrix A = (aij), denote by A(i, j) the
(n− 1)× (n− 1) matrix obtained by deleting the ith row and jth column of the matrix.

Lemma. If a11 is the only (possibly) nonzero element of the first row of A, then

detA = a11 detA(1, 1).

By “(possibly) nonzero” we mean that the Lemma of course applies also in the case when we even have
a11 = 0.

Proof. With σ running over all permutations of Mn and ρ running over all permutations of {2, . . . , n}, we
have

detA =
∑

σ

sgn(σ)

n
∏

i=1

aiσ(i) =
∑

σ:σ(1)=1

sgn(σ)

n
∏

i=1

aiσ(i)

=
∑

σ:σ(1)=1

a11 sgn(σ)
n
∏

i=2

aiσ(i) = a11
∑

ρ

sgn(ρ)
n
∏

i=2

aiρ(i) = a11 detA(1, 1);

for the second equality, note that the product on the left-hand side of the second equality is zero unless
σ(1) = 1. For the fourth equality, note that if ρ is the restriction to the set {2, . . . , n} of a permutation σ
of Mn with σ(1) = 1, then sgn(ρ) = sgn(σ).

Corollary. . If for some k, l ∈ Mn, akl is the only (possibly) nonzero element in the kth row of A, then
detA = (−1)k+lakl detA(k, l).

Proof. The result can be obtained from the last Lemma by moving the element akl into the top left corner
(i.e., into position (1, 1)) of the matrix A. However, when doing this, it will not work to interchange the
kth row of the matrix A with the first row, since this will change the order of rows in the submatrix
corresponding to the element. In order not to disturb the order of rows in the submatrix A(k, l), one always
needs to interchange adjacent rows. Thus, one can move the kth row into the position of the first row by
first interchanging rows k and k−1, then rows k−1 and k−2, then rows k−2 and k−3, etc. After bringing
the element akl into the first row, one can make similar column interchanges. While doing so, one makes
altogether k − 1 + l − 1 row and column interchanges, hence the factor (−1)k+l = (−1)(k−1)+(l−1) in the
formula to be proved.

The following theorem describes the expansion of a determinant by a row. It is usually attributed to
Pierre-Simon Laplace (1749–1827), but it was known to Gottfried Wilhelm Leibniz (1646–1716), who invented
determinants of order greater than two.

Theorem. For any integer k ∈ Mn we have

detA =

n
∑

j=1

(−1)i+jaij detA(i, j).

Proof. Let the matrix Bj be the matrix that agrees with A except for row k, and in row k all elements are
zero except that the element in position (k, j) is akj . In view of the last Corollary, the equation to be proved
can be written as

detA =

n
∑

j=1

detBj ;

this equation can be established by the (repeated) use of the addition rule of determinants.

The number Aij
def
= (−1)i+j detA(i, j) is often called the cofactor of the entry aij of the matrix A; then

the above equation can be written as

detA =
n
∑

j=1

aijAij .
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Since detA = detAT , one can obtain a similar expansion of a determinant by a column:

detA =

n
∑

i=1

aijAij .

The expansion
n
∑

i=1

aikAij .

for some j and k with 1 ≤ j, k ≤ n represent the expansion of a determinant by the jth column that has the
elements aik in this column instead of the elements aij . If j = k then this is in fact the determinant of the
matrix A; if j 6= k then this represent a determinant whose jth and kth columns are identical, and one of
the simple properties of determinants says that such a determinant is 0. Therefore

n
∑

i=1

aikAij = δjk detA,

where δjk is Kronecker’s delta, defined as δjk = 1 if j = k and δjk = 0 if j 6= k. This equation can also be
written as

n
∑

i=1

aik
Aij

detA
= δjk.

This equation can also be expressed as a matrix product. In fact, with the matrix B = (bij) with bij =
Aji/detA, this equation can be written simply as AB = I, where I is the n × n identity matrix. That is,
the matrix B is the inverse of A. In other words, we have

A−1 =

(

Aij

detA

)T

=

(

Aij

detA

)

j,i

=

(

Aji

detA

)

i,j

.

To explain the notation here, the subscripts j, i on the outside in the middle member indicates that the entry
listed between the parenthesis is in the j row and the ith column. The matrix in the middle is obviously
the same as the one on the right, where the subscripts outside indicate that the entry listed between the
parenthesis is in the i row and the jth column.5

Cramer’s rule. Consider the system Ax = b of linear equations, where A = (aij) is an n× n matrix, and
x = (xi)

T and b = (bi)
T are column vectors. For a fixed k with 1 ≤ k ≤ n, multiplying the ith equation

∑n

j=1 aijxj = bi by the cofactor Aik, and adding these equations for i with 1 ≤ i ≤ n we obtain for the
left-hand side

n
∑

i=1

Aik

n
∑

j=1

aijxj =

n
∑

j=1

xj

n
∑

i=1

aijAik =

n
∑

j=1

xjδjk detA = xk detA

So we obtain the equation

xk detA =

n
∑

i=1

biAik.

Assuming that detA 6= 0,6 we have

xk =

∑n

i=1 biAik

detA
=

detBk

detA
,

where Bk is the matrix where the kth column of A has been replaced by the right-hand side b; the second
equation holds because the numerator in the middle member represents the expansion of detBk. This
determinant is called the determinant of the unknown xk; the determinant detA is called the determinant
of the system. The above equation expressing xk is called Cramer’s rule. Cramer’s rule is of theoretical
interest, but it is not a practical method for the numerical solution of a system of linear equations, since the
calculations of the determinants in it are time consuming; the practical method for the solution of a system
of linear equations is Gaussian elimination.

5If, as usual, the subscripts on the outside are omitted, some agreed-upon unspoken assumption is made. For example, one
may assume that the letter that comes first in the alphabet refers to the rows.

6If detA = 0, then it is easy to show that the system of equations Ax = b does not have a unique solution – i.e., either it
has no solution, or it has infinitely many solutions. In fact, in this case the rank of the matrix A is less than n.
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