THE UNIQUENESS OF THE ROW ECHELON FORM ${ }^{1}$

Let M be a matrix. A matrix M^{\prime} is called a row echelon form of M if the following conditions are satisfied.
(i) M^{\prime} is obtained from M by a finite number of the following three operations, called elementary row operations: 1) interchange of two rows, 2) multiplying a row by a nonzero scalar, and 3) adding a scalar multiple of a row to another row.
(ii) Each row of M^{\prime} starts with either with a 1 , or with a number of zeros followed by a 1 , or the row consists entirely of zeros. The first nonzero entry in a row of M^{\prime} is called the leading entry of that row; according to what we said, this leading entry must be 1 .
(iii) If $l>k>0$, and row l in M^{\prime} has as a nonzero entry, then row k must also have a nonzero entry, and the leading entry of row k must occur earlier than the leading entry of row l. In particular, this means that all purely zero rows must occur at the bottom of matrix M^{\prime}.
(iv) If a column of M^{\prime} contains a leading entry (of a row), then all other entries in this column must be 0 .

Theorem. The row echelon form of a matrix is unique.

Proof. In the proof, we will need the following notation. If a matrix M has at least n columns, write $M \upharpoonright n$ for the submatrix resulting from M by deleting all columns after the nth column (in particular, if M has exactly n columns then $M \upharpoonright n=M) . M \upharpoonright n$ is called the restriction of M to n columns.

The assertion says that a matrix M cannot have two different row echelon forms. Assume, on the contrary that both M_{1} and M_{2} are row echelon forms of M, and $M_{1} \neq M_{2}$. First notice that, in a row echelon form of M, a column consists of all zeros if and only if the corresponding column in M consists only of zeros; this is because the elementary row operations cannot make all zeros from a nonzero column. Further, observe that the first nonzero column in a row echelon form of M starts with a 1 , and all other entries of this column are zero. Therefore, the initial all-zero columns (if any) of M_{1} and M_{2}, and the first column containing a leading entry in M_{1} and M_{2} must be the same (note that M cannot be the zero matrix, since then its row echelon form would also be the zero matrix, so M would not have two different row echelon forms; so the row echelon form of M must have at least one nonzero column).

So, assume that of M_{1} and M_{2} agree up to the nth column, and the first column that is different in M_{1} and M_{2} is the $(n+1)$ st column. ${ }^{2}$ Then $M_{1} \upharpoonright(n+1)$ and $M_{2} \upharpoonright(n+1)$ are two different row echelon forms of the matrix $M \upharpoonright(n+1)$. Write $A=M \upharpoonright n$, and let \mathbf{b} be the $(n+1)$ st column of M. Then $(A, \mathbf{b})=M \upharpoonright(n+1)$. Similarly, write $D=M_{1} \upharpoonright n=M_{2} \upharpoonright n$, and let \mathbf{f} be the $(n+1)$ st column of M_{1} and \mathbf{g}, the $(n+1)$ st column of M_{2}. Then $(D, \mathbf{f})=M_{1} \upharpoonright(n+1),(D, \mathbf{g})=M_{2} \upharpoonright(n+1)$, and $\mathbf{f} \neq \mathbf{g}$. As we explained above, we have $n \geq 1$, the initial zero columns of M_{1} and M_{2} and the first column containing a leading entry in M_{1} and M_{2} must be the same, so D must have at least one leading entry.

Consider the system of linear equations $A \mathbf{x}=\mathbf{b}$, where \mathbf{x} is an $n \times 1$ matrix (a column vector of length n). This system of equations is equivalent to both of the systems $D \mathbf{x}=\mathbf{f}$ and $D \mathbf{x}=\mathbf{g}$. We will discuss the solvability of the system of equations $D \mathbf{x}=\mathbf{f}$ (a similar discussion applies to the system $D \mathbf{x}=\mathbf{g}$). Label the columns D containing a leading entry as $l(1), l(2), \ldots$, and label the columns not containing a leading entry as $z(1), z(2), \ldots$ Since, as we mentioned above, D contains at least one leading entry, $l(1)$ is always

[^0]defined. As an example, this labeling for a matrix D is shown here:
\[

D=\left($$
\begin{array}{ccccccccc}
l(1) & z(1) & l(2) & z(2) & z(3) & l(3) & z(4) & l(4) & z(5) \\
1 & 2 & 0 & -3 & 2 & 0 & 4 & 0 & 2 \\
0 & 0 & 1 & -2 & 3 & 0 & 3 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$\right) ;
\]

that is, $l(1)=1, l(2)=3, l(3)=6, l(4)=8$, and $z(1)=2, z(2)=4, z(3)=5, z(4)=7, z(5)=9$. Using this labeling, the solutions of the equation $D \mathbf{x}=\mathbf{f}$ can be easily described; however, here we need to know only somewhat less. Namely, we need to know the following: 1) If column f of the matrix (D, f) contains a leading entry then the equation is unsolvable. Continuing the previous example, in this case the situation we are facing is as follows:

$$
(D, \mathbf{f})=\left(\begin{array}{rrrrrrrrrr}
1 & 2 & 0 & -3 & 2 & 0 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 & 3 & 0 & 3 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Here we somewhat offset the last column of the matrix to indicate that this column corresponds to the right-hand sides of the equation. This system of equation is unsolvable, since the fifth equation requires $0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}+0 x_{6}+0 x_{7}+0 x_{8}+0 x_{9}=1$, that is, $0=1$. On the other hand, if the last column of the matrix the matrix does not contain a leading entry, then the equation is solvable. This is easy to see, but the best way to visualize it is to look at a continuation of the above example:

$$
(D, \mathbf{f})=\left(\begin{array}{rrrrrrrrrr}
1 & 2 & 0 & -3 & 2 & 0 & 4 & 0 & 2 & f_{1} \\
0 & 0 & 1 & -2 & 3 & 0 & 3 & 0 & 5 & f_{2} \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 3 & f_{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & f_{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

In this example, the corresponding system of equations can be written as

$$
\begin{array}{lrrr}
x_{1}+2 x_{2} \quad-3 x_{4}+2 x_{5} & +4 x_{7} & +2 x_{9}=f_{1} \\
x_{3}-2 x_{4}+3 x_{5} & +3 x_{7} & +2 x_{9}=f_{2} \\
& x_{6}+3 x_{7} & +3 x_{9}=f_{3} \\
& & x_{8}+4 x_{9}=f_{4},
\end{array}
$$

or else as

$$
\begin{array}{llll}
x_{l(1)}+2 x_{z(1)} & -3 x_{z(2)}+2 x_{z(3)} & +4 x_{z(4)} & +2 x_{z(5)}=f_{1} \\
& x_{l(2)}-2 x_{z(2)}+3 x_{z(3)} & +3 x_{z(4)} & +2 x_{z(5)}=f_{2} \\
& & x_{l(3)}+3 x_{z(4)} & +3 x_{z(5)}=f_{3} \\
& & & x_{l(4)}+4 x_{z(5)}=f_{4} .
\end{array}
$$

In the example, $x_{l(1)}=x_{1}=f_{1}, x_{l(2)}=x_{3}=f_{2}, x_{l(3)}=x_{6}=f_{3}, x_{l(4)}=x_{8}=f_{4}$, and $x_{z(1)}=x_{2}=$ $x_{z(2)}=x_{4}=x_{z(3)}=x_{5}=x_{z(4)}=x_{7}=x_{z(5)}=x_{9}=0$ is a solution of the system equations (there are other solutions, but this is of no interest to us here). In general, if $f^{T}=\left[f_{1}, f_{2}, \ldots\right],{ }^{3}$ then a solution of the equation $D \mathbf{x}=\mathbf{f}$ is $x_{l(1)}=f_{1}, x_{l(2)}=f_{2}, \ldots$, and $x_{z(1)}=x_{z(2)}=\ldots=0$.

[^1]Using this, we can complete the proof as follows. If \mathbf{x} is a solution of the equation $A \mathbf{x}=\mathbf{b}$, then \mathbf{x} is also a solution of the equations $D \mathbf{x}=\mathbf{f}$ and $D \mathbf{x}=\mathbf{g}$, and then $\mathbf{f}=D \mathbf{x}=\mathbf{g}$, showing that $\mathbf{f}=\mathbf{g}$, contradicting our assumption that $\mathbf{f} \neq \mathbf{g}$. If the equation $A \mathbf{x}=\mathbf{b}$ is unsolvable, then the equation $D \mathbf{x}=\mathbf{f}$ is also unsolvable. In this case the column \mathbf{f} of (D, \mathbf{f}) contains a leading entry in the first row in which the matrix A contains all zeros. The same argument shows that the column \mathbf{g} of (D, \mathbf{g}) contains a leading entry at the same place. This shows that, $\mathbf{f}=\mathbf{g}$ again (because the leading entry is 1 , and all other entries are 0 in both \mathbf{f} and \mathbf{g}). This contradiction completes the proof.

[^0]: ${ }^{1}$ Notes for Course Mathematics 10.1 at Brooklyn College of CUNY. Attila Máté, September 13, 2009.
 ${ }^{2}$ That is, $M_{1} \upharpoonright n=M_{2} \upharpoonright n$ and $M_{1} \upharpoonright(n+1) \neq M_{2} \upharpoonright(n+1)$.

[^1]: ${ }^{3}$ To save space, we describe a column vector here as the transpose of a row vector, since a row vector is easier to print.

