TWO PROOFS OF EUCLID'S LEMMA

Lemma (Euclid). Let p be a prime, and let a, b be integers. If $p \mid a b$ then $p \mid a$ or $p \mid b$.
There are many ways to prove this lemma.
First Proof. Assume p is the smallest prime for which this assertion fails, and let a and b be such that $p \mid a b$ and $p \nmid a$ and $p \nmid b$. By replacing a and b with their remainders when dividing by p, we may assume that $1 \leq a<p$ and $1 \leq b<p$. Then $k p=a b$; clearly, $1 \leq k<p$. We have $k \neq 1$ since p is a prime. Let q be a prime divisor of k. Then $q \mid a b$, and so, by the minimality assumption on p, we have $q \mid a$ or $q \mid b$. Then dividing q into k and into one of a or b, we obtain an equation $k^{\prime} p=a^{\prime} b^{\prime}$, where $1 \leq k^{\prime}<k, 1 \leq a^{\prime}<p$, and $1 \leq b^{\prime}<p$. Repeating this step as long as necessary, we arrive at an equation $k^{\prime \prime} p=a^{\prime \prime} b^{\prime \prime}$ with $k^{\prime \prime}=1$, $1 \leq a^{\prime \prime}<p$, and $1 \leq b^{\prime \prime}<p$. This equation contradicts the primality of p, completing the proof.

The second proof gives Euclid's Lemma is a corollary of the following.
Lemma. Let let a and c be positive integers and let t be the smallest positive integer such that $c \mid$ at. Let b be a positive integer such that $c \mid a b$. Then $t \mid b$. In particular, $t \mid c$.
Proof. Assume $t \nmid b$; let q and r be such that $b=t q+r$ and $1 \leq r<t$. Then

$$
a b=a t q+a r .
$$

As c is a divisor of the left-hand side and of the first term on the right-hand side, it follows that c is also a divisor of the second term on the right-hand side; i.e., $c \mid a r$. This, however, contradicts the minimality of t. This contraction shows that $t \mid b$. Since we have $c \mid a c$, this assertion with $c=b$ shows that $t \mid c$ holds.
Corollary 1 (Euclid). Let p be a prime, and let a and b be positive integers. If $p \mid a b$ then $p \mid a$ or $p \mid b$.
Proof. Let t be the smallest positive integer such that $p \mid a t$. Then we have $t \mid b$ and $t \mid p$ by the Lemma. The latter implies that $t=1$ or $t=p$. In the former case we have $p \mid a$, in the latter case we have $p \mid b$.
Corollary 2. Let a, b, and c be positive integers such that $(b, c)=1$. If $c \mid a b$ then $c \mid a$.
Proof. Let t be the smallest positive integer such that $c \mid a t$. Then we have $t \mid b$ and $t \mid c$ by the Lemma. As $(b, c)=1$, we must have $t=1$. Since $c \mid a t$, this means that $c \mid a$.

[^0]
[^0]: ${ }^{0}$ Notes for Course Mathematics 1311 at Brooklyn College of CUNY. Attila Máté, February 16, 2018.

