
1. The Euclidean Algorithm

The common divisors of two numbers are the numbers that are divisors of both
of them. For example, the divisors of 12 are 1, 2, 3, 4, 6, 12. The divisors of 18
are 1, 2, 3, 6, 9, 18. Thus, the common divisors of 12 and 18 are 1, 2, 3, 6. The
greatest among these is, perhaps unsurprisingly, called the of 12 and 18. The usual
mathematical notation for the greatest common divisor of two integers a and b are
denoted by (a, b). Hence,

(12, 18) = 6.

The greatest common divisor is important for many reasons. For example, it can
be used to calculate the least common multiple of two numbers, i.e., the smallest
positive integer that is a multiple of these numbers. The least common multiple of
the numbers a and b can be calculated as

ab

(a, b)
.

For example, the least common multiple of 12 and 18 is

12 · 18

(12, 18)
=

12 · 18

6
.

Note that, in order to calculate the right-hand side here it would be counter-
productive to multiply 12 and 18 together. It is much easier to do the calculation
as follows:

12 · 18

6
=

12

6 · 18
= 2 · 18 = 36.

That is, the least common multiple of 12 and 18 is 36. It is important to know
the least common multiple when adding two fractions. For example, noting that
12 · 3 = 36 and 18 · 2 = 36, we have

5

12
+

7

18
=

5 · 3

12 · 3
+

7 · 2

18 · 2
=

15

36
+

14

36
=

15 + 14

36
=

29

36
.

Note that this way of calculating the least common multiple works only for two
numbers. We will not discuss the case of more than two numbers; our main interest
here is the greatest common divisor. First note that we usually consider only positive
divisors. Thus the common divisors of −12 and −18 are 1, 2, 3, 6, i.e., the same as
those of 12 and 18. So their greatest common divisor is also 6; i.e., (−12,−18) = 6.
Similarly, (−12, 18) = 6.

Every positive integer is a divisor of 0. Thus the common divisors of 0 and 18 are
just the divisors of 18. The greatest common divisor of 0 and 18 is thus the greatest
divisor of 18, i.e., 18 itself: (0, 18) = 18. Similarly, (12, 0) = 12. Note that (0, 0)
is undefined, since any positive integer is a divisor of 0 and 0. On the other hand,
while it may be uninteresting to consider the greatest common divisor (12, 12), the
definition is meaningful in this case, and we have (12, 12) = 12.

A way of determining the greatest common divisor of two integers was described
by Euclid about 2400 years ago. This method, called the Euclidean algorithm, even
though it was probably not invented by Euclid himself, or its minor modifications,
is still the best method to determine the greatest common divisor of two numbers.
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While the greatest common divisor of 12 and 18 can be easily guessed, the situation
is different when larger numbers are involved.

We illustrate the Euclidean algorithm by determining the greatest common divisor
of 546 and 422.

Step 1. Divide 422 into 546; the remainder is 124. We replace 546 by this re-
mainder. That is, in place of the original numbers 546 and 422, we will work with
422 and 124.

Step 2. Divide 124 into 422; the remainder is 50. We replace 422 with this
remainder. That is, in place of 422 and 124, we will work with 124 and 50.

Step 3. Divide 50 into 124; the remainder is 24. We replace 124 with this re-
mainder. That is, in place of 124 and 50, we will work with 50 and 24.

Step 4. Divide 24 into 50; the remainder is 2. We replace 50 with this remainder.
That is, in place of 50 and 24, we will work with 2 and 24.

Step 5. Divide 2 into 24; the remainder is 0. The remainder being 0, we stop.
The greatest common divisor is the last nonzero remainder, that is, 2.

Why does this procedure work? Before we answer this question, note that the
procedure will always terminate. In fact, in each step we work with smaller numbers,
so in the end we must reach 0 as a remainder, if no sooner, then at the point when
the last divisor is 1.

To explain why the method works it is sufficient to note that each of the pairs we
work with have the same greatest common divisor:

(546, 422) = (422, 124) = (124, 50) = (50, 24) = (24, 2) = (2, 0).

We never actually worked with the last pair, 2 and 0, since there is no reason to go
on, because it is clear that (2, 0) = 2. It is easy to justify any of these equalities; we
will illustrate this with the discussion of the equality

(422, 124) = (124, 50).

To see this, note that 50 was obtained as the remainder when dividing 124 into 422;
in fact,

422 = 3 · 124 + 50.

This equation shows that any common divisor of 124 and 50 is also a divisor of 422.
if one writes this equation as

50 = 422− 3 · 124,

then one can see that any common divisor 422 and 124 is also a divisor of 50.
Therefore, the common divisors of the numbers 422 and 124 are the same as the
common divisors of the numbers 124 and 50; i.e., the greatest common divisor of
422 and 124 is the same as the greatest common divisor of 124 and 50.

2. Representing the Greatest Common Divisor as a Linear Combination

The greatest common divisor of any two integers can be written as a sum of mul-
tiples of these integers. Instead of sum of multiples, we will say linear combination,
since this, perhaps more intimidating, term is the one commonly accepted in the
mathematical literature. For example, the greatest common divisor of 422 and 546
is 2, and we have

2 = 422 · 22 + 546 · (−17).

This is such an important observation that we will formulate it as a theorem:
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Theorem. For any two integers a and b at least one of which is assumed to be
different from 0, there are integers x and y such that

(a, b) = ax+ by.

It is important to assume that not both of the numbers a and b are zero, since,
as we mentioned above, the greatest common divisor (0, 0) is meaningless.

The reason this is true is that in fact all the numbers occurring in the course of
the Euclidean algorithm are so expressible. Indeed, we using the above example of
the numbers 422 and 546, we have

546 = 422 · 0 + 546 · 1

422 = 422 · 1 + 546 · 0

124 = 422 · (−1) + 546 · 1

50 = 422 · 4 + 546 · (−3)

24 = 422 · (−9) + 546 · 7

2 = 422 · 22 + 546 · (−17)

The first two equations here are obvious. Each of the other equations can be
derived from the preceding two equations. To derive the fifth equation, for example,
recall that 24 is the remainder when 50 is divided into 124. This is expressed by the
equation,

124 = 2 · 50 + 24,

saying that 2 is the quotient and 24 is the remainder of the division 124 ÷ 50. 24
can be expressed from here as

24 = 124− 50 · 2,

where we found in convenient to change the order of the factors in the product.
Taking the expression for 124 from the third and the expression for 50 from the
fourth equation, we can now write this as follows:

24 =
(

422 · (−1) + 546 · 1
)

−
(

422 · 4 + 546 · (−3)
)

· 2.

This can be algebraically simplified as

24 = 422 ·
(

(−1)− 4 · 2
)

+ 546 ·
(

1− (−3) · 2
)

.

If we carry out the operations indicated in the parentheses, we obtain

24 = 422 · (−9) + 546 · 7.

Thus we obtained the fifth equation from the third and fourth equations, as we
promised we would do. The Euclidean algorithm performed with these additional
calculations so that the greatest common divisor is obtained as a linear combination
of the original numbers is called the extended Euclidean algorithm.
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Problem

1. Using the extended Euclidean algorithm, find the greatest common divisors
of the following pairs of numbers, and represent them as linear combinations of the
given numbers: a) 14 and 25, b) 384 and 488, c) 645 and 242, d) 122 and 48, e) 735
and 141, f) 452 and 984.

3. The Fundamental Theorem of Arithmetic

An integer is a prime if it is greater than one and its only divisors are one and
itself. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,. . . . It is not hard
to see that every positive integer greater than one can be written as a product of
primes. For example,

2599443 = 3 · 3 · 7 · 11 · 11 · 11 · 31.

The product on the right-hand side is called the prime factorization of the number
on the left. The only other ways to write the number on the left as a product of
primes to write the same primes in a different order; e.g.,

2599443 = 7 · 3 · 31 · 11 · 3 · 11 · 11,

but since changing the order of factors will not change the product, this prime
factorization is not essentially different. The fact that a positive can be written
only one way as a product of primes, aside from the order of factors is called the
Fundamental Theorem of Arithmetic. It can formally be stated as

The Fundamental Theorem of Arithmetic. The prime factorization of
every integer greater than one is unique, aside from the order of factors.

The key result needed in order to prove this is the following lemma, described by
Euclid. Euclid, however, does not mention the Fundamental Theorem of Arithmetic
itself; the Fundamental Theorem was first formulated and proved by the German
mathematician Karl Friedrich Gauss in 1801, even though it had been used long
before.

Lemma. Let a and b be integers and let p be a prime. If ab is divisible by p then
either a is divisible by p or b is divisible by p.

Note that in mathematics, “or” is always used in the inclusive sense; that is, the
possibility that both a and b are divisible by p is allowed. We will give a formal
proof.

Proof. We will suppose that a and b are both positive (the case when a or b
equals 0 can easily be dealt with, and when a or b is negative, it is harmless to
consider their absolute values instead). Assume that a is not divisible by p; we will
then have to show that b is divisible by p. With this assumption, we have (a, p) = 1.
Indeed, p being a prime number, its only divisors are 1 and p. As we assumed that p
is not a divisor of a, the greatest common divisor of a and p can only be one. As we
saw above, this greatest common divisor can be represented as a linear combination.
That is, we have integers x and y such that

1 = ax+ py.
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Multiplying both sides by b, we obtain

b = abx+ pby.

Both terms on the right-hand side are divisible by p; indeed, our assumption was
that ab is divisible by p. Hence the left-hand side, that is, b, is also divisible by p.
This is what we wanted to show.

Note that it is easy to conclude from the above lemma a similar statement for
the product of more than two integers. For example, if, for some integers, a, b, and
c, and for some prime number p, the product abc is divisible by p, then either a or b
or c is divisible by p. To see this, write abc = (ab)c. Then, by using the lemma, we
can see that either ab or c is divisible by p. If now ab is divisible by p, then, using
the lemma again, we can see that either a or b is divisible by p. Similarly for the
product of four or more integers.

We can now use the above lemma, or, rather, its extension to a product of more
than two factors, to present the

Proof of the Fundamental Theorem of Arithmetic. Assume, on the
contrary, that there are positive ,integers with two different prime factorizations.
Let n be the smallest such integer, and let its two different prime factorizations be

n = p1p2 . . . pk = q1q2 . . . ql.

Note first that each of the primes pi must be different from each of the primes qj .
Indeed, if, for example, we had p1 = q1 then the number

n/p1 = p2p3 . . . pk = q2q3 . . . ql

would be a number smaller than n with two different prime factorizations, in con-
tradiction with our assumption.

On the other hand, the equation above shows that the prime number p1 is a divisor
of the product q1q2 . . . ql. So, by the lemma above, or, rather, by its extension to
more than two factors, at least one of the numbers q1, q2,. . . ql, say qj for a certain
j with 1 ≤ j ≤ l, must be divisible by p1. As qj is a prime, its only divisors are 1
and itself. As p1, being a prime, is different from 1, we must have p1 = qj . This
is a contradiction, since, as we stated above, p1 must be different from qj . This
contradiction shows that our initial assumption was wrong; that is, there are no
integers with two different prime factorizations.

The above method of proof, involving the consideration of the least positive inte-
ger with a certain property (i.e., the existence of two different prime factorizations,
in the above example) to be disproved is called the method of infinite descent. It is
a variant of mathematical induction.

Problems

1. You should be able to answer this question without doing any calculations(in
fact, the numbers given are probably too big even for your calculator): Given that
you know that

7, 324, 472, 493, 949 · 4, 057, 012, 961, 706

= 13 · 2, 285, 806, 141, 970, 012, 665, 670, 538
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and
4, 057, 012, 961, 706 = 13 · 312, 077, 920, 131 + 3,

decide whether 7, 324, 472, 493, 949 is divisible by 13. Give reasons; the correct
reason is just as important as the correct answer. Do not waste your time by dividing
13 into 7, 324, 472, 493, 949, since the answer can be given much more quickly by
reasoning.

2. Using the second equation in Problem 1, determine the greatest common di-
visor 13 and 4, 057, 012, 961, 706.
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4. Solution to Problem 1 in Section 2

a) 25 = 14 · 0 + 25 · 1 b) 488 = 384 · 0 + 488 · 1

14 = 14 · 1 + 25 · 0 384 = 384 · 1 + 488 · 0

11 = 14 · (−1) + 25 · 1 104 = 384 · (−1) + 488 · 1

3 = 14 · 2 + 25 · (−1) 72 = 384 · 4 + 488 · (−3)

2 = 14 · (−7) + 25 · 4 32 = 384 · (−5) + 488 · 4

1 = 14 · 9 + 25 · (−5) 8 = 384 · 14 + 488 · (−11)

c) 645 = 242 · 0 + 645 · 1 d) 122 = 48 · 0 + 122 · 1

242 = 242 · 1 + 645 · 0 48 = 48 · 1 + 122 · 0

161 = 242 · (−2) + 645 · 1 26 = 48 · (−2) + 122 · 1

81 = 242 · 3 + 645 · (−1) 22 = 48 · 3 + 122 · (−1)

80 = 242 · (−5) + 645 · 2 4 = 48 · (−5) + 122 · 2

1 = 242 · 8 + 645 · (−3) 2 = 48 · 28 + 122 · (−11)

e) 735 = 141 · 0 + 735 · 1 f) 984 = 452 · 0 + 984 · 1

141 = 141 · 1 + 735 · 0 452 = 452 · 1 + 984 · 0

30 = 141 · (−5) + 735 · 1 80 = 452 · (−2) + 984 · 1

21 = 141 · 21 + 735 · (−4) 52 = 452 · 11 + 984 · (−5)

9 = 141 · (−26) + 735 · 5 28 = 452 · (−13) + 984 · 6

3 = 141 · 73 + 735 · (−14) 24 = 452 · 24 + 984 · (−11)

4 = 452 · (−37) + 984 · 17
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