TWO PROOFS OF EUCLID’S LEMMA

Lemma (Euclid). Let \(p \) be a prime, and let \(a, b \) be integers. If \(p \mid ab \) then \(p \mid a \) or \(p \mid b \).

There are many ways to prove this lemma.

First Proof. Assume \(p \) is the smallest prime for which this assertion fails, and let \(a \) and \(b \) be such that \(p \mid ab \) and \(p \nmid a \) and \(p \nmid b \). By replacing \(a \) and \(b \) with their remainders when dividing by \(p \), we may assume that \(1 \leq a < p \) and \(1 \leq b < p \). Then \(kp = ab \); clearly, \(1 < k < p \). We have \(kp \neq 1 \) since \(p \) is a prime. Let \(q \) be a prime divisor of \(k \). Then \(q \mid ab \), and so, by the minimality assumption on \(p \), we have \(q \mid a \) or \(q \mid b \). Then dividing \(q \) into \(k \) and into one of \(a \) or \(b \), we obtain an equation \(k'p = a'b' \), where \(1 \leq k' < k \), \(1 \leq a' < p \), and \(1 \leq b' < p \). Repeating this step as long as necessary, we arrive at an equation \(k''p = a''b'' \) with \(k'' = 1 \), \(1 \leq a'' < p \), and \(1 \leq b'' < p \). This equation contradicts the primality of \(p \), completing the proof. \(\square \)

The second proof gives Euclid’s Lemma is a corollary of the following.

Lemma. Let \(a \) and \(c \) be positive integers and let \(t \) be the smallest positive integer such that \(c \mid at \). Let \(b \) be a positive integer such that \(c \mid ab \). Then \(t \mid b \). In particular, \(t \mid c \).

Proof. Assume \(t \nmid b \); let \(q \) and \(r \) be such that \(b = tq + r \) and \(1 \leq r < t \). Then

\[
ab = atq + ar.
\]

As \(c \) is a divisor of the left-hand side and of the first term on the right-hand side, it follows that \(c \) is also a divisor of the second term on the right-hand side; i.e., \(c \mid ar \). This, however, contradicts the minimality of \(t \). This contraction shows that \(t \mid b \). Since we have \(c \mid ac \), this assertion with \(c = b \) shows that \(t \mid c \) holds. \(\square \)

Corollary 1 (Euclid). Let \(p \) be a prime, and let \(a \) and \(b \) be positive integers. If \(p \mid ab \) then \(p \mid a \) or \(p \mid b \).

Proof. Let \(t \) be the smallest positive integer such that \(p \mid at \). Then we have \(t \mid b \) and \(t \mid p \) by the Lemma. The latter implies that \(t = 1 \) or \(t = p \). In the former case we have \(p \mid a \), in the latter case we have \(p \mid b \). \(\square \)

Corollary 2. Let \(a, b, \) and \(c \) be positive integers such that \((b, c) = 1 \). If \(c \mid ab \) then \(c \mid a \).

Proof. Let \(t \) be the smallest positive integer such that \(c \mid at \). Then we have \(t \mid b \) and \(t \mid c \) by the Lemma. As \((b, c) = 1 \), we must have \(t = 1 \). Since \(c \mid at \), this means that \(c \mid a \). \(\square \)