
THE UNIQUENESS OF THE ROW ECHELON FORM1

Let M be a matrix. A matrix M ′ is called a row echelon form of M if the following conditions are satisfied.

(i) M ′ is obtained from M by a finite number of the following three operations, called elementary row

operations : 1) interchange of two rows, 2) multiplying a row by a nonzero scalar, and 3) adding a
scalar multiple of a row to another row.

(ii) Each row of M ′ starts with either with a 1, or with a number of zeros followed by a 1, or the row
consists entirely of zeros. The first nonzero entry in a row of M ′ is called the leading entry of that
row; according to what we said, this leading entry must be 1.

(iii) If l > k > 0, and row l in M ′ has as a nonzero entry, then row k must also have a nonzero entry,
and the leading entry of row k must occur earlier than the leading entry of row l. In particular, this
means that all purely zero rows must occur at the bottom of matrix M ′.

(iv) If a column of M ′ contains a leading entry (of a row), then all other entries in this column must be 0.

Theorem. The row echelon form of a matrix is unique.

Proof. In the proof, we will need the following notation. If a matrix M has at least n columns, write M ↾ n

for the submatrix resulting from M by deleting all columns after the nth column (in particular, if M has
exactly n columns then M ↾ n = M). M ↾ n is called the restriction of M to n columns.

The assertion says that a matrix M cannot have two different row echelon forms. Assume, on the contrary
that both M1 and M2 are row echelon forms of M , and M1 6= M2. First notice that, in a row echelon form
of M , a column consists of all zeros if and only if the corresponding column in M consists only of zeros; this
is because the elementary row operations cannot make all zeros from a nonzero column. Further, observe
that the first nonzero column in a row echelon form of M starts with a 1, and all other entries of this column
are zero. Therefore, the initial all-zero columns (if any) of M1 and M2, and the first column containing a
leading entry in M1 and M2 must be the same (note that M cannot be the zero matrix, since then its row
echelon form would also be the zero matrix, so M would not have two different row echelon forms; so the
row echelon form of M must have at least one nonzero column).

So, assume that of M1 and M2 agree up to the nth column, and the first column that is different in M1 and
M2 is the (n+1)st column.2 Then M1 ↾ (n+1) and M2 ↾ (n+1) are two different row echelon forms of the
matrix M ↾ (n+ 1). Write A = M ↾ n, and let b be the (n+ 1)st column of M . Then (A,b) = M ↾ (n+ 1).
Similarly, write D = M1 ↾ n = M2 ↾ n, and let f be the (n+ 1)st column of M1 and g, the (n+ 1)st column
of M2. Then (D, f) = M1 ↾ (n + 1), (D,g) = M2 ↾ (n + 1), and f 6= g. As we explained above, we have
n ≥ 1, the initial zero columns of M1 and M2 and the first column containing a leading entry in M1 and M2

must be the same, so D must have at least one leading entry.

Consider the system of linear equations Ax = b, where x is an n×1 matrix (a column vector of length n).
This system of equations is equivalent to both of the systems Dx = f and Dx = g. We will discuss the
solvability of the system of equations Dx = f (a similar discussion applies to the system Dx = g). Label
the columns D containing a leading entry as l(1), l(2), . . . , and label the columns not containing a leading
entry as z(1), z(2), . . . . Since, as we mentioned above, D contains at least one leading entry, l(1) is always
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2That is, M1 ↾ n = M2 ↾ n and M1 ↾ (n+ 1) 6= M2 ↾ (n+ 1).
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defined. As an example, this labeling for a matrix D is shown here:

D =













l(1) z(1) l(2) z(2) z(3) l(3) z(4) l(4) z(5)

1 2 0 −3 2 0 4 0 2
0 0 1 −2 3 0 3 0 5
0 0 0 0 0 1 3 0 3
0 0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0 0













;

that is, l(1) = 1, l(2) = 3, l(3) = 6, l(4) = 8, and z(1) = 2, z(2) = 4, z(3) = 5, z(4) = 7, z(5) = 9. Using
this labeling, the solutions of the equation Dx = f can be easily described; however, here we need to know
only somewhat less. Namely, we need to know the following: 1) If column f of the matrix (D, f) contains a
leading entry then the equation is unsolvable. Continuing the previous example, in this case the situation
we are facing is as follows:

(D, f) =











1 2 0 −3 2 0 4 0 2 0
0 0 1 −2 3 0 3 0 5 0
0 0 0 0 0 1 3 0 3 0
0 0 0 0 0 0 0 1 4 0
0 0 0 0 0 0 0 0 0 1











.

Here we somewhat offset the last column of the matrix to indicate that this column corresponds to the
right-hand sides of the equation. This system of equation is unsolvable, since the fifth equation requires
0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 = 1, that is, 0 = 1. On the other hand, if the last
column of the matrix the matrix does not contain a leading entry, then the equation is solvable. This is easy
to see, but the best way to visualize it is to look at a continuation of the above example:

(D, f) =











1 2 0 −3 2 0 4 0 2 f1
0 0 1 −2 3 0 3 0 5 f2
0 0 0 0 0 1 3 0 3 f3
0 0 0 0 0 0 0 1 4 f4
0 0 0 0 0 0 0 0 0 0











.

In this example, the corresponding system of equations can be written as

x1 + 2x2 − 3x4 + 2x5 + 4x7 + 2x9 =f1

x3 − 2x4 + 3x5 + 3x7 + 2x9 =f2

x6 + 3x7 + 3x9 =f3

x8 + 4x9 =f4,

or else as

xl(1) + 2xz(1) − 3xz(2) + 2xz(3) + 4xz(4) + 2xz(5) =f1

xl(2) − 2xz(2) + 3xz(3) + 3xz(4) + 2xz(5) =f2

xl(3) + 3xz(4) + 3xz(5) =f3

xl(4) + 4xz(5) =f4.

In the example, xl(1) = x1 = f1, xl(2) = x3 = f2, xl(3) = x6 = f3, xl(4) = x8 = f4, and xz(1) = x2 =
xz(2) = x4 = xz(3) = x5 = xz(4) = x7 = xz(5) = x9 = 0 is a solution of the system equations (there are

other solutions, but this is of no interest to us here). In general, if fT = [f1, f2, . . . ],
3 then a solution of the

equation Dx = f is xl(1) = f1, xl(2) = f2, . . . , and xz(1) = xz(2) = . . . = 0.

3To save space, we describe a column vector here as the transpose of a row vector, since a row vector is easier to print.
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Using this, we can complete the proof as follows. If x is a solution of the equation Ax = b, then x is also a
solution of the equations Dx = f and Dx = g, and then f = Dx = g, showing that f = g, contradicting our
assumption that f 6= g. If the equation Ax = b is unsolvable, then the equation Dx = f is also unsolvable.
In this case the column f of (D, f) contains a leading entry in the first row in which the matrix A contains
all zeros. The same argument shows that the column g of (D,g) contains a leading entry at the same place.
This shows that, f = g again (because the leading entry is 1, and all other entries are 0 in both f and g).
This contradiction completes the proof. �
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