THE UNIQUENESS OF THE ROW ECHELON FORM¹

Let M be a matrix. A matrix M' is called a row echelon form of M if the following conditions are satisfied.

- (i) M' is obtained from M by a finite number of the following three operations, called *elementary row* operations: 1) interchange of two rows, 2) multiplying a row by a nonzero scalar, and 3) adding a scalar multiple of a row to another row.
- (ii) Each row of M' starts with either with a 1, or with a number of zeros followed by a 1, or the row consists entirely of zeros. The first nonzero entry in a row of M' is called the leading entry of that row; according to what we said, this leading entry must be 1.
- (iii) If l > k > 0, and row l in M' has as a nonzero entry, then row k must also have a nonzero entry, and the leading entry of row k must occur earlier than the leading entry of row l. In particular, this means that all purely zero rows must occur at the bottom of matrix M'.
- (iv) If a column of M' contains a leading entry (of a row), then all other entries in this column must be 0.

Theorem. The row echelon form of a matrix is unique.

Proof. In the proof, we will need the following notation. If a matrix M has at least n columns, write $M \upharpoonright n$ for the submatrix resulting from M by deleting all columns after the nth column (in particular, if M has exactly n columns then $M \upharpoonright n = M$). $M \upharpoonright n$ is called the restriction of M to n columns.

The assertion says that a matrix M cannot have two different row echelon forms. Assume, on the contrary that both M_1 and M_2 are row echelon forms of M, and $M_1 \neq M_2$. First notice that, in a row echelon form of M, a column consists of all zeros if and only if the corresponding column in M consists only of zeros; this is because the elementary row operations cannot make all zeros from a nonzero column. Further, observe that the first nonzero column in a row echelon form of M starts with a 1, and all other entries of this column are zero. Therefore, the initial all-zero columns (if any) of M_1 and M_2 , and the first column containing a leading entry in M_1 and M_2 must be the same (note that M cannot be the zero matrix, since then its row echelon form would also be the zero matrix, so M would not have two different row echelon forms; so the row echelon form of M must have at least one nonzero column).

So, assume that of M_1 and M_2 agree up to the *n*th column, and the first column that is different in M_1 and M_2 is the (n + 1)st column.² Then $M_1 \upharpoonright (n + 1)$ and $M_2 \upharpoonright (n + 1)$ are two different row echelon forms of the matrix $M \upharpoonright (n + 1)$. Write $A = M \upharpoonright n$, and let **b** be the (n + 1)st column of M. Then $(A, \mathbf{b}) = M \upharpoonright (n + 1)$. Similarly, write $D = M_1 \upharpoonright n = M_2 \upharpoonright n$, and let **f** be the (n + 1)st column of M_1 and **g**, the (n + 1)st column of M_2 . Then $(D, \mathbf{f}) = M_1 \upharpoonright (n + 1), (D, \mathbf{g}) = M_2 \upharpoonright (n + 1),$ and $\mathbf{f} \neq \mathbf{g}$. As we explained above, we have $n \ge 1$, the initial zero columns of M_1 and M_2 and the first column containing a leading entry in M_1 and M_2 must be the same, so D must have at least one leading entry.

Consider the system of linear equations $A\mathbf{x} = \mathbf{b}$, where \mathbf{x} is an $n \times 1$ matrix (a column vector of length n). This system of equations is equivalent to both of the systems $D\mathbf{x} = \mathbf{f}$ and $D\mathbf{x} = \mathbf{g}$. We will discuss the solvability of the system of equations $D\mathbf{x} = \mathbf{f}$ (a similar discussion applies to the system $D\mathbf{x} = \mathbf{g}$). Label the columns D containing a leading entry as $l(1), l(2), \ldots$, and label the columns not containing a leading entry as $z(1), z(2), \ldots$. Since, as we mentioned above, D contains at least one leading entry, l(1) is always

¹Notes for Course Mathematics 10.1 at Brooklyn College of CUNY. Attila Máté, September 13, 2009.

²That is, $M_1 \upharpoonright n = M_2 \upharpoonright n$ and $M_1 \upharpoonright (n+1) \neq M_2 \upharpoonright (n+1)$.

defined. As an example, this labeling for a matrix D is shown here:

$$D = \begin{pmatrix} l(1) & z(1) & l(2) & z(2) & z(3) & l(3) & z(4) & l(4) & z(5) \\ 1 & 2 & 0 & -3 & 2 & 0 & 4 & 0 & 2 \\ 0 & 0 & 1 & -2 & 3 & 0 & 3 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix};$$

that is, l(1) = 1, l(2) = 3, l(3) = 6, l(4) = 8, and z(1) = 2, z(2) = 4, z(3) = 5, z(4) = 7, z(5) = 9. Using this labeling, the solutions of the equation $D\mathbf{x} = \mathbf{f}$ can be easily described; however, here we need to know only somewhat less. Namely, we need to know the following: 1) If column f of the matrix (D, f) contains a leading entry then the equation is unsolvable. Continuing the previous example, in this case the situation we are facing is as follows:

Here we somewhat offset the last column of the matrix to indicate that this column corresponds to the right-hand sides of the equation. This system of equation is unsolvable, since the fifth equation requires $0x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7 + 0x_8 + 0x_9 = 1$, that is, 0 = 1. On the other hand, if the last column of the matrix the matrix does not contain a leading entry, then the equation is solvable. This is easy to see, but the best way to visualize it is to look at a continuation of the above example:

In this example, the corresponding system of equations can be written as

or else as

$$\begin{array}{ccccccc} x_{l(1)}+2x_{z(1)} & & -3x_{z(2)}+2x_{z(3)} & & +4x_{z(4)} & & +2x_{z(5)}=f_1 \\ & & x_{l(2)}-2x_{z(2)}+3x_{z(3)} & & +3x_{z(4)} & & +2x_{z(5)}=f_2 \\ & & & x_{l(3)}+3x_{z(4)} & & +3x_{z(5)}=f_3 \\ & & & & x_{l(4)}+4x_{z(5)}=f_4 \end{array}$$

In the example, $x_{l(1)} = x_1 = f_1$, $x_{l(2)} = x_3 = f_2$, $x_{l(3)} = x_6 = f_3$, $x_{l(4)} = x_8 = f_4$, and $x_{z(1)} = x_2 = x_{z(2)} = x_4 = x_{z(3)} = x_5 = x_{z(4)} = x_7 = x_{z(5)} = x_9 = 0$ is a solution of the system equations (there are other solutions, but this is of no interest to us here). In general, if $f^T = [f_1, f_2, ...]$, then a solution of the equation $D\mathbf{x} = \mathbf{f}$ is $x_{l(1)} = f_1$, $x_{l(2)} = f_2$, ..., and $x_{z(1)} = x_{z(2)} = ... = 0$.

 $^{^{3}}$ To save space, we describe a column vector here as the transpose of a row vector, since a row vector is easier to print.

Using this, we can complete the proof as follows. If \mathbf{x} is a solution of the equation $A\mathbf{x} = \mathbf{b}$, then \mathbf{x} is also a solution of the equations $D\mathbf{x} = \mathbf{f}$ and $D\mathbf{x} = \mathbf{g}$, and then $\mathbf{f} = D\mathbf{x} = \mathbf{g}$, showing that $\mathbf{f} = \mathbf{g}$, contradicting our assumption that $\mathbf{f} \neq \mathbf{g}$. If the equation $A\mathbf{x} = \mathbf{b}$ is unsolvable, then the equation $D\mathbf{x} = \mathbf{f}$ is also unsolvable. In this case the column \mathbf{f} of (D, \mathbf{f}) contains a leading entry in the first row in which the matrix A contains all zeros. The same argument shows that the column \mathbf{g} of (D, \mathbf{g}) contains a leading entry at the same place. This shows that, $\mathbf{f} = \mathbf{g}$ again (because the leading entry is 1, and all other entries are 0 in both \mathbf{f} and \mathbf{g}). This contradiction completes the proof. \Box