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1 Inner product spaces

Let V be a vector space over F , where F is either the set of real numbers R or the set of complex
numbers C. For a complex number α, ᾱ will denote its conjugate.

Definition 1.1. An inner product is a mapping 〈·, ·〉 : V × V → F such that

∗Written for the course Mathematics 2101 (Linear Algebra) at Brooklyn College of CUNY.
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(a) For all x ∈ V , 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 only if x = 0,

(b) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,

(c) α〈x, y〉 = 〈x, αy〉 for all α ∈ F and x, y ∈ V ,

(d) 〈x, y〉+ 〈x, z〉 = 〈x, y + z〉 for all x, y, z ∈ V .

A vector space with an inner product is called an inner product space.

In Clause (a), 〈x, x〉 ≥ 0 means that the complex number 〈x, x〉 is actually a nonnegative real.
According to Clauses (b) and (c), we have α〈x, y〉 = 〈ᾱx, y〉. If F = R, the complex conjugation has
no effect. Inner product spaces are discussed in [1, Chapter 7, starting on p. 304]. Inner products
are defined in [1, (7.1.5) Definition].

1.1 Hermitian transpose

Given an m × n matrix A, one obtains its Hermitian transpose A∗, named after the French math-
ematician Charles Hermite, by first taking its transpose AT , then taking the complex conjugate of
each entry of AT . That is, if A is the matrix A = (aij)1≤i≤m, 1≤j≤n, then its Hermitian transpose
is A∗ = (āij)1≤j≤n, 1≤i≤m; here the notation indicates that in A, i refers to rows and j, to columns,
while in A∗, i refers to columns and j, to rows.1.1 It is easy to see that if A and B are matrices such
that the product AB is meaningful the

(1.1) (AB)∗ = B∗A∗,

similarly to the equation (AB)T = BTAT . Further, note that if α is a scalar, then, considering
α identical to the 1 × 1 matrix (α), we have α∗ = ᾱ. The Hermitian transpose is described in [1,
(7.1.1) Definition, p. 304].

A matrix A is called Hermitian if A∗ = A (cf. [1, (7.2.2) Definition, p. 309]). Clearly, for this to
happen, A must be a square matrix with real entries in its main diagonal. If B is a matrix with real
entries, then B∗ is its transpose BT , since conjugation has no effect. A Hermitian matrix with real
entries is called symmetric.

1.2 Inner products of column vectors

Given an integer n > 0, one can define inner products on the space of column vectors over R or
C with n entries (i.e., n × 1 matrices). The Hermitian transpose of such a column vector is a row
vector with n entries. Denoting by Fm,n the set of m × n matrices over the field F where F is R

or C, with x and y running over elements of Fn,1, it is easy to verify that 〈x,y〉 = x∗y is an inner
product on the space Fn,1. if x = (x1, x2, . . . xn)

T and y = (y1, y2, . . . yn)
T , then

(1.2) x∗y =

n
∑

k=1

x̄kyk.

This inner product is called the canonical inner product on the space Fn,1 – cf. [1, (7.1.2) Definition].
We are going to show that, indeed, x∗y satisfies Clause (a) of Definition 1.1. Indeed, writing

1.1As usual, the letter i denotes the imaginary unit
√
−1. However, the letter i will also be freely used in other cases

when the context clearly indicates that i does not refer to the imaginary unit.
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x̄ = (x1, x2, . . . xn)
T , we have

(1.3) x∗x =

n
∑

k=1

x̄kxk =

n
∑

k=1

|xk|2 > 0 unless x = 0.

We will show that the other properties of this inner product by considering a more general case.
Let H be a Hermitian matrix, and let x,y ∈ Fn,1. Then

(1.4) 〈x,y〉 = x∗Hy

satisfies Clauses (b)–(d) in the definition of an inner product on Fn,1, but it does not necessarily
satisfy Clause (a). The canonical inner product is the special case of this with H = I, the identity
matrix. Indeed, to verify Clause (b) of Definition 1.1, note

y∗Hx = (y∗Hx)∗ = x∗H∗y∗∗ = x∗Hy;

here, the first equation holds since y∗Hx is a scalar, and, as remarked above, for a scalar α we
have α∗ = ᾱ. Clauses (c) and (d) In order to ensure that the product defined in (1.4) also satisfy
Clause (a) need another property of the matrix H:

Definition 1.2. Let n > 0 be an integer, and let H ∈ Cn,n be a Hermitian matrix. H is called
positive definite if x∗Hx > 0 for all nonzero x ∈ Cn,1. If only the inequality x∗Hx ≥ 0 is satisfied
then H us called positive semi-definite.

Note that x∗Hx is always real in view of the fact that the product defined in (1.4) satisfies
Clause (b) of Definition 1.1. If H is also positive definite, it also satisfies Clause (a), and so it it
an inner product. Since the identity matrix I is positive definite according to (1.3), it follows that
the canonical inner product defined in (1.2) is indeed an inner product. Positve definite Hermitian
matrices are described in [1, (7.2.2) Definition, p. 309].

We will show that the inner product described in (1.4) for a positive definite Hermitian matrix
H describe all inner products on the space Cn,1 of column vectors. Indeed, let 〈·, ·〉 be an arbitrary
this space. Write ej for the jth column vector on this space (1 ≤ j ≤ n). That is ej is the column
vector all whose entries are 0 except its jth entry is one. Write

δij =

{

1 if i = j,

0 if i 6= j.

δij is called Kronecker’s delta. We have

(1.5) ej = (δ1j , δ2j , . . . , δnj)
T .

Let H be the n×n matrix whose entry at place (i, j) is 〈ei, ej〉; it is easy to see that H is Hermitian.

Indeed, we have 〈ej , ei〉 = 〈ei, ej〉 at place (j, i) in this matrix.
We will show that equation (1.4) is satisfied. Indeed, the entry in the (i, j) place of an arbitrary

n× n matrix A is e∗iAej .
1.2 Hence, we have

(1.6) e∗iHej = 〈ei, ej〉
1.2 Indeed, noting that the entries of ei are real, we have e

T
i = e

T
. . Furthermore, eTi Aej is the product of size 1×n,

n× n, and n× 1 matrices, and, writing A = (aij), its only entry is

n
∑

k=1

n
∑

l=1

δikaklδlj = aij ;

the equality holds since the only nonzero term in the sum is obtained when k = i and l = j.
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by the definition of H. Writing I for the the n× n identity matrix and noting that

(1.7)

n
∑

i=1

eie
∗
i = I,

we have

x∗Hy = x∗IHIy = x∗
(

n
∑

i=1

eie
∗
i

)

H
(

n
∑

j=1

eje
∗
j

)

y =

n
∑

i=1

n
∑

j=1

x∗ei(e
∗
iHej)e

∗
jy,

where the last equation made use of the associativity of matrix product. Making use of equation
(1.6) and noting that x∗ei and e∗jy are scalars, we obtain that the right-hand side equals

n
∑

i=1

n
∑

j=1

x∗ei〈ei, ej〉e∗jy =
n
∑

i=1

n
∑

j=1

〈

ei x∗ei, ej(e
∗
jy)

〉

.

On the right-hand side we wrote the scalar on the of the vector in the both members of the inner
product, since this will make the ensuing calculations simpler. We have x∗ei = (x∗ei)

∗ = e∗ix;
hence, making use of the associativity of the matrix product again, we find that the right-hand side
equals

n
∑

i=1

n
∑

j=1

〈eie∗ix, eje∗jy〉 =
〈

n
∑

i=1

eie
∗
ix,

n
∑

j=1

eje
∗
jy

〉

=

〈

(

n
∑

i=1

eie
∗
i

)

x,
(

n
∑

j=1

eje
∗
j

)

y

〉

= 〈Ix, Iy〉 = 〈x,y〉;

the third equation here follows from (1.7). This shows that equation (1.4) also holds for the matrix
H defined so as to satisfy (1.6). The fact that this matrix H is positive definite follows because the
given inner product 〈·, ·〉 satisfies Clause (a) of Definition 1.1.

1.3 Inner products over finite dimensional spaces

Let n ≥ 1 be an integer, let F be the field C or R, and U and V be n-dimensional vector spaces over
F . Let T : U → V is a linear transformation from U onto V , and let 〈·, ·〉U be an inner product on
U . Then, it is easy to see that 〈·, ·〉T defined as

(1.8) 〈Tx, Ty〉T
def
= 〈x, y〉U (x, y ∈ U)

is an inner product on V . In showing this, the only complication is to verify Clause (a) of Defini-
tion 1.1. For this, one needs to note that U and V having the same finite dimension, the assumption
that T is onto implies that T is also one-to-one in view of the Rank-Nullity Theorem.

Considering a special case of this situation, let n ≥ 1 be an integer, let F be the field C or R,
and V be an n-dimensional vector space over F , and let X = (x1, x2, . . . , xn) be a basis of V . Given
a vector v ∈ V , we have v =

∑n
i=1

xiαi for some αi ∈ F , where we deliberately wrote the scalars
after the basis vectors. Thinking of X as a row vector and writing a = (α1, α2, . . . , αn)

T ∈ Fn,1, it
is natural to write v = Xa. In this case, one also writes a = RX v. a is called the representation
of v in the basis X . It is easy to verify that RX is a linear transformation of V onto F . Indeed,
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RX is the inverse of the transformation a 7→ Xa, which is clearly linear, and the inverse of a linear
transformation is also linear. Given an inner product 〈·, ·〉 on V , the quantity 〈·, ·〉RX

defined as

(1.9) 〈RXu,RX v〉RX

def
= 〈u, v〉 (x, y ∈ V )

is an inner product on Fn,1 according to what we said on account of equation (1.8). As ei = RXxi,
we have

〈ei, ej〉RX
= 〈xi, xj〉.

Thus, defining the matrix H ∈ Fn,n as the matrix with entry 〈xi, xj〉 in the (i, j) place, we have

(1.10) 〈u, v〉 = (RXu)∗H(RX v),

since, as we showed above, given an inner product on Fn,1, for a matrix H satisfying (1.6), equa-
tion (1.4) holds. The matrix H satisfying equation (1.10) is called the representation of the inner
product 〈·, ·〉 in the basis X , and we write

(1.11) H = PX 〈·, ·〉.

Representation of inner products are described in [1, (7.2.8) Definition, p. 312].

1.4 Schwarz’s inequality

Schwarz’s inequality is given by the following

Theorem 1.1 (Schwarz’s inequality). Let V be an inner product space over R or C, and write 〈·, ·〉
for the inner product; let x, y ∈ V . Then we have

(1.12) |〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉.

We will first prove this result for real vector spaces, and then for complex vector spaces; of course,
the proof for complex vector spaces handles also the real case, but treating the real case is simpler,
and it gives the main insight of the proof. Finally, we will give an “efficient” proof that avoids any
intuitive indication as to why it works, but it has the advantage of being short. These proofs are
closely related to each other.

Proof for real inner products. Assume V is a vector space over R. We may assume that x 6= 0, since
otherwise 〈x, y〉 = 0, so the inequality to be proved clearly holds. Then, we have 〈x, x〉 > 0 according
to Clause (a) of Definition 1.1. Let λ be an arbitrary real number. Then, again by the same Clause,
the equation

〈λx+ y, λx+ y〉) = 0

can hold only if λx+ y = 0. As x 6= 0, this equation can only hold for a single value of λ. Indeed, if
λ1x+ y = λ2x+ y = 0. then (λ1 − λ2)x = 0; since x 6= 0, we then must have λ1 − λ2 = 0.

Now,
〈λx+ y, λx+ y〉 = λ2〈x, x〉+ 2〈λx, y〉+ 〈y, y〉.

Considering
λ2〈x, x〉+ 2〈x, y〉+ 〈y, y〉 = 0

5
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as a quadratic equation for λ with the various inner products as coefficients,1.3 this equation has at
most one real solution, Hence its discriminant cannot be positive. That is,

(

2〈x, y〉
)2 − 4〈x, x〉〈y, y〉 ≤ 0.

Rearranging this, we obtain the inequality to be proved.

Proof for complex inner products. We will only consider the case when V is an inner product space
over C, since the proof for that case also works when V is an inner product space over R, except
that in this latter case complex conjugation has no effect. The proof is similar to the one given in
the real case, except that taking complex inner products causes minor additional complications.

We may assume that 〈x, y〉 6= 0, since otherwise the inequality to be proved clearly holds; then
we also have x 6= 0. Let λ be a complex number. Then, by Clause (a) of Definition 1.1 of inner
product, we have

〈λx+ y, λx+ y〉 ≥ 0,

and equation here holds only if λx + y = 0. Since we assumed that x 6= 0, this equation can only
hold for a single value of λ if at all. Hence

(1.13)

0 ≤ 〈λx+ y, λx+ y〉 = 〈λx, λx〉+ 〈λx, y〉+ 〈y, λx〉+ 〈y, y〉
= λ̄λ〈x, x〉+ λ̄〈x, y〉+ λ〈y, x〉+ 〈y, y〉
= |λ|2〈x, x〉+ 2ℜ

(

λ〈x, y〉
)

+ 〈y, y〉;

the third equation holds since λ̄λ = |λ|2, and, with z = λ〈y, x〉 = λ〈x, y〉, we have z̄ = λ̄〈x, y〉
according to Clause (b) of Definition 1.1, and z̄+ z = 2ℜz, where the ℜz denotes the real part of z.
Let

λ0 =
|〈x, y〉|
〈x, y〉

,

and put λ = ρλ0, where ρ is an arbitrary real (recall that we assumed that 〈x, y〉 6= 0). Then |λ0| = 1
and so |λ|2 = ρ2. Further, the expression

λ〈x, y〉 = ρλ0〈x, y〉 = ρ|〈x, y〉|

is real, and so ℜ
(

λ〈x, y〉
)

= ρ|〈x, y〉|. Thus, inequality (1.13) becomes

(1.14) ρ2〈x, x〉+ 2ρ|〈x, y〉|+ 〈y, y〉 ≥ 0.

According to what we said about the former inequality, we have equality here for at most one real
value of ρ.1.4 Hence the equation

ρ2〈x, x〉+ 2ρ|〈x, y〉|+ 〈y, y〉 = 0.

is a quadratic equation for ρ with real coefficients (recall that 〈x, x〉 6= 0 by Clause (a) of Definition
1.1 of inner product, since x 6= 0). that has at most one real solution. Hence its discriminant cannot
be positive. That is,

(

2〈x, y〉
)2 − 4〈x, x〉〈y, y〉 ≤ 0.

Rearranging this, we obtain the inequality to be proved.

1.3This equation is a genuine quadratic equation, since 〈x, x〉 6= 0, that is, the coefficient of λ2 is not zero, according
to what we said above.
1.4Saying that ρ is real is important here, since this inequality does not even have to hold if ρ is not real. This

inequality is a consequence of inequality (1.13) only for real ρ. This is because the equation ℜλ〈x, y〉 = ρ|〈x, y〉| holds
only for real ρ.
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This solution can be greatly shortened by taking

(1.15) λ = − |〈x, y〉|2

〈x, x〉〈x, y〉
= −〈x, y〉〈x, y〉

〈x, x〉〈x, y〉
= −〈x, y〉

〈x, x〉

in inequality (1.13). Indeed, this choice corresponds to the choice

ρ = −|〈x, y〉|
〈x, x〉 ,

which is the value of ρ for which the left-hand side of inequality (1.14) assumes its minimum. Such
a shortening is, however, no real simplification, since it is achieved by skipping the explanation why
this choice of λ is taken. This is the proof next, except that the numerator and the denominator of
λ given in equation (1.15) is distributed between x and y to avoid the use of fractions.

Direct proof, no motivation. Let V be an inner product space over C or R; in the latter case, complex
conjugation has no effect. Let x, y be vectors in V ; we may assume that x 6= 0, since otherwise
inequality (1.12) clearly holds. By Clause (a) of Definition 1.1 we have

0 ≤
〈

〈x, y〉x− 〈x, x〉y, 〈x, y〉x− 〈x, x〉y
〉

= 〈x, y〉〈x, y〉〈x, x〉 − 〈x, y〉〈x, x〉〈x, y〉 − 〈x, x〉〈x, y〉〈y, x〉+ 〈x, x〉2〈y, y〉
= −|〈x, y〉|2〈x, x〉+ 〈x, x〉2〈y, y〉;

we are about to explain why these equations hold. To obtain the first equation, first note that
〈x, x〉 is real according to Clause (a) of Definition 1.1. In taking the scalar factors out of the inner
product, we used Clause (c) We also used the equation 〈αu, v〉 = ᾱ〈u, v〉, which, as we explained
after Definition 1.1, holds in view of Clauses (b) and (c). To obtain the second equation, we used
Clause (b) and the observation that ᾱα = |α|2 for any complex number α; note that this resulted
in some calcelation among the first three terms of the expression on the left of the second equality.
Given that 〈x, x〉 > 0 by Clause (a) in view of our assumption that x 6= 0, we can divide through by
〈x, x〉 the extreme sides of the last displayed formula to obtain inequality (1.12) (note that we are
dividing an inequality by a positive number).

1.5 Normed vector spaces

On a vector space V over F (with F = C or R) one often defines a norm:

Definition 1.3. A norm is a mapping ‖ · ‖ : V → R such that

(a) ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 only if x = 0,

(b) ‖αx‖ = |α| ‖x‖ for all α ∈ F and for all x ∈ V ,

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

A vector space with a norm is called a normed vector space or, more shortly, a normed space.

Clause (c) is called Minkowski’s inequality. With an inner product 〈·, ·〉 one can define the
induced norm as

(1.16) ‖x‖ =
√

〈x, x〉.

If the norm is induced by an inner product, Minkowski’s inequality can be proved by Schwarz’s
inequality;

7
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Proof of Minkowski’s inequality for induced norms. Let V be an inner product space over C or R;
if V is over R, complex conjugation will have no effect. We have

(‖x‖+ ‖y‖)2 = ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 ≥ 〈x, x〉+ 2|〈x, y〉|+ 〈y, y〉
≥ 〈x, x〉+ 2ℜ(〈x, y〉) + 〈y, y〉 = 〈x, x〉+ 〈x, y〉+ 〈x, y〉+ 〈y, y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = 〈x+ y, x+ y〉 = ‖x+ y‖2;

here the first inequality follows from Schwarz’s inequality, given in Theorem 1.1,

In an inner product space, by the norm we will always mean the induced norm unless otherwise
mentioned.

Two vectors x and y are called orthogonal if 〈x, y〉 = 0. Let x1, x2, . . ., xn be a system of vectors
such that xi and xj are orthogonal whenever 1 ≤ i < j ≤ n. Then

(1.17)

∥

∥

∥

∥

∥

n
∑

k=1

xk

∥

∥

∥

∥

∥

2

=
n
∑

k=1

‖xk‖2.

Indeed, we have

∥

∥

∥

∥

∥

n
∑

k=1

xk

∥

∥

∥

∥

∥

2

=
〈

n
∑

k=1

xk,

n
∑

l=1

xl

〉

=

n
∑

k=1

n
∑

l=1

〈xk, xl〉 =
n
∑

k=1

‖xk‖2;

the last equation holds since 〈xk, xl〉 = 0 unless k = l. The equation we just established can be
considered an analog of the Pythagorean theorem.

2 Diagonalization of Hermitian matrices

2.1 Eigenvalues of a Hermitian matrix are real

Hermitian matrices were defined in Subsection 1.1. Inner products of column vectors were described
in Subsection 1.2; the canonical inner product was defined in (1.2), and inner products associated
with a Hermitian matrix H were given in (1.4). One important property of Hermitian matrices
is that all its eigenvalues are real. In fact, if H is Hermitian and λ is one of its eigenvalues with
eigenvector v, then we have

v∗Hv = (v∗Hv)∗ = v∗H∗v∗∗ = v∗Hv = v∗λv = λv∗v.

The first two equations shows that v∗Hv is real. The product v∗v is a nonzero real according to
equation (1.3). Hence it follows that λ is real. If H is also a real matrix (a Hermitian matrix with
real entries is called a symmetric matrix ), then the eigenvector v can also be chosen to be real. This
is because the matrix H − λI is then singular, and so its columns are linearly dependent over the
field of reals; so there is a real nonzero vector v such that (H − λI)v = 0 (the column vector on
the left is a linear combination of the columns of the matrix H − λI, the entries of v being the
coefficients in this linear combination).
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2.2 Unitary matrices

A square matrix over the complex numbers is called unitary if U∗U = I. If so, U∗ is a left inverse
of U ; since a left inverse of a matrix is also its right inverse, we have also UU∗ = I. Hence, if U is
unitary, then U is invertible, and U−1 = U∗ is also unitary. Furthermore, If U and V are unitary
matrices, then UV is also a unitary matrix. Indeed, we have

(UV )∗(UV ) = (V ∗U∗)(UV ) = V ∗(U∗U)V = V ∗IV = V ∗V = I.

2.3 Householder matrices

If v is a complex column vector with v∗v = 1, then the n × n matrix Hv = I − 2vv∗ is called a
Householder matrix. A Householder matrix is Hermitian and unitary. Indeed, given a Household
matrix H = Hv, we have

H∗ = I∗ − 2(vv∗)∗ = I − 2(v∗)∗v∗ = I − 2vv∗ = H,

showing that H is Hermitian. Furthermore,

H∗H = HH = (I − 2vv∗)(I − 2vv∗) = I − 2 · 2vv∗ + 4vv∗vv∗

= I − 4vv∗ + 4v(v∗v)v∗ = I − 4vv∗ + 4vv∗ = I;

the parenthesis in the third term of the fifth member can be placed anywhere since multiplication
of matrices (and vectors) is associative, and the fifth equation holds since v∗v = 1.

To simplify the discussion below, we will often write ‖x‖ for
√
x∗x; this is the induced norm

associated with the canonical inner product described in (1.2); see (1.16) Given two vectors x and
y with ‖x‖ = ‖y‖, x 6= y, and such that x∗y (which is a scalar) is real, there is a Householder
transformation that maps x to y and y to x. Indeed, if one takes

(2.1) v =
x− y

‖x− y‖ ,

then Hv maps x to y. Indeed,

Hvx =

(

I − 2
x− y

‖x− y‖ · (x− y)∗

‖x− y‖

)

x =

(

I − 2
(x− y)(x∗ − y∗)

(x− y)∗(x− y)

)

x

=

(

I − 2
(x− y)(x∗ − y∗)

x∗x− x∗y − y∗x+ y∗y

)

x = x− 2
(x− y)(x∗x− y∗x)

x∗x− x∗y − y∗x+ y∗y
.

In the denominator on the right-hand side we have x∗x = ‖x‖2 = ‖y‖2 = y∗y in view of our as-
sumption; further, our assumption that x∗y is a real number implies that it equals its own Hermitian
transpose, we have x∗y = (x∗y)∗ = y∗x; hence the denominator on the right equals 2x∗x − 2y∗x.
Thus, the right-hand side equals

x− (x− y) = y,

showing that Hvx = y, as we wanted to show.
Note that both requirements on x and y are essential. Indeed, given that H is Hermitian, if

y = Hx, we have
x∗y = x∗Hx = (x∗H∗x)∗ = (x∗Hx)∗;

the last equation holds since H is Hermitian. Further,

‖y‖2 = y∗y = x∗H∗Hx = x∗x = ‖x‖2;

9



the third equation holds since H∗H = I (i.e., that H is unitary).
Two square matrices A and B of the same size are called unitarily equivalent if there is a unitary

matrix U such that B = U∗AU . A square matrix is called upper triangular if all its entries under
the main diagonal are zero. It is called lower triangular if all its entries above the main diagonal
are zero. It is called diagonal if all its entries outside the main diagonal are zero. We will prove the
following

Theorem 2.1. Every n×n matrix with complex entries is unitarily equivalent to an upper triangular

matrix.

Proof. Let n ≥ 1 be an integer, and for i with 1 ≤ i ≤ n let ei the ith n-dimensional unit column
vector; that is all entries of ei are 0 except for the ith entry, which is 1 – see (1.5). We will use
induction on n; so assume that the assertion is true for square matrices of size smaller than n×n. Let
A be an n×n matrix, λ an eigenvalue of A, and u the corresponding eigenvector. Given any nonzero
α ∈ C, the vector αu is also an eigenvector for λ; so we may assume that assume that u∗u = 1 and
that u∗e1 is real. If u 6= e1, then there is a Householder matrix H such that He1 = u; if v = e1
then take H = I, in which case we still have He1 = u. We have H∗ = H−1, since H is unitary.2.1

Hence
H∗AHe1 = H∗Au = H∗λu = λH−1u = λe1,

so λ is an eigenvalue with eigenvector e1 of the matrix B = H∗AH.
For the the matrix B = (bij) we have

bi1 = e∗iBe1 = e∗i λe1 = λe∗i e1 = λδi1.

Therefore, B can be written as a block matrix

B = H∗AH =

(

λ b∗

0 B1

)

,

where 0 is an (n − 1)-dimensional zero column vector, b∗ is the (n − 1)-dimensional row vector
consisting of the entries of the first row of B with the exception the first entry, and B1 is an
(n − 1) × (n − 1) matrix. By induction C1 = U∗

1B1U1, where U1 is a unitary matrix, and C1 is an
upper triangular matrix Then, defining the matrix C by the next equation, we have2.2

C =

(

1 0∗

0 U1

)∗

H∗AH

(

1 0∗

0 U1

)

=

(

1 0∗

0 U∗
1

)

H∗AH

(

1 0∗

0 U1

)

=

(

1 0∗

0 U∗
1

)

B

(

1 0∗

0 U1

)

=

(

1 0∗

0 U∗
1

)(

λ b∗

0 B1

)(

1 0∗

0 U1

)

=

(

1 0∗

0 U∗
1

)(

λ b∗U1

0 B1U1

)

=

(

λ b∗

0 U∗
1B1U1

)

=

(

λ b∗U1

0 C1

)

.

2.1This is true whether H is a Householder matrix or H = I. In case u = e1, nothing needs to be changed, and the
choice H = I made in this case will not change the matrix A. If one uses the method described here as a numerical
algorithm, and u

∗
u = 1, and u

∗
e1 is real, then instead of picking H as described, one would choose between the

matrices H1 and H2 such that H1e1 = u; or H1e1 = −u, making the first choice if ‖e1 − u‖ ≥ ‖e1 + u‖, and the
second one otherwise. With x = e1 and y = u or −u, this choice will maximize the denominator in equation (2.1) so
as to minimize the numerical error.
2.2In forming the products of these block matrices it is important to ascertain that their partitionings are multi-

plicatively conformable; that is, if two submatrices need to be multiplied, the number of columns of the matrix on
the left agrees with the number of rows of the matrix on the right. For this, the scalar on the top left (1 or λ) needs
to be counted as a 1× 1 matrix, and not as a scalar that can be multiplied by any matrix.
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Since C1 is an upper triangular matrix, we can see that C is also an upper triangular matrix. Observe

that the matrix

(

1 0∗

0 U1

)

is a unitary. Indeed, we have

(

1 0∗

0 U1

)∗ (

1 0∗

0 U1

)

=

(

1 0∗

0 U∗
1

)(

1 0∗

0 U1

)

=

(

1 0∗

0 U∗
1U1

)

=

(

1 0∗

0 In−1

)

= In,

where Ik denotes the unit k × k unit matrix. Noting that the product of two unitary matrices is
also unitary, as we remarked in Subsection 2.2. it follows that the diagonal matrix C is unitarily
equivalent to A, the assertion of the theorem follows.

A consequence of this is the following

Corollary 2.1. Every n×n matrix with complex entries is unitarily equivalent to a lower triangular

matrix.

Proof. Let A be an n × n matrix with complex entries. According to Theorem 2.1, A∗ is unitarily
equivalent to an upper triangular matrix; i.e., for some unitary matrix U , the matrix U∗A∗U is
upper triangular. Hence its Hermitian transpose

(U∗A∗U)∗ = U∗A∗∗U∗∗ = U∗AU

is lower triangular.

Corollary 2.2. Every Hermitian matrix matrix is unitarily equivalent to a real diagonal matrix.

Proof. Given a Hermitian matrix A, by the theorem we just proved there is a unitary matrix U∗

such that U∗AU is upper triangular. Since we have

(U∗AU)∗ = U∗A∗U∗∗ = U∗AU,

we can see that U∗AU is Hermitian. Hence it must be a diagonal matrix with real entries.

Theorem 2.1 is given as [1, (7.4.3) Theorem, p. 327]. Corollary 2.2 is given as [1, (7.4.4) Corollary,
p. 331].

2.4 Gram–Schmidt orthogonalization

Let n ≥ 1 be an integer, and let V be a real or complex n-dimensional inner product space. A
system if vectors let U = (u1, u2, . . . , un) of vectors in V is called orthonormal if 〈ui, uj〉 = δij for i,
j with 1 ≤ i, j ≤ n. Let X = (x1, x2, . . . , xn) be a basis. Then the following algorithm allows us to
create an orthonormal basis Y = (y1, y2, . . . , yn) of V . Writing 〈·, ·〉 for the inner product and ‖ · ‖
for the induced norm, for k with 1 ≤ k ≤ n, assume that yi for i with 1 ≤ i < k has already been
defined, let

(2.2) zk = xk −
k−1
∑

i=1

〈yi, xk〉yi;

for k = 1, the sum is empty, hence the equation gives z1 = x1. Assuming zk 6= 0, put

(2.3) yk =
1

‖zk‖
zk;

11



if zk = 0, the process cannot be continued.
Observe that, in fact zk = 0 cannot happen. Indeed, if we were able to construct yi for all

i with 1 ≤ i < k, then these equations show that yi for such an i is in the span of the vectors
(xj : 1 ≤ j < k). As X is linearly independent, the first of these equations show that we cannot
have zk = 0. Hence, there is no impediment in the construction of Y.

Equation (2.3) shows that ‖yk‖ = 1 for all k with 1 ≤ k ≤ n. The show that Y is orthogonal,
let k be an integer with 1 ≤ k ≤ n, and assume that 〈yi, yj〉 = δij note that for any j and k with
1 ≤ j < k ≤ n we have

〈yj , yk〉 =
1

‖zk‖
〈yj , zk〉 =

1

‖zk‖
〈

yj , xk −
k−1
∑

i=1

〈yi, xk〉yi
〉

=
1

‖zk‖
(

〈yj , xk〉 −
k−1
∑

i=1

〈yi, xk〉〈yj , yi〉
)

=
1

‖zk‖
(

〈yj , xk〉 −
k−1
∑

i=1

〈yi, xk〉δji〉
)

=
1

‖zk‖
(

〈yj , xk〉 − 〈yj , xk〉
)

= 0,

as we wanted to show.
Observe the following about the method described above. According to equations (2.2) and (2.3), yk

is a linear combination of the vectors x1, x2, . . . , xk. Hence, Y = XP for an n×n matrix P = (pij),
then all entries pij are zero with i > j. That is P is an upper triangular matrix. None of the diagonal
elements of P can be zero, since P is nonsingular. The simplest way to see this is that detP is the
product of its diagonal elements, and detP 6= 0 since P is nonsingular.2.3

Gram–Schmidt orthogonalization is discussed in [1, (7.3.2) Theorem, p. 318].

3 Hermitian forms

Let V be a finite-dimensional vector space over F , where F is either the set of real numbers R or
the set of complex numbers C.

Definition 3.1. A Hermitian form is a mapping 〈·, ·〉 : V ×V → F such that that satisfies Clauses (b)
(c) and (d); that is, it satisfies

(b) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,

(c) α〈x, y〉 = 〈x, αy〉 for all α ∈ F and x, y ∈ V ,

(d) 〈x, y〉+ 〈x, z〉 = 〈x, y + z〉 for all x, y, z ∈ V .

3.1 Representation of Hermitian forms

Let X = (x1, x2, . . . , xn) be the basis of V (that is n = dimV > 0), and let 〈·, ·〉 be a Hermitian
form on V . Let H be an n× n matrix whose entry at the (i, j) place is 〈xi, xj〉; that is,

(3.1) e∗iHei = 〈xi, xj〉;
2.3It is also easy to see from equations (2.2) and (2.3) that pii 6= 0 for all i with 1 ≤ i ≤ n. It is not hard to show

that the inverse of an upper triangular matrix is also upper triangular; hence X = YP−1 with an upper triangular
matrix P−1.
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cf. (1.6); H is Hermitian, since 〈xj , xi〉 = 〈xi, xj〉 according to Clause (b) of Definition 3.1. Then,
for arbitrary u, v ∈ V we have

(3.2) 〈u, v〉 = (RXu)∗HRX v.

This can be established in a way similar to the establishing of equation (1.10); here, we derive this
equation directly:

Writing

u =

n
∑

i=1

αixi and v =

n
∑

j=1

βjyj ,

we have
RXu = (α1, α2, . . . , αn)

T and RX v = (β1, β2, . . . , βn)
T .

Further

〈u, v〉 =
〈

n
∑

i=1

αixi,

n
∑

j=1

βjyj

〉

=

n
∑

i=1

n
∑

j=1

ᾱiβj〈xi, yj〉 =
n
∑

i=1

n
∑

j=1

ᾱiβje
∗
iHej

=
(

n
∑

i=1

αiei

)∗

H

n
∑

j=1

βjej = (RXu)∗HRX v,

as we wanted to show.
Similarly as in equation (1.11), the matrix H defined in equation (3.1) is called the representation

of the inner product 〈·, ·〉 in the basis X , and we write

(3.3) H = PX 〈·, ·〉.

3.2 Change of bases

Write n for the dimension of V . Let X and Y be bases of the space V , and assume Y = XP

for a nonsingular n × n matrix P . Then, for a = RYu ∈ Fn,1 we have u = Ya = XPa, and so
RXu = Pa = PRYu. Hence, for the H in (3.3) we have

〈u, v〉 = (RXu)∗HRX v = (PRYu)
∗HPRYv = (RYu)

∗(P ∗HP )RYv.

Hence

(3.4) PY〈·, ·〉 = P ∗
(

PX 〈·, ·〉
)

P.

Definition 3.2. Let K and H be n×n matrices over F = C or F = R. We say that K is conjunctive
to H if there is a nonsingular n× n matrix P over F such that K = P ∗HP .

This definition is given in [1, (7.2.13) Definition, p. 315]. Formula (3.4) says that two Hermitian
matrices representing the same Hermitian form in different bases are conjunctive to each other.

3.3 Orthogonalization

A system X = (x1, x2, . . . , xn) of vectors in V is called orthogonal with respect to the Hermitian
form 〈·, ·〉 if 〈xi, xj〉 = 0 whenever 1 ≤ i < j ≤ n and X is linearly independent.3.1 If in addition we
have 〈xi, xi〉 = 1, −1, or 0, we call X orthonormal.

3.1Since we allow that 〈xi, xi〉 = 0, the linear independence of X does not follow from the other requirements.
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Given a linearly independent basis X = (x1, x2, . . . , xn) of V , one can define an orthonormal basis
Y = (y1, y2, . . . , yn) of V . The method Gram–Schmidt orthogonalization described in Subsection 2.4
needs to be modified to this end, because if one encounters a vector with zero “norm,”3.2 that
algorithm cannot be continues. So we describe a modified way of accomplishing our purpose.

Starting with k = 0, and continuing with k = 1, 2, . . ., we define the systems of vectors Xk, Uk,
and Vk as follows: for k = 0 we put X0 = X , and U0, and V0 will both be the empty system. For
k > 0, we remove a vector x with 〈x, x〉 Then we remove a vector x with 〈x, x〉 6= 0 from Xk−1 and
normalize it; that is, form the vector

(3.5) z =
1

√

|〈x, x〉|
x.

It is easy to see that we then have 〈z, z〉 = 1 or 〈z, z〉 = −1. Next, orthogonalize all the remaining
vectors in Xk−1 against z; that is, for every vector x′ remaining in Xk−1, replace x′ with

x′′ = x′ − 〈z, x′〉z if 〈z, z〉 = 1,

x′′ = x′ + 〈z, x′〉z if 〈z, z〉 = −1.

It then easily follows that 〈x′′, z〉 = 0. Let Xk be equal to Xk−1 so modified, and then put z into
Uk−1 if 〈z, z〉 = 1 and put it into Vk−1 if 〈z, z〉 = −1 to form Uk and Vk. Assuming that the
system obtained by merging the systems Xk−1, Uk−1, and Vk−1 consists of n vectors and is linearly
independent, it is easy to see that the system obtained by merging the systems Xk, Uk, and Vk will
also consists of n vectors and is linearly independent. Therefore, it will be a basis of V .

This process can be continued as long as there is a vector x in Xk−1 for which 〈x, x〉 6= 0.
If we have 〈x, x〉 = 0 for all vectors x in Xk−1, then we look for a pair of vectors z and w in Xk−1

for which 〈z, w〉 6= 0. Then we have

〈z + w, z + w〉 = 〈z, z〉+ 〈z, w〉+ 〈w, z〉+ 〈w,w〉
= 〈z, w〉+ 〈w, z〉 = 〈z, w〉+ 〈z, w〉 = 2ℜ〈z, w〉;

here the second equation holds since we assumed that 〈z, z〉 = 〈w,w〉 = 0. If V is a vector space
over R then the right-hand side equals 〈z, w〉, so it is not zero by assumption. If V is a vector space
over C, then ℜ〈z, w〉 = 0 may happen; but if so, then ℑ〈z, w〉 6= 0. Since we have

〈z + iw, z + iw〉 = 〈z, z〉+ 〈z, iw〉+ 〈iw, z〉+ 〈iw, iw〉
= 〈z, z〉+ i〈z, w〉 − i〈w, z〉 − i2〈w,w〉 = 〈z, w〉+ 〈w, z〉
= i〈z, w〉 − i〈z, w〉 = −2ℑ〈z, w〉;

for the second equation, observe that ī = −i. For the fourth equation, note that if ζ = αβi where α

and β are real, then

iζ − iζ̄ = i(α+ βi)− i(α− βi) = 2i2β = −2β = −2ℑζ.

So, to continue the process, we put x = z + w or x = z + iw, making the choice such that
〈x, x〉 6= 0, and remove one of z and w from Xk−1 to form Xk.

3.3 Then we continue the process by

3.2we mean 〈x, x〉 for the vector x, but since this need not be a norm, we will avoid the work “norm” in what follows
3.3We can remove either one; the purpose of removing one vector is to maintain the linear independence of the

system we are constructing. Observe that the system we obtained by merging the systems Xk, Uk, and Vk will be
linearly independent if the same is true for the system obtained by merging the systems Xk−1, Uk−1, and Vk−1.
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normalizing x as in equation (3.5) to obtain z, we repeat the same step as above, beginning with
orthogonalizing the remaining vectors in Xk−1 against z. The procedure stops when we are unable
to make the step to form the systems Xk, Uk, and Vk. At that point, for all vectors x in Xk−1 we
will have 〈x, x〉 = 0, and for any to vectors z and w in Xk−1 we will have 〈z, w〉 = 0. Then we can
form Y by merging the systems Xk−1, Uk−1, and Vk−1. It is clear that the system so obtained will
be an orthonormal basis of V ; indeed, it was true at all steps of the construction that the system
obtained by merging the systems Xk, Uk, and Vk was linear independent. The orthonormality of the
system follows from the fact that each of the remaining vectors in Xk−1 was orthogonalized against
the vector taken from it at each steps, and the vectors remaining in Xk−1 at the end are orthogonal
since the process cannot be continued.

Given an orthonormal basis Y = (y1, y2, . . . , yn) of V , let n+ be the number of vectors y in V

with 〈y, y〉 = 1, let n− be the number of vectors y in V with 〈y, y〉 = −1, and let n0 be the number
of vectors y in V with 〈y, y〉 = 0, The triple (n+, n−, n0) is called the signature of Y. Clearly, we
have n+ + n− + n0 = n.

3.4 Uniqueness of the signature of orthonormal bases

Let X = (x1, x2, . . . , xk, y1, y2, . . . , yl, z1, z2, . . . , zm) be an orthonormal basis of V , where 〈xi, xi〉 = 1
for all i with 1 ≤ i ≤ k, 〈yi, yi〉 = −1 for all i with 1 ≤ i ≤ l, and 〈zi, zi〉 = 0 for all i with 1 ≤ i ≤ m.
Similarly, let Y = (u1, u2, . . . , uk′ , v1, v2, . . . , vl′ , w1, w2, . . . , wm′) be an orthonormal basis of V ,
where 〈ui, ui〉 = 1 for all i with 1 ≤ i ≤ k′, 〈vi, vi〉 = −1 for all i with 1 ≤ i ≤ l′, and 〈wi, wi〉 = 0
for all i with 1 ≤ i ≤ m′. We will show that then k = k′, l = l′, and m = m′.

Writing n for the dimension of V , first note that k+l+m = k′+l′+m′ = n, and so we need only to
show the first two of these three equalities. To start with, we will show that k ≥ k′. Indeed, assume on
the contrary that k < k′. Then the system of vectors U = (u1, u2, . . . uk′ , y1, y2, . . . yl, z1, z2, . . . zm)
contains k′ + l+m > n vectors, and so it is linearly dependent. Therefore, there are scalars β1, β2,
. . ., β′

k, and γ1, γ2, . . ., γ
′
k not all of which are zero such that

k′

∑

i=1

αiui +

l
∑

j=1

βjyj +

m
∑

r=1

γrzr = 0.

Then we have

(3.6) x =

k′

∑

i=1

(−αi)ui =

l
∑

j=1

βjyj +

m
∑

r=1

γrzr

for some vector x. We cannot have x = 0; otherwise, the coefficients on both sides of the equation
would have to be zero, since the systems appearing on the sides are linearly independent. As for the
product 〈x, x〉, according to the first equation we have

〈x, x〉 =
〈

k′

∑

i=1

(−αi)ui,

k′

∑

i′=1

(−αi′)ui′

〉

=

k′

∑

i=1

k′

∑

i′=1

−αi (−αi′)〈ui, ui′〉

=
k′

∑

i=1

|αi|2〈ui, ui〉 =
k′

∑

i=1

|αi|2 > 0;

here the third equation holds since 〈ui, ui′〉 = 0 is i 6= i′; the fourth one holds since 〈ui, ui〉 = 1.
Finally, the inequality on the right holds since not all of the αi are zero.
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Similarly, making use of the equations 〈yj , yj〉 = −1, 〈yj , yj′〉 = −0 if j 6= j′, and 〈yj , zr〉 =
〈zr, zr′〉 = 0 for all j, r, and r′ with 1 ≤ j ≤ l and 1 ≤ r, r′ ≤ m, the second equation for x gives

〈x, x〉 = −
l

∑

j=1

|βj |2 ≤ 0.

These two inequalities for 〈x, x〉 contradict each other, showing the assumption k < k′ cannot be
true, so we must have k ≥ k′. The same argument interchanging the roles of the bases X and Y
show that k′ ≥ k′; hence, indeed, k = k′.

The equation l = l′ can be shown in a similar way, instead of equation (3.6) using the equation

y =
l′
∑

j=1

(−β)vj =
k

∑

i=1

αixi +
m
∑

r=1

γrzr

to show that l′ > l is not possible.
As we remarked above, having shown that k = k′ and l = l′, the equation m = m′ also follows

since k + l +m = k′ + l′ +m′ = n.

3.5 Sylvester’s theorem

The result of the considerations above can be formulated for matrices as a theorem of James Joseph
Sylvester for Hermitian matrices (cf. [1, (7.5.3) Theorem, p. 338]):

Theorem 3.1. Let H be a Hermitian matrix. Then, there is a nonsingular matrix P such that

P ∗HP is a matrix all entries of which off the main diagonal are 0, while the entries of the diagonal

are 1, −1, or 0. Furthermore, if Q∗HQ is another matrix matrix with the same properties, then

the number of entries equaling 1, −1, or 0 are the same as those in P ∗HP . Finally, it can also be

arranged that all entries of 1 are on top, all entries of −1 are in the middle, and all entries of 0
are on the bottom.

Given an n×n Hermitian matrix H, for the proof one introduces an Hermitian form 〈·, ·〉 on an n-
dimensional vector space V with basis X such that H = PX 〈·, ·〉. Then one construct an orthonormal
basis Y. With the nonsingular matrix such that X = YP we obtain the desired diagonal matrix
P ∗HP = PY〈·, ·〉. The order of the diagonal entries in this matrix can be changed arbitrarily by
permuting the vectors in Y. Finally, the number of entries of 1, −1, and 0 are uniquely determined
by the uniqueness of the signature of the inner product, as described in Subsection 3.4.

3.6 Unitary equivalence to diagonal matrices and Sylvester’s theorem

Given an n× n matrix Hermitian H matrix over complex numbers, Corollary 2.2 says that there is
a unitary matrix U for which D = (dij) = U∗HU is a diagonal matrix; it is easy to see that dii for
1 ≤ i ≤ n are the eigenvalues of H.3.4 Writing Q = (qii) for the diagonal matrix with

qii =

{

|dii|−1/2 if dii 6= 0,

1 if dii = 0.

3.4One way of seeing this is by noting that U∗ = U−1, and then observing that the characteristic polynomial of H is

det(H − Iλ) = det(U−1 det(H − Iλ) det(U) = det
(

U−1(H − Iλ)U
)

= det(U−1HU − Iλ)

= det(D − Iλ) =
n
∏

i=1

(dii − λ).
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ThenQ is nonsingular, and all diagonal elements of the matrixD1 = Q∗DQ are 1, −1, or 0.3.5 AsQ is
a diagonal matrix all whose diagonal elements are real; hence Q∗ = Q. That is D1 = (UQ)∗H(UQ),
and so D1 is conjunctive to H – cf. Definition 3.2. This is the existence part of Sylvester’s theorem,
except for the minor issue of the order of the entries in the diagonal of D1. The diagonal entries of
D1 can be rearranged by using a permutation matrix P .3.6 The matrix D2 = (UQP )∗H(UQP ) is
also conjunctive to H.
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3.5Of course, Q∗ = Q.
3.6A permutation matrix is a matrix every row and every column of which has exactly one entry equaling 1, all other

entries being 0. If A is an arbitrary n × n matrix and P is an n × n matrix and P ∗ is another permutation matrix
that is also its inverse. The matrix P ∗A is a matrix obtained by permuting the rows of A, and AP is permuting the
columns of A. If A is a diagonal matrix, then P ∗AP is another diagonal matrix, obtained by rearranging the diagonal
entries of A. By using an appropriate diagonal matrix, the diagonal entries of A can be rearranged in an appropriate
way.
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