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1 The general first order partial differential equation

The general first order partial differential equation with independent n variables x1, x2, . . . xn and
unknown function u can be written in the form

(1) F (x1, x2, . . . , xn, u, p1, p2, . . . , pn),

where pi = ∂u/∂xi. We will assume that F is continuously differentiable in all its variables,1 and
that

∑n
i=1 F

2
pi

6= 0; since we are dealing with real numbers only, the latter is simply an abbreviated
way of saying that not all of the partial derivatives Fpi

are zero, i.e., (1) is an equation that involves
at least one of the partial derivatives pi at every point.

The solution of equation (1) is a function u = φ(x1, x2, . . . , xn) such that the equation

F (x1, x2, . . . , φ, φx1
(x1, . . . , xn), φx2

(x1, . . . , xn), . . . , φxn
(x1, . . . , xn)) = 0

is satisfied in an region2 of the n-dimensional space Rn.3 We will look for the solutions of equation (1)
with the aid of characteristic curves, which will be curves χ: xi = xi(s), pi = pi(s), 1 ≤ i ≤ n, and
u = u(s), s ∈ I in the space R

2n+1, where I is an interval in R such that if one point of this curve

∗Written for the course Mathematics 4211 at Brooklyn College of CUNY.
1We will try to keep this discussion on the intuitive level, without including strictly rigorous proofs of all the

statements, so we may not always be all that careful about the exact assumptions needed for the validity of all the
results we state.

2A region is a nonempty connected open set.
3
R denotes the set of real numbers, and R

n denotes the set of all n-tuples (x1, x2, . . . , xn) of real numbers.
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is contained in a solution of equation (1) then the whole curve χ lies in this solution. Assuming we
have such a curve, differentiate the equation

F (x1(s), x2(s), . . . , xn(s), u(s), p1(s), p2(s), . . . , pn(s)) = 0

with respect to s. We obtain

(2) 0 =
dF

ds
=

n
∑

i=1

Fxi

dxi
ds

+ Fu

du

ds
+

n
∑

i=1

Fpi

dpi
ds

=

n
∑

i=1

(

(Fxi
+ Fupi)

dxi
ds

+ Fpi

dpi
ds

)

,

where, to obtain the second equation, we used that

(3)
du

ds
=

n
∑

i=1

uxi

dxi
ds

=

n
∑

i=1

pi
dxi
ds

We can satisfy equation (2) by taking

(4)
dxi
ds

= Fpi
,

dpi
ds

= −Fxi
− Fupi.

Substituting the first equation here into (3), we obtain

(5)
du

ds
=

n
∑

i=1

piFpi
.

Equations (4) and (5) are the ordinary differential equations for a characteristic curve χ.
For simplicity, first consider the case n = 2. In this case, characteristic curve is a curve in R

5;
a point on this curve is (x1, x2, p1, p2, u). The point (x1, x2, u) in R

3 here represent a point of the
solution surface in which the characteristic curve lies. The vector 〈p1, p2,−1〉 is perpendicular to
the solution surface. Thus, the numbers p1 and p2 describe the tangent plane of the solution surface
at the point (x1, x2, u). Thus, the characteristic curve can be thought of as a curve in R

3 with a
tangent plane fitted at each point of this curve. For this reason, the characteristic curve is often
called a characteristic strip. For an arbitrary n ≥ 2, instead of thinking about a characteristic curve
as a curve in R

2n+1, one can think about it as a characteristic strip in R
n+1.

1.1 The initial-value problem

The initial-value problem, or Cauchy problem, is to find a solution u = φ(x1, x2, . . . , xn) of equa-
tion (1) containing an n− 1-dimensional initial strip manifold.4 To describe the initial value prob-
lem, we require with given functions fi, gi, and f that for the 2n+1 tuple (x1, . . . , xn, u, p1, . . . , pn)
with xi = fi(t1, . . . , tn−1), pi = gi(t1, . . . , tn−1), u = f(t1, . . . , tn−1), where (t1, . . . , tn−1) belong
to a region Σ of R

n−1, the equation u = φ(x1, x2, . . . , xn) and (∂φ/∂xi)(x1, x2, . . . , xn) = pi
be satisfied. These initial values allow us to solve the characteristic equations (4) and (5) for
functions xi = xi(s, t1, . . . , tn), pi = pi(s, t1, . . . , tn), and ui = ui(s, t1, . . . , tn) such that the

4Manifold is a technical term in mathematics; we will avoid a precise definition of the term. To give an idea, in
the three-dimensional space R

3 a two-dimensional manifold is a “nice” surface (“nice” means smooth in some sense),
and in a one-dimensional manifold is a nice curve. A one-dimensional strip-manifold could be thought of as a thin
strip of a surface; actually, no surface is given, but at any point of the curve a tangent plane is given. Then this
one-dimensional strip manifold will lie in a surface if the curve itself lies in the surface, and at each point of the curve
of the given tangent plane is tangent to the surface.
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initial conditions xi(0, t1, . . . , tn) = fi(t1, . . . , tn − 1), pi(0, t1, . . . , tn) = gi(t1, . . . , tn − 1), and
u(0, t1, . . . , tn) = f(t1, . . . , tn− 1) are satisfied, assuming that the functions occurring in these equa-
tions are nice enough to ensure that with open interval I containing the point s = 0, the solution of
these equations exists and is unique in the set I.

The functions fi, gi, and f need to satisfy certain consistency conditions.5 To ensure that F = 0
for s = 0 we need that

F (f1(t1, . . . , tn−1) . . . , fn(t1, . . . , tn−1),

f(t1, . . . , tn−1), g1(t1, . . . , tn−1), . . . , gn(t1, . . . , tn−1)) = 0,
(6)

and to ensure that the equation ∂u/∂xi = pi is not contradicted by the initial conditions at s = 0
we need that

(7)
∂f

∂ti
=

n−1
∑

j=1

gj
∂fj
∂ti

for (i = 1, . . . , n− 1).

These equations say that

∂u

∂ti
=

n−1
∑

j=1

pj
∂xj
∂ti

for (i = 1, . . . , n− 1).

holds at s = 0, which is just the chain rule, assuming that we indeed have indeed ∂u/∂xj = pj at
s = 0.

Another condition that needs to be satisfied is that for s = 0 and for any (t1, t2, . . . , tn−1) is the
initial manifold Σ the determinant
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be nonzero. This means that the row-vectors of this matrix are linearly independent, i.e., that they
span an n-dimensional vector space.6 In other words, this means that initial manifold is indeed n−1
dimensional, and that tangent vector of the characteristic curve (represented by the first row of this
matrix) is outside this manifold. Using the first group of the characteristic equations (4), this means

5Consistent in the technical sense used in mathematics means “free from contradiction.” Thus, these conditions
ensure that the specifications of the initial values do not contradict the differential equation (1).

6If 〈a1, a2, a3〉, 〈b1, b2, b3〉, and 〈c1, c2, c3〉 are position vectors in R
3, then the determinant

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

represents the volume of the parallelepiped determined by these vectors, showing that this determinant is zero exactly
if these vectors lie in a plane.
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that we must have

(8)

∣
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6= 0 for s = 0 at each (t1, . . . , tn−1) ∈ Σ.

While our discussion explains the method used in the following example, there are gaps in our
discussion. For example, it nees to be proved that using the characteristic that the pi obtained by
the characteristic equations (4) and (4) used to solve an initial-value problem indeed satisfy the
requirement that pi = ∂u/∂xi (see e.g. [2, p. 29] or [1, p. 81]).

Example 1. Solve the equation uz = u2x + u2y with the initial condition u = x2 + y2 at the point
(x, y, z) with z = 0.

Solution. We have F (x, y, z, u, p, q, r) = p2 + q2 − r, where the differential equation is F = 0 and
p = ∂u/∂x, q = ∂u/∂y, and r = ∂u/∂z. The initial manifold is given by

(9) x = t1, y = t2, and z = 0.

and the initial condition on this manifold is

(10) u = t21 + t22.

The variables p, q, r are not specified by the initial conditions, since the consistency conditions are
sufficient to determine their initial values; namely, equation (7) gives

(11) 2t1 = p, and 2t2 = q,

and then r = 4t21 + 4t22 according to (6), even though these equations will not be used.
The characteristic equations given in (4) become

dx

ds
= 2p (= Fp),

dy

ds
= 2q (= Fq),

dz

ds
= −1 (= Fr),

dp

ds
=
dq

ds
=
dr

ds
= 0.

The fact that u does not directly occur in F makes these equations much simpler. Furthermore,
characteristic equation (5) becomes

du

ds
= p · 2p+ q · 2q + r · (−1) = 2p2 + 2q2 − r = p2 + q2,

where the last equation holds since p2 + q2 − r = 0 according to the equation F = 0. Since p, q, and
r do not depend on s according to the first group of equations, these equations are easily solvable.
Also using equations (11), we obtain

x = 2ps+ c1 = 4t1s+ c1, y = 2qs+ c2 = 4t2s+ c2, and z = −s+ c3

and by the characteristic equation for u we obtain

u = (p2 + q2)s+ c3 = (4t21 + 4t22)s+ c4.
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For s = 0 these equations must agree with equations (9) and (10). That is, we have c1 = t1, c2 = t2,
c2 = 0 and c4 = t21 + t22, and so

x = (4s+ 1)t1, y = (4s+ 1)t2, z = −s, and u = (4s+ 1)(t21 + t22).

t1, t2, and s can easily eliminated from these equations, and we obtain the solution in explicit form:

u =
x2 + y2

1− 4z
.

2 Separation of variables and the complete integral

2.1 Separation of variables

One can occasionally solve a partial differential equation by making an ansatz7 seeking the solution
of the equation in the form u(x, y) = u(x) + u(y) or u(x, y) = u(x)u(y). Solving the equation by
making such an ansatz is called separation of variables.

Example 2. Find the solution of the equation u2x + u22 = 1.

Solution. Assume u(x, y) = u1(x) + u2(x). Then ux(x, y) = u′1(x) and uy(x, y) = u′2(y); hence the
equation can be written as (u′1(x))

2 = 1 − (u′2(y))
2. Since the left-hand side depends only on x

and the right-hand side, only on y, both sides must be constant. So there is a constant a such
that (u′1(x))

2 = a2 (|a| ≤ 1), so we may assume that u′(x) = a.8 We then have u1(x) = ax + b1
where a and b1 are arbitrary constants except that |a| ≤ 1. We also have (u′2(y))

2 = 1− a2, and so
u′2(y) = ±

√
1− a2. Hence u′2(y) = ±

√
1− a2y+ b2. As u(x, y) = u1(x) + u2(x), writing b = b1 + b2,

we obtain the solution of the equation

u(x, y) = ax±
√

1− a2y + b,

where a and b are arbitrary constants.

A solution of a first order partial differential equation with n independent variables is containing
n arbitrary constants is called a complete integral of the equation,9 discussed below in more detail
in case n = 2. Thus, the solution we obtained in the above example is a complete integral. In fact,
the method of separation of variables usually gives the solution of a first order partial differential
equation in the form of a complete integral.

Example 3. Solve the equation u = uxuy.

7Ansatz (plural Ansätze) is a German noun that is often encountered in the mathematics and physics literature,
In German, all nouns are capitalized, but in English one does not need to capitalize the word. In the mathematical
literature it usually means a hypothesis, a setup, or a starting point, most often an assumption about the form in
which the solution of a differential equation is to be sought. See the Wikipedia article

http://en.wikipedia.org/wiki/Ansatz

8Actually, only u′
1
(x) = ±a follows, but we may chose the sign of a appropriately so as to satisfy the equation

u′
1
(x) = 1.
9The constants involved must affect the solution in an independent way, a concept we will explain precisely in case

n = 2 below.
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Solution. Assume u(x, y) = u1(x)u2(y). Then ux(x, y) = u′1(x)u2(x) and uy(x, y) = u1(x)u
′

2(x).
Hence u1(x)u2(y) = u′1(x)u

′

2(x) · u1(x)u2(x). Ignoring the (relatively uninteresting) case when
u′1(x)u

′

2(x) = 0, we obtain u′1(x) = 1/u′2(y). The left-hand side depends only on x, and the right-
hand side, only on y, so both sides must be constant. This means that u′1(x) = C and u′2(x) = 1/C
for an arbitrary (nonzero) constant C. Hence u1(x) = Cx+A and u2(y) = (1/C)y+B with arbitrary
constants A and B. So u(x, y) = u1(x)u2(y) = (Cx+A)((1/C)y+B) = xy+(BC)x+(A/C)y+AB.
Writing a = BC and b = A/C, we have AB = ab, so we obtain the solution

u(x, y) = xy + ax+ by + ab.

This is again a complete integral of the equation.

Example 4. Solve the equation u = uxx+ uyy.

Solution. The equation in the problem is a special case of Clairaut ’s equation. We are looking for
the solution in the form u(x, y) = ux(x) + uy(y). The equation becomes

(12) u1(x)− xu′1(x) = −(u2(y)− yu′2(y)).

The left-hand side depends only on x, and the right-hand side, only on y, so the two sides must be
constant; denote this constant by −C. After dividing through by x, the left-hand side being equal
to C gives the equation

u1(x)−
1

x
u1(x) =

C

x
.

This is a linear first order ordinary differential equation, the general form of which is

y′ + P (x)y = Q(x).

The solution of this equation can be written as

y = e−
∫
P (x) dx

(
∫

e
∫
P (x) dxQ(x) dx+ c

)

,

where c is an arbitrary constant. Thus, we obtain

u1(x) = elog x

(
∫

e− log xC

x
dx+ a

)

= x

(
∫

Cx−2 dx+ a

)

= x(−Cx−1 + a) = −C + ax,

where a is an arbitrary constant. Similarly, the right-hand side of equation (12) being equal to C,
we obtain that

u2(y)−
1

y
u2(y) = −C

y
.

The solution of this equation is

u2(y) = elog y

(

−
∫

e− log yC

y
dy + b

)

= y

(

−
∫

Cy−2 dy + b

)

= y(Cy−1 + b) = C + by,

where b is an arbitrary constant. Hence we obtain u(x, y) = ax+ by with a and b arbitrary constant.
This is again a complete integral of the equation above.
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2.2 The envelope of a family of curves

To simplify the discussion of the complete integral below, we first describe what is meant by the
envelope of a family of curves y = f(x, a); this equation describes a curve for each value of the
parameter a. The envelope to this family will be a curve that is tangent to each member of the
family at some point. To determine such an envelope, find a as a function a = a(x) from the equation
fa(x, a) = 0, assuming such an a can be uniquely determined. Put ψ(x) = f(x, a(x)). Then the
curve y = ψ(x) is tangent to the curve f(x, a(x0)) at the point x = x0. Indeed,

(13) ψ′(x) = fx(x, a(x)) + fa(x, a(x))a
′(x) = fx(x, a(x)),

since we have fa(x, a(x)) = 0 according to the definition of a(x). That ψ′(x) = fx(x, a(x0)) in case
x = x0. If y = f(x, a) represents a family of solutions of a differential equation F (x, y, y′) = 0, then
the envelope y = ψ(x) is also a solution of this equation, according to (13).

2.3 The complete integral

We confine our discussion to the case n = 2, that is, instead of (1) we will consider the differential
equation

(14) F (x, y, u, p, q) = 0,

where p = ∂u/∂x and q = ∂u/∂y, and we assume that F 2
p + F 2

q 6= 0. A complete integral of this
equation of the form

u = φ(x, y, a, b),

where a and b are arbitrary parameters affecting the solutions independently, i.e., in a way that it
is impossible to replace a and b by a single parameter. The independence of the parameters can be
precisely expressed by saying that the rank of the matrix

[

φa φax φay
φb φbx φby

]

is 2.10 The complete integral plays a very important role in the Hamilton–Jacobi partial differential
equation of classical mechanics.

10This condition expresses the fact that it is not possible to find a function g(a, b) such that we can write
φ(x, y, a, b) = ψ(x, y, g(a, b), i.e., that it is not possible to replace the two parameters with the single parameter
c = g(a, b). Indeed, if there were such a function g(a, b) then it is not hard to show by using the chain rule is solvable
for x and y for any a and b sufficiently close to a0 and b0. is solvable for x and y for any a and b sufficiently close to
a0 and b0. that the two rows of the above matrix would be linearly dependent, and hence its rank would be 1.

The considerations get somewhat simplified if instead one makes the assumption
∣

∣

∣

∣

φax φay
φbx φby

∣

∣

∣

∣

6= 1.

According to a result known as the Implicit Function Theorem or Implicit Mapping Theorem, this implies the following.
If for some choices of x0, y0, a0, b0, A, and B we have

φa(x0, y0, a0, b0) = A,

φb(x0, y0, a0, b0) = A,

then the system of equations

φa(x, y, a, b) = A,

φb(x, y, a, b) = B,

is solvable for x and y for any a and b sufficiently close to a0 and b0.
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The complete integral is not the general solution of a partial differential equation, since we have
seen that the general solution of a first order partial differential equation with two independent
variables involves an arbitrary function. It is possible, however, to use the complete integral to
obtain the general solution as an envelope of a family of solutions given by the complete integral. To
see this, let w(a) be an arbitrary differentiable function, and consider the envelope of the family of
solutions φ(x, y, a, w(a)) of (14), where a is a parameter. Analogously to the discussion of envelope
above, we can find the envelope of this family by first noting that

∂φ(φ(x, y, a, w(a))

∂a
= φa(x, y, a, w(a)) + w′aφb(x, y, a, w(a)) = (φa + w′(a)φb)(x, y, a, w(a)),

where the right-hand side is just an abbreviated way of writing the middle member of these equations,
and then solving the equation

(15) (φa + w′(a)φb) (x, y, a, w(a)) = 0

for a as a function of a = a(x, y) of x and y, and then writing

(16) ψ(x, y) = φ(x, y, a(x, y), w(a(x, y))).

It is easy to verify that ψ(x, y) is a solution of equation (14). Indeed, we with u = ψ(x, y) we have

u(x0, y0) = φ(x0, y0, a(x0, y0), w(a(x0, y0))),

ux(x0, y0) =
(

φx + φxax(x0, y0) + φxφbw
′(a(x0, y0)

)

ax(x0, y)) (x0, y0, a(x0, y0), w(a(x0, y0))),

= φx (x0, y0, a(x0, y0), w(a(x0, y0))),

uy(x0, y0) =
(

φy + φyay(x0, y0) + φyφbw
′(a(x0, y0)

)

ax(x0, y)) (x0, y0, a(x0, y0), w(a(x0, y0))),

= φy (x0, y0, a(x0, y0), w(a(x0, y0))).

Since u = φ(x, y, a, b) satisfies (14) for any a, b at every point (x, y), it in particular satisfies this
equation for a = a(x0, y0) and b = b(x0, y0) at the point (x0, y0). Hence the above equations show
that u = ψ(x0, y0) also satisfies (14) at the point (x0, y0). (x0, y0) being arbitrary, this shows that
u = ψ(x, y) indeed satisfies equation (14).

The solution φ(x, y) depends on the arbitrary function w, and so it represents the general solution
of (14). We mentioned earlier that the general solution does not necessarily represent all solutions
of the equations. In particular, another solution, called the singular solution can be obtained from
the complete integral by taking the envelope of the whole family φ(x, y, a, b). To do this, solve the
system of equations

φa(x, y, a, b) = 0,

φb(x, y, a, b) = 0

for a and b in terms of x and y to obtain a = a(x, y) and b = a(x, y), and take σ(x, y) =
φ(x, y, a(x, y), b(x, y)). It is easy to show that u = σ(x, y) is then a solution of (14). This solu-
tion is called the singular solution, usually not obtained as one of the solutions represented by the
general solution.

2.4 Determining the characteristic strips from the complete integral

If two solutions Φ and Ψ of equation (14) agree and tangent at the point (x0, y0), that is, if
Φ(x0, y0) = Ψ(x0, y0), Φx(x0, y0) = Ψx(x0, y0), and Φy(x0, y0) = Ψy(x0, y0), then, assuming that
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the solution of the characteristic equations (the equations analogous to equations (4) and (5) in case
n = 2) are unique, the characteristic strip (x, y, p, q) (p = ux and q = uy) going through the point
(x0, y0, u0, p0, q0), where u0 = Φ(x0, y0), p0 = Φx(x0, y0), and q0 = Φy(x0, y0), must lie in both
solutions Φ and Ψ (at least locally, i.e., in a small region where the uniqueness of the solution of the
characteristic equations is satisfied). Unless the two solutions agree in a small region, they can only
agree on the characteristic strip, and nowhere else (again, locally, i.e., in a small region – anything
may happen outside a small region containing the point (x0, y0, u0)); this again follows from the
uniqueness of the characteristic strip. Therefore, we may try to find the characteristic strip going
through the point (x0, y0, u0, p0, q0) by taking the intersection of the solutions Φ and Ψ.

Now, for a given a, the solutions φ(x, y, a, w(a)) and ψ(x, y) given by (16) agree and are tangent at
a point (x0, y0) for which a = a(x0, y0); the set of these points (x0, y0) will be part of a characteristic
strip, along with the corresponding other coordinates u0, p0, and q0. To find these points, we need
to find such (x0, y0) pairs by solving equation (15) for (x, y) with the given a. For this, we do not
even need to know the whole of the function w, we only need to know the values w(a) and w′(a)
for the given a. Writing b = w(a) and −η = w′(a), this means that the characteristic strip can be
found by solving the equation

(17) (φa − ηφb) (x, y, a, b) = 0

for x and y, given a, b, and η, and then finding u, p, and q from the equations u = φ(x, y, a, b),
p = φx(x, y, a, b), and p = φy(x, y, a, b). Using this way of finding characteristic strips, we can solve
initial value problems by fitting a characteristic strip to each point of the initial curve.

Example 5. Find the solution of the equation u = uxx + uyy with initial conditions C: x + y = 1,
u = x2.

Solution. Write the initial curve C in parametric form as x = t, y = 1− t, and u = t2. The complete
integral of the given partial differential equation is u = φ(x, y, a, b) = ax+ by according to Example
4, so p = φx = a and q = φy = b. According to the consistency condition du/dt = 2t we have
2t = a+ (−b) (cf. (7)), i.e., b = a− 2t. Hence initial conditions give

t2 = φ(t, 1− t, a, b) = φ(t, 1− t, a, a− 2t) = at+ (a− 2t)(1− t) = a− 2t+ 2t2

(cf. (6), i.e., a = 2t− t2, and so b = a− 2t = −t2.
The equation of a characteristic is x − ηy = 0 (cf. (17)), i.e., η = x/y. Requiring that this

characteristic passes through the point (x, y, u) = (t, 1− t, t2) of the curve C, this gives η = t/(t−1).
That is, the equation of the characteristic is x−ηy = 0 with this value of η; that is, the characteristic
is x(1− t) = y, i.e., x = t(x+ y).

To sum up, t = x/(x+ y), u = ax+ by, a = 2t− t2, and b = −t2. Therefore, the solution is

u(x, y) =

(

2x

x+ y
− x2

(x+ y)2

)

x− x2

(x+ y)2
y =

x2

x+ y
.
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