TWO PROOFS OF EUCLID'S LEMMA

Lemma (EUCLID). Let p be a prime, and let a, b be integers. If $p \mid ab$ then $p \mid a$ or $p \mid b$.

There are many ways to prove this lemma.

First Proof. Assume p is the smallest prime for which this assertion fails, and let a and b be such that $p \mid ab$ and $p \nmid a$ and $p \nmid b$. By replacing a and b with their remainders when dividing by p, we may assume that $1 \leq a < p$ and $1 \leq b < p$. Then kp = ab; clearly, $1 \leq k < p$. We have $k \neq 1$ since p is a prime. Let q be a prime divisor of k. Then $q \mid ab$, and so, by the minimality assumption on p, we have $q \mid a$ or $q \mid b$. Then dividing q into k and into one of a or b, we obtain an equation k'p = a'b', where $1 \leq k' < k$, $1 \leq a' < p$, and $1 \leq b' < p$. Repeating this step as long as necessary, we arrive at an equation k''p = a''b'' with k'' = 1, $1 \leq a'' < p$, and $1 \leq b'' < p$. This equation contradicts the primality of p, completing the proof. \Box

The second proof gives Euclid's Lemma is a corollary of the following.

Lemma. Let let a and c be positive integers and let t be the smallest positive integer such that $c \mid at$. Let b be a positive integer such that $c \mid ab$. Then $t \mid b$. In particular, $t \mid c$.

Proof. Assume $t \nmid b$; let q and r be such that b = tq + r and $1 \leq r < t$. Then

$$ab = atq + ar$$

As c is a divisor of the left-hand side and of the first term on the right-hand side, it follows that c is also a divisor of the second term on the right-hand side; i.e., $c \mid ar$. This, however, contradicts the minimality of t. This contraction shows that $t \mid b$. Since we have $c \mid ac$, this assertion with c = b shows that $t \mid c$ holds. \Box

Corollary 1 (EUCLID). Let p be a prime, and let a and b be positive integers. If $p \mid ab$ then $p \mid a$ or $p \mid b$.

Proof. Let t be the smallest positive integer such that $p \mid at$. Then we have $t \mid b$ and $t \mid p$ by the Lemma. The latter implies that t = 1 or t = p. In the former case we have $p \mid a$, in the latter case we have $p \mid b$. \Box

Corollary 2. Let a, b, and c be positive integers such that (b, c) = 1. If $c \mid ab$ then $c \mid a$.

Proof. Let t be the smallest positive integer such that $c \mid at$. Then we have $t \mid b$ and $t \mid c$ by the Lemma. As (b, c) = 1, we must have t = 1. Since $c \mid at$, this means that $c \mid a$. \Box

⁰Notes for Course Mathematics 1311 at Brooklyn College of CUNY. Attila Máté, February 16, 2018.