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1 Preliminaries

1.1 Rank-nullity theorem

Let U and V be vector spaces over a field F , and let T : U → V be a linear transformation. Then the
domain of T , denoted as dom(T ), is the set U itself. The range of T is the set ra(T ) = {Tu : u ∈ U},
and it is a subspace of V ; one often writes TU instead of ra(T ). The kernel, or null space, of T is
the set ker(T ) = {u ∈ U : Tu = 0}; the kernel is a subspace of U . A key theorem is the following,
often called the Rank-Nullity Theorem:

Theorem 1. Given vector spaces U and V over F and a linear transformation T : U → V , we have

(1) dim(U) = dim(ker(T )) + dim(ra(T )).

Proof. Let u1, u2, . . ., uk, and v1, v2, . . ., vl, be vectors in U such that (u1,u2, . . . ,uk) is a basis
of ker(T ), and (Tv1, Tv2, . . . , Tvl) is a basis of ra(T ). We claim that then

(2) (u1,u2, . . . ,uk,v1,v2, . . . ,vl)

is a basis of U . This claim will establish the result, since according to this claim, if we have
dim(ker(T )) = k and dim(ra(T )) = l then we have dim(U) = k + l.

First we will show that the system in (2) is linearly independent. To this end, assume that with
some scalars αi and βj for i with 1 ≤ i ≤ k and for j with 1 ≤ j ≤ l we have

k
∑

i=1

αiui +

l
∑

j=1

βjvj = 0.

Applying T to both sides of equation and noting that Tui = 0 we have1

l
∑

j=1

βjTvj = 0.

As the system (Tv1, Tv2, . . . , Tvl) is linearly independent, it follows that βj = 0 for all j with
1 ≤ j ≤ l. Hence the previous displayed equation becomes

k
∑

i=1

αiui = 0.

As the system (u1,u2, . . . ,uk) is a basis of ker(U), it follows that αi = 0 for all i with 1 ≤ i ≤ k
This shows that the system given in (2) is linearly independent.

Next we will show that this system also spans U . To this end, let v ∈ U be arbitrary. Then
Tv ∈ ra(T ), and so there are scalars βj for j with 1 ≤ j ≤ l such that

Tv =

l
∑

j=1

βjTvj ,

1We use 0 for the zero vector to distinguish it from the zero scalar; however, it is difficult to maintain consistent
notation. For example, the last 0 is the zero vector of the space V , while the 0 at the end of the preceding displayed
equation is the zero vector of the space U . If one is too fastidious, one may write 0U and 0V for these different zeros.

2



because the system (Tv1, Tv2, . . . , Tvl) spans ra(T ). That is, we have

0 = Tv −
l

∑

j=1

βjTvj = T
(

v −
l

∑

j=1

βjvj

)

.

Hence the vector v−∑l

j=1 βjvj is in the kernel of T . As the system (u1,u2, . . . ,uk) spans ker(T ),
we have

v −
l

∑

j=1

βjvj =

k
∑

i=1

αiui

for some scalars αi for i with 1 ≤ i ≤ k. That is,

v =

l
∑

j=1

βjvj +

k
∑

i=1

αiui

for some scalars αi for i with 1 ≤ i ≤ k and βj for j with 1 ≤ j ≤ l. This shows that the system
in (2) also spans U . This establishes the claim, completing the proof of the theorem.

1.2 Existence of eigenvalues and eigenvectors

Let V be a vector space over a field F , and T : V → V a linear transformation. The elements of F
are called scalars. The vector u is called an eigenvector of T if u 6= 0 and Tu = λu for some scalar
λ; the scalar λ is called the eigenvalue associated with u. We have the following

Theorem 2. Let V 6= {0} be a finite dimensional vector space over an algebraically closed field F ,

and let T : V → V be a linear transformation. Then T has an eigenvalue.

Proof. Let v ∈ V be a nonzero vector, and form the vectors T kv for nonnegative integers k. Let
n ≥ 0 be the smallest integer for which the system (T kv : 0 ≤ k ≤ n) is linearly dependent. Clearly,
n > 0, since v 6= 0; further, n cannot be greater than the dimension of V . Since this system is
linearly dependent, there are scalars αk for k with 0 ≤ k ≤ n such that

n
∑

k=0

αkT
kv = 0;

here αn 6= 0 in view of the minimality of n. Write P (x) =
∑n

k=0 αkx
k, where x is an unknown; P (x)

is a polynomial of degree n over F .
As F is algebraically closed, there is a λ ∈ F such that P (λ) = 0. Let Q(x) be the polynomial

of degree n − 1 over F such that P (x) = (x − λ)Q(x). In view of the minimality of n, we have
Q(T )v 6= 0 and P (T )v = (T − λ)Q(T )v = 0. That is, T Q(T )v = λ Q(T )v, where Q(T )v is a
nonzero vector. Thus Q(T )v is an eigenvector of T with λ as the associated eigenvalue.

2 Existence of a Jordan decomposition

Let F be a field; in what follows, by vector space we will mean a vector space over F . An element
of F will also be referred to as a scalar. If X and Y are subspaces of V such that X ∩ Y = {0} and
X ∪ Y span V , then we will write V = X ⊕ Y , and we will say that V is the direct sum of X and
Y . If T : V → V is a linear transformation and X is a subspace of V , we call X invariant for T if

TX
def
= {Tx : x ∈ X} ⊂ X. We have:
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Lemma 1. Let V be a finite-dimensional vector space and let T : V → V be a linear transformation

such that 0 is an eigenvalue of T . Then there is a vector u ∈ V , a positive integer k, and subspaces

U and W of V such that U ⊕W = V , U and W are invariant subspaces for T , the system

(T iu : 0 ≤ i < k)

is a basis of U , and T ku = 0.

Proof. We use induction on the dimension of V ; so assume that the statement is true for any vector
space having a smaller dimension than V . Since 0 is an eigenvalue of T , the kernel of T contains a
nonzero vector, and so TV has lower dimension than V by Theorem 1.

That is, the statement of the lemma is true for TV replacing V provided that TV satisfies the
assumptions. If the assumptions of the lemma are true for TV replacing V , let U ′ and W ′ be the
subspaces of TV satisfying the assumptions of the lemma with TV replacing V . Further, let u′ ∈ U ′

and k′ > 0 be such that

(3) SU ′ = (T iu′ : 0 ≤ i < k′)

is a basis of U ′ and T k′

u′ = 0. The only way for T restricted to TV not to satisfy the assumptions is
that 0 is not an eigenvalue of T restricted to TV (this includes also the special case when TV = {0}).
This case will start the induction; in this case, we will put U ′ = {0}, W ′ = TV , k′ = 0, and u′ will
not be defined.

If U ′ = {0}, then let u ∈ V \ TV be such that Tu = 0; there is such a u since 0 is an eigenvalue
of T . If U ′ 6= {0}, then let u be such that Tu = u′; there is such a u since u′ ∈ U ′ ⊂ TV . Let
k = k′ + 1, and let U be the subspace of V spanned by

(4) SU = (T iu : 0 ≤ i ≤ k) = (u, SU ′).

Since u /∈ U ′ and SU ′ is a basis of U ′ (cf. (3), the system SU is linearly independent; hence SU is a
basis of U . It is also clear that for any u′

0 ∈ U ′ there is a u0 ∈ U such that

(5) Tu0 = u′
0.

Let l ≥ 0 be an integer and let wj for 1 ≤ j ≤ l be vectors with such that Twj ∈ W ′, the span
of the system

(6) SW = (wj : 1 ≤ j ≤ l)

includes W ′, and, further,

(7) SV = (T iu,wj : 0 ≤ i ≤ k and 0 ≤ j ≤ l)

is a linearly independent system of vectors in V , and, finally, such that the system SV is maximal
in the sense that no new vector w ∈ V with Tw ∈ W ′ can be added while preserving linear
independence. (The case l = 0 is allowed; in this case no vectors wj can be found because the
system without them is already maximal.) We claim that there is an SV satisfying these conditions,
and that such an SV is a basis of V . To show this, assume that v ∈ V is not in the span of SV . If
v ∈ W ′ then we also have Tv ∈ W ′ since the subspace W ′ is invariant and W ′ ∩ U = {0}. Thus,
first adding a basis of W ′ will ensure that the span of SW included W ′. In any case, since we have
TV = W ′ ⊕ U ′, and Tv ∈ TV , we have

(8) Tv = w′ + u′
0

4



for some w′ ∈ W ′ and u′
0 ∈ U ′. According to (5) there is a u0 ∈ U such that Tu0 = u′

0. Let
w = v − u0; then Tw = Tv − Tu0 = w′ ∈ W ′. Given that u0 ∈ U is in the span of SV and v is
not, w is not in the span of SV . Thus w can be added to SV , contradicting the maximality of the
latter.

Let W be the subspace spanned by the system system by SW just defined. As Twj ∈ W ′, the
subspace is invariant for T . SW is linearly independent, it is a basis of W .

To complete the proof of the lemma, we need to show that U ⊕W = V ; the rest of the assertions
of the lemma are obviously satisfied. For this we need to show that U ∪W span V and U ∩W = {0}.
To show the former, it is enough to note that the basis of SV of V can be obtained by merging the
bases SU of U and SW of W – cf (4), (7), and (6).

We need yet to show that U ∩W = {0}. To this end, assume that x ∈ U ∩W ; we then need to
show that x = 0. We have

x =

k−1
∑

i=0

αiT
iu =

l
∑

j=1

βjwj

for some scalars αi and βj – cf. (4) and (6). Therefore,

k−1
∑

i=0

αiT
iu−

l
∑

j=1

βjwj = 0.

Since the system SV in (7) is linearly independent, it follows that αi = βj = 0 for 0 ≤ i < k and
1 ≤ j ≤ l. Thus x = 0, as we wanted to show.

Corollary 1. Let V be a finite-dimensional vector space and let T : V → V be a linear transfor-

mation such that λ is an eigenvalue of T . Then there is a vector u ∈ V , a positive integer k, and
subspaces U and W of V such that U ⊕W = V , U and W are invariant subspaces for T , the system

(

(T − λ)iu : 0 ≤ i < k
)

is a basis of U , and (T − λ)ku = 0.

Proof. The result follows immediately follows by using Lemma 1 with T − λ replacing T if one
observes that a subspace of V is invariant for T if and only if it is invariant for T − λ.

It will be helpful to set down the type of subspace U described by the above corollary:

Definition 1. Let V be a finite-dimensional vector space and let T : V → V be a linear transfor-
mation and let λ be a scalar. A subspace U of V is called a Jordan subspace of T for (or associated
with) the eigenvalue λ if there is a subspace W of V such that U ⊕W = V , U and W are invariant
for T , and there is a vector u ∈ U , a positive integer k such that the system

(

(T − λ)iu : 0 ≤ i < k
)

is a basis of U , and (T − λ)ku = 0. The vector u is called the cyclic generator of the subspace U .

Observe that calling λ and eigenvalue is justified, since λ is indeed an eigenvalue with (T−λ)k−1u

being the corresponding eigenvector. We are now ready to state

Theorem 3. Let V be a finite-dimensional vector space over an algebraically closed field, and let

T : V → V be a linear transformation. There are Jordan subspaces J1, J2, . . ., Jn of T such that

V =

n
⊕

i=1

Jn.
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The decomposition of V described in this theorem is called a Jordan decomposition.

Proof. The result follows by repeated applications of Corollary 1. Noting that every linear trans-
formation of a vector field over an algebraically closed field into itself has an eigenvalue according
to Theorem 2, using an eigenvalue of T we can obtain invariant subspaces J1 and W1 such that
V = J1 ⊕W1 and J1 is a Jordan subspace of T . Next, restricting T to T1, we can obtain a Jordan
subspace J2 ⊂ W1 of T restricted to W1. We can continue this until the whole space V is used
up.

3 Uniqueness of the Jordan decomposition

The Jordan decomposition of a vector space V for a linear transformation is unique except for the
order in which the Jordan subspaces are listed. The eigenvalue associated with each Jordan subspace
is also uniquely determined. We will show this through a number of lemmas. In the lemmas, the
vector space V and the linear transformation T : V → V may not be explicitly mentioned. By an
invariant subspace we will mean a subspace invariant for T .

Lemma 2. A Jordan subspace cannot be split as a nontrivial direct sum of two invariant subspaces.

Proof. Without loss of generality, we may assume that the Jordan subspace is the whole space V ,
and the eigenvalue associated with this subspace is 0; this latter because if the eigenvalue is λ, we
may replace the linear transformation T with T − λ. Let u and k be such that (T iu : 0 ≤ i < k) is
a basis of V , and T ku = 0. Assume, on the contrary, that V = A⊕B, A 6= {0}, and B 6= {0}.

First, note that each vector v ∈ V can be represented as v = P (T )u for some polynomial
P over the scalar field F of degree less than k. As V is the direct sum of A and B, we have
u = (P (T ) +Q(T ))u such that P (T )u ∈ A and Q(T )u ∈ B. One of the polynomials P or Q must
have a nonzero constant term; without loss of generality, we may assume that the constant term of
P is α0 6= 0. It is then easy to see that the vector u can be expressed as a linear combination of the
vectors T iP (T )u for i with 0 ≤ i < k. In fact, writing P (x) =

∑k−1
j=0 αjx

j , we have

T iP (T )u =

k−1
∑

j=i

αj−iT
ju;

this is because T iu = 0 for i ≥ k. That is a triangular system of equations that we can easily solve
for T iu by back-substitution. That is, the equation for i = k − 1 gives T k−1P (T )u = α0T

k−1u,
easily solved for T k−1u. For i = k− 2 we have T k−2P (T )u = α0T

k−2u+α1T
k−1u; substituting the

just obtained expression for T k−1u, we can now solve this for T k−2u, and so on.
As A is an invariant subspace for T , it follows that u ∈ A. Hence, each of the basis vectors T iu

of V (0 ≤ i < k) belongs to A, and so A = V . This shows that V = A⊕B is a trivial direct sum.

Corollary 2. If U1 and U2 are two Jordan subspaces, and U1 ∩ U2 6= {0} then U1 = U2.

It is not assumed that the subspaces U1 and U2 are associated with the same eigenvalue.

Proof. Let W1 and W2 be such that V = U1 ⊕W1 and V = U2 ⊕W2. Then the subspaces U1 ∩ U2

and U1 ∩W2 are invariant, and so the direct sum decomposition U1 = (U1 ∩ U2)⊕ (U1 ∩W2) must
be trivial according to Lemma 2. That is, U1 ⊂ U2 or U1 ⊂ W2. We can exclude the latter, since it
implies that U1 ∩ U2 = {0}; thus U1 ⊂ U2 follows.

We can establish U2 ⊂ U1 in a similar way; thus we can conclude that U1 = U2.
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Lemma 3. A Jordan subspace can be associated with only one eigenvalue.

Proof. Without loss of generality, we may assume that the Jordan subspace is V itself and one of
the eigenvalues is 0; let the other eigenvalue be λ 6= 0. Assume that the bases associated with these
eigenvalues are (T iu : 0 ≤ i < k) and

(

(T − λ)iv : 0 ≤ i < k
)

; note that k is the dimension of the
space V , and so we used the same k for both bases, though this will not play an important role
in our considerations. The vector w = (T − λ)k−1v is an eigenvector with eigenvalue λ, that is
Tw = λw; hence

T kw = λkw 6= 0.

On the other hand, w = P (T )u for some polynomial P of degree less than k. As T ku = 0, is
follows that

T kw = T kP (T )u = 0.

This is a contradiction, completing the proof.

Theorem 4. The Jordan decomposition of a vector space is essentially unique; that is, two Jordan

decompositions must agree except for the order in which the Jordan subspaces are listed.

The basis (T ku : 0 ≤ i < k) associated with a Jordan subspace is certainly unique, since instead
of u we can take any other vector P (T )u for a polynomial P with nonzero constant term. For each
Ji of the Jordan subspaces J1, J2, . . ., Jn the pair (λi, ki) is associated in a unique way, and the
sequence

(

(λi, ki) : 1 ≤ k ≤ n
)

is called the Jordan signature of T .

4 The minimal polynomial of a linear transformation

In this section we will consider finite dimensional vector spaces V over a field F that does not need
to be algebraically closed unless otherwise mentioned. By a monic polynomial over F we will mean
a polynomial of leading coefficient 1 (the unit element of the field F ).

Definition 2. Given a vector field V over a field F , the minimal polynomial of a linear transfor-
mation T : V → V the monic polynomial P over F of the smallest degree such that P (T ) = 0.2

4.1 Existence of the minimal polynomial

We have

Lemma 4. Let V be a finite dimensional vector space over a field F , and let T : V → V be a linear

tranformation. Then T has a minimal polynomial. Furthermore, the minimal polynomial of T is

unique.

Proof. Let S = (vi : 1 ≤ i ≤ n) be a basis of V ; then n is the dimension of V . Let i be an integer
with 1 ≤ i ≤ n. Then the system (T jvi : 0 ≤ j ≤ n) consists of n + 1 vectors; thus it is liearly
dependent. Therefore, we have

n
∑

j=0

αijT
jvi = 0

2Observe that the linear transformation 0 is different from the scalar 0. While we use the notation 0 for the zero
vector to distinguish it from the scalar 0, it would be difficult to maintain such a distinction between all the different
kinds of zero elements that may occur in the discussion.
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for some scalars αij (0 ≤ j ≤ n), not all of which are zero. Writing

Qi(x) =
n
∑

j=0

αijx
j = 0,

Qi(x) is a nonzero polynomial such that Qi(T )vi = 0.
Let Q(x) =

∏n

i=1 Qi(x). Then Q(x)vi = 0 for all i with 1 ≤ i ≤ n Since every vector V can be
expressed as a linear combination of the vectors vi, we have Q(T )v = 0 for every v ∈ V . Thus,
there is a polynomial Q(x) that annihilates every vector in V . Then a monic polynomial P (x) of
the smallest degree that annihilates every vector in V is a minimal polynomial of T .

To show the uniqueness of the minimal polynomial, assume, on the contrary, that P1(x) and
P2(x) are two different monic polynomials that are minimal polynomials of T ; then P1(x) and P2(x)
have the same degree. Let D(x) be the greatest common divisor of P1(x) and P2(x); then the degree
of D(x) is lower than the common degree of P1(x) and P2(x). Furthermore, we have

P (x) = R1(x)P1(x) +R2(x)P2(x)

for some polynomials R1(x) and R2(x), according to the Euclidean algorithm. Thus

P (T )v = R1(T )P1(T )v +R2(T )P2(T )v = 0

for every vector v ∈ V . This is a contradiction, since the degree of D(x) is lower than that of P1(x)
and P2(x).

4.2 The minimal polynomial for algebraically closed fields

Assume V is a vector space over an algebraically closed field F , and let T : V → V be a linear trans-
formation Then T has a Jordan decomposition according to Theorem 3. The minimal polynomial
T can be described with the help of this Jordan decomposition. Indeed, let {Jij : 1 ≤ i ≤ m and
1 ≤ j ≤ mi} be the Jordan subspaces of T with the corresponding Jordan signature

(9)
(

(λi, kij) : 1 ≤ i ≤ m and 1 ≤ j ≤ mi

)

;

that is, the Jordan subspace Jij is associated with the eigenvalue λi and has dimension kij . Assume
that the subspaces are so arranged that ki1 ≥ kij for 1 < j ≤ mi. Then the minimal polynomial of
T is

(10) P (x) = Pmin,T (x)
def
=

m
∏

i=1

(x− λi)
ki1 .

To see that P (T ) = 0, we need to show that P (T )v = 0 for every vector v in a basis of V . So
consider the Jordan basis associated with the above Jordan decomposition

(

(T − λi)
luij : 1 ≤ i ≤ m, 1 ≤ j ≤ mi and 0 ≤ l < kij).

Let i, j, and l be an integers with 1 ≤ i ≤ m and 0 ≤ j ≤ mj . Then

(T − λi)
kij (T − λi)

luij = (T − λi)
l(T − λi)

kijuij = 0,
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where the latter equation holds since (T − λi)
kijuij = 0; this shows that the polynomial P (T )

annihilates each of the basis vectors (T − λi)
luij . On the other hand, if n ≥ 0 is any integer η ∈ F

with η 6= λi, then

(T − η)(T − λi)
kij−1uij =

(

(T − λi)− (η − λi)
)

(T − λi)
kij−1uij

= (T − λi)
kijuij + (λi − η)(T − λi)

kij−1uij = (λi − η)(T − λi)
k−1uij 6= 0;

the second equation holds since (T − λi)
kij = 0. So, if

Q(x) =

n
∏

r=1

(x− ηr)

is an arbitrary polynomial over F , then

Q(T )(T − λi)
kij−1uij =

(

n
∏

r=1

(T − ηr)
)

(T − λi)
kij−1uij

=
(

n
∏

r=1

(λi − ηr)
)

(T − λi)
kij−1uij = Q(λi)(T − λi)

kij−1uij .

Since we have (T − λi)
kij−1uij 6= 0, the right-hand side is not zero unless Q(λi) = 0. This shows

that a polynomial R(T ) does not annihilate the basis vector uij unless R(t) is divisible by (x−λi)
kij .

This shows that P (x) given in (10) is indeed the minimal polynomial of T .

4.3 The characteristic polynomial and the Cayley–Hamilton theorem

Consider a linear transformation T : V → V over an algebraically closed vector field F . with
the Jordan signature given in T , and let ki =

∑mi

j=1 for 1 ≤ i ≤ m. The integer ki is called the
multiplicity of the eigenvalue λ. The characteristic polynomial of T is defined as

(11) Pchar,T (x)
def
=

m
∏

i=1

(λi − x)ki .

Observe that the minimal polynomial of T defined in (10) is a divisor of the characteristic polynomial;
hence, Pchar,T (T ) = 0. This result is the Cayley–Hamilton theorem.

Below we will give a description of the characteristic polynomial that does not rely on the Jordan
decomposition of V . Such a description is important, since if the scalar field F is not algebraically
closed, the Jordan decomposition of V for T may not even exist.

4.4 Finding the minimal polynomial

Let V be a finite dimensional vector space over a field F , and let T : V → V be a linear transfor-
mation. There is a simple algorithm that allows us to find the minimal polynomial of T . Finding
the minimal polynomial is much simpler than finding the Jordan decomposition.

We need to find a polynomial P such that P (T )v = 0 for all vectors in a basis of V . Starting
with an arbitrary nonzero vector v1, we first find a polynomial P1 such that P1(T )v1 = 0 as follows.
Form the vectors v1, Tv1, T

2v1, . . . until we arrive at a system (T iv1 : 0 ≤ i ≤ k1) that is linearly
dependent; i.e.,

k1
∑

i=0

α1iT
iv1 = 0;
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such that not all coefficients αi are zero. In fact, we cannot have α1k1
= 0 since (T iv1 : 0 ≤ i ≤ k1−1)

is linearly independent according to our construction. It is easy to see that

P1(x) =

k1
∑

i=0

αix
i

is the polynomial of the lowest degree P (x) for which P (T )v1 = 0. Observe that we then also
have P1(T )T

iv1 = T iP1(T )v1 = 0. If the system (T iv1 : 0 ≤ i < k1) span V , then P1 is the
minimal polynomial of T . If they do not span V , then take a vector v2 that is not in the span of
(T iv1 : 0 ≤ i < k1), and form the vectors P1(T )v2, TP1(T )v2, T

2P1(T )v2, . . . until we arrive at
a system (T iP1(T )v2 : 0 ≤ i ≤ k2) is linearly dependent; observe that we will have k2 = 0 in case
P1(T )v2 = 0, whereas we cannot have k1 = 0. The linear dependence of this system means

k2
∑

i=0

α2iT
iP1(T )v2 = 0;

Write

P2(x) =

k2
∑

i=0

α2ix
iP1(x).

It is easy to show that P2(x) is the lowest degree polynomial P (x) divisible by P1(x) for which
P (T )v2 = 0. Observe again that we have P2(T )T

iv2 = T iP2(T )v2 = 0. The vectors P2(T )T
iv2

have, however, not been calculated, so we only make use of the consequence of this that

P2(T )T
iP1(T )v2 = 0

for all i with 0 ≤ i ≤ k2 − 1. If the system system

(T i1v1,v2, T
i2P1(T )v2 : 0 ≤ i1 < k1 and 0 ≤ i2 < k2)

span V , then P2 is the minimal polynomial of T . If they do not span V , then take a vector v3 that
is not in the of this system, and continue the procedure.

In general, assume that the vectors that for some m > 1 vr, polynomials Pr, and the integers
kr ≥ 0 have been constructed for 1 ≤ r < m. If the system

(12) (T i1v1,vr, T
irPr−1(T )vr : 0 ≤ i1 < k1, 2 ≤ r ≤ r < m and 0 ≤ ir < kr)

span V , then then Pm−1 is the minimal polynomial of T . If not, then take a vector vm that is not
in the span of this system, and form the vectors and form the vectors Pm−1(T )vm, TPm−1(T )vm,
T 2Pm−1(T )vm, . . . until we arrive at a system (T iPm−1(T )vm : 0 ≤ i ≤ km) is linearly dependent;
observe that we will have km = 0 in case Pm−1(T )vm = 0. The linear dependence of this system
means

km
∑

i=0

αmiT
iPm−1(T )vm = 0;

Write

Pm(x) =

km
∑

i=0

αmix
iPm−1(x).
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It is easy to show that Pm(x) is the lowest degree polynomial P (x) divisible by P1(x) for which
P (T )vm = 0. Observe again that we have Pm(T )T ivm = T iPm(T )vm = 0. The vectors Pm(T )T ivm

have, however, not been calculated, so, as before we only make use of the consequence of this that
Pm(T )T iPm−1(T )v2 = 0 for all i with 0 ≤ i ≤ km − 1.

Continuing in this manner, we will arrive at a point when the system given in (12) spans V , since
V is finite dimensional. At that point, Pm−1 is the minimal polynomial of T .

We will give a numerical example for finding the minimal polynomial in in Section 6 below, where
these results will be discussed in terms of matrices.

5 Consequences for matrices

5.1 Representation of vector spaces and linear transformations

Finite dimensional vector spaces over a field F and linear transformations between them can be
represented by column vectors (matrices consisting of a single column) and matrices over F . We
recall the basic definitions. The set of m × n matrices over F will be denoted by Fm,n; here m, n
are nonnegative integers. The cases m = 0 or n = 0 usually have no uses, but they are occasionally
helpful in proofs to support induction. Row vectors are 1×n matrices and column vectors are m×1
matrices. The transpose of a matrix A will be denoted by AT . Given a vector space V over F with a
basis X = (v1,v2, . . . ,vn) we say that the column vector c = (c1, c2, . . . , cn)

T represents the vector
if v =

∑n

i=1 civi; it will be convenient to extend the usual matrix multiplication rules and use the
abbreviated notation v = Xc, as if X were a row vector, even though it is not (since it is not a
matrix over F ). In this case, we say that c = RXv – see [1, p. 133–138]. If Y is another basis of
V then X = YP for a nonsingular n × n matrix over F , and v = Xc = (YP )c = Y(Pc), and so
RYv = PRXv – see [1, (3.5.5) Theorem, p. 137].

If X and Y are vector spaces of F with dimensions with dimensions n and m and bases X
and Y and T : X → Y is a linear transformation, then there is a matrix A ∈ Fm,n such that for
every column vector c = Fn,1 we have T (Xc) = Y(Ac) (the parentheses are for emphasis only;
the formal matrix multiplication rules being associative, the parentheses can be dropped). The
shortened version of this equation, TX = YA is also used. We call the matrix A the representation
of T with respect to X and Y, and we write A = RYXT . If V is another basis of X then V = XP
for an n × n nonsingular matrix P , and if W is another basis of Y then W = YQ for an m × m
nonsingular matrix. We have TVP−1 = TX = YA = WQ−1A; omitting the middle members and
multiplying the sides by P on the right, we obtain TV = WQ−1AP , i.e., Q−1AP = RWVT . That
is,

(13) RWVT = Q−1(RYXT )P

(see [1, (5.3.1) Theorem, p. 232].
Matrix multiplication and the composition of linear transformations are closely related. Let

U , V , W be vector spaces with bases U , V, and W. If S : U → V and T : V → W are linear
transformations, then the composition T ◦ S : U → W is usually written as TS and is referred to
as multiplication of the linear transformations. If A = RWVT and B = RVUS then TV = WA and
SU = VB. Hence TSU = TVB = WAB. Hence AB = RWU (TS), and so

(14) RWUTS = (RWVT )(RVUS),

where we deliberately dropped the parentheses around TS for easy readability, since no other place-
ment of the parentheses would be meaningful – see [1, (5.2.5) Theorem, p. 223].
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5.2 Similarity transformations

Given an arbitrary n × n matrix A over the field F , T : Fn,1 → Fn,1 be the linear transformation
defined by Tx = Ax for x ∈ Fn,1, let ek be the kth unit column vector, that is, ek = (δik : 1 ≤ i ≤
n)T , and let E = (ek : 1 ≤ k ≤ n). Then E is a basis of Fn,1; it is called the canonical basis of Fn,1.
We have

(15) A = REET.

In such a situation, it is convenient, though perhaps not literally correct, to consider the matrix A
and the linear transformation T to be the same object.

Let P be a nonsingular matrix; then X = EP is a basis of Fn,1. According to (13), for the above
A and T we have

(16) RXXT = P−1(REET )P = P−1AP.

The transformation A 7→ P−1AP is called a similarity transformation. According to the last dis-
played equation, a similarity transformation amounts to a change of basis in the space Fn,1. If
B = P−1AP for some nonsingular matrix P , we say that the matrices A and B are similar.

5.3 Direct sums of matrices

If A is an m×m matrix and B is an n× n matrix, 0m×n is the m× n zero matrix (a matrix with
all its entries 0), and 0n×m is the n×m zero matrix, then the matrix

(

A 0m×n

0n×m B

)

is called the direct sum of the matrices A and B and is denoted as A⊕B. Let V be a vector space,
T : V → V a linear transformation, X and Y invariant subspaces for T such that V = X ⊕ Y , X a
basis of X, and Y a basis of Y . Let TX be the restriction of T to X, and TY be its restriction to Y .
Finally, let A = RXXTX and B = RYYTY . Then it is easy to see that

(17) R(X ,Y)(X ,Y)T = A⊕B.

5.4 Jordan block matrices

An n × n matrix A = (aij) is called an auxiliary unit matrix if aij = δi j−1. A Jordan block is a
matrix λI +A, where λ is a scalar, I is the n×n identity matrix, and A is an auxiliary unit matrix.
That is, a Jordan block is a matrix of form





















λ 1 0 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
0 0 0 λ . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . λ 1
0 0 0 0 . . . 0 λ





















Theorem 5. Let n be a positive integer, let V be an n-dimensional vector space, T : V → V a

linear transformation, and assume that V is a Jordan subspace of itself for T with eigenvalue λ and

Jordan generator u. Let xk = (T − λ)n−ku for 1 ≤ k ≤ n, and X = (xk : 1 ≤ k ≤ n). Then the

matrix RXXT is a Jordan block.
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The proof amounts to a routine calculation of the representation RXXT . A matrix said to be in
Jordan canonical form if it is a direct sum of Jordan block matrices.

5.5 The Jordan canonical form of a matrix

Let A be an arbitrary n×n matrix, and consider A as a linear transformation of Fn,1 into Fn,1 as in
Subsection 5.2. According to Theorem 3 Fn,1 slits up into a direct sum of Jordan subspaces Ji of T for
i with 1 ≤ i ≤ m for some m ≥ 0. Choosing an appropriate basis Xi on Ji, the linear transformation
A restricted to Ji can be represented by a Jordan block matrix. Putting X = (Xi : 1 ≤ i ≤ m), the
linear transformation A is represented in the basis X as a direct sum of these Jordan block matrices,
i.e., as a matrix in Jordan canonical form. Since the representation of A in the basis X is similar to
the matrix A according to (16), we proved the following

Theorem 6. Every square matrix A is similar to a matrix J in Jordan canonical form. Each

eigenvalue of multiplicity k occurs as a diagonal element of J exactly k times, and each diagonal

element of J is an eigenvalue of A.

The sentence about the eigenvalues of A as diagonal elements if J is clear from the structure of
Jordan subspaces (see Subsection 4.3 for the definition of the multiplicity of an eigenvalue).

5.6 The characteristic polynomial as a determinant

Let A be an n× n matrix, and let P be a nonsingular n× n matrix such that P−1AP is in Jordan
canonical form. The diagonal elements of P−1AP are the eigenvalues of A occurring with their
multiplicities; thus, the diagonal elements of P−1AP − Iλ, where I is the n × n identity matrix,
are λi − λ for each eigenvalue of A (occurring a number of times according to its multiplicity). The
product of these diagonal elements is the characteristic polynomial of the matrix A according to
(10), where we replaced the variable x with λ, as is customary. Since P−1AP − Iλ is an upper
triangular matrix, its determinant is equal to the product of its diagonal elements. That is

Pchar,A(λ) = det(P−1AP − λI) = det
(

P−1(A− λI)P
)

= det(P−1) det(A− λI) det(P ) = det(P−1) det(P ) det(A− λI)

= det(P−1P ) det(A− λI) = det(I) det(A− λI) = det(A− λI).

That is the characteristic polynomial of A is equal to the determinant det(A− λI).

6 An example for finding the minimal polynomial of a matrix

Here we will use the method described in Subsection 4.4 to find the minimal polynomial of the
matrix3

(18) A =

















0 1 0 0 −1 −1
−3 8 5 5 2 −2
1 0 −1 0 −1 0
4 −10 −7 −6 −3 3

−1 3 2 2 2 −1
−2 6 4 4 2 −1

















3The computer algebra system Maxima was used in creating this example.
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over the field R of real numbers. Let e1 = (1, 0, 0, 0, 0, 0)T , and form the vectors

u0 = e1 = ( 1, 0, 0, 0, 0, 0)T ,
u1 = Au0 = ( 0, −3, 1, 4, −1, −2)T ,
u2 = A2u0 = ( 0, 3, 0, −4, 1, 2)T ,
u3 = A3u0 = ( 0, 2, −1, −3, 1, 2)T ,
u4 = A4u0 = (−1, −6, 0, 8, −2, −4)T .

One can ascertain that the system (u0,u1,u2,u3) is linearly independent, while the system (u0,u1,
u2,u3,u4) is linearly dependent;4 in fact, we have u4 + 2u2 + u0 = (A4 + 2A2 + I)u0 = 0. That is
we take P1(x) = x4 + 2x2 + 1.

The vector e2 = (0, 1, 0, 0, 0, 0) is not in the span of the system (u0,u1,u2,u3), so we form the
vectors

e2 = ( 0, 1, 0, 0, 0, 0)T ,
v0 = P1(A)e2 = (−4, 8, −4, −8, 4, 8)T ,
v1 = AP1(A)e2 = (−4, 8, −4, −8, 4, 8)T .

The system (v0,v1) is linearly dependent; in fact, we have v1 = v2. That is, v2 − v1 = (A −
I)P1(A)e2 = 0, so we put P2(x) = (x− 1)P1(x) = (x− 1)(x4 + 2x2 + 1).

The system (u0,u1,u2,u3, e2), is linearly independent, and v0 is in the span of this system.
We find that the vector e5 = (0, 0, 0, 0, 1, 0)T transpose is not in the span of this system, but
P2(A)e5 = 0. Next, we find that the system (u0,u1,u2,u3, e2, e5) spans the whole space of R6,1. As
we have seen, P2(A) annihilates all vectors in this system. Hence P (x) = P2(x) = (x−1)(x4+2x2+1)
is the minimal polynomial of the matrix A. Having determined the minimal polynomial of A, we
will no longer need the vectors ui and vi, and these letters will be re-used below to denote different
vectors.

7 The example continued: finding the Jordan canonical form

The proof we gave for Theorem 3 was basically algorithmic, and the proof described there can be
adapted to finding the Jordan subspaces of the matrix A. We found that the minimal polynomial of
A is Pmin,A(x) = (x− 1)(x4 +2x2 +1) = (x− 1)(x2 +1)2. The eigenvalues of A are the roots of this
polynomial, i.e., they are 1, i, and −i, where i =

√
−1. While A is a real matrix, i.e., it is a matrix

over the real numbers R, we need to extend out scalar field to the field C of complex numbers, so
that the eigenvalues be included in the scalar field.

7.1 The first two Jordan subspaces

First we deal with the eigenvalue 1. We will mimic the proof of Lemma 1 with V = C6,1 and
T = A − I, where I is the identity matrix in C6,6. The space V is spanned by the columns of I,
and the space TV = (A − I)V are spanned by the columns of the matrix (A − I)I = A − I. The
dimension of the column space of I is the rank of I, i.e., it is 6. The dimension of the column space
of A − I is the rank of this matrix, which happens to be 4. The space T (TV ) is spanned by the
columns of (A− I)2; this dimension also happens to be 4, which means that T (TV ) = TV . That is,
0 is not an eigenvalue of T restricted to TV , i.e., TV is the space where we start the induction. For

4To see this one may want to use variants of Gaussian elimination or find the row-echelon form of the matrices
whose rows are the transposes of these vectors. We did not include these details so as to focus on our main goal of
finding the minimal polynomial of A.
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the decomposition TV = U ′ ⊕W ′ of Lemma 1 in this case we have U ′ = {0} and W ′ = TV . That
is, W ′ is the column space of the matrix

A− I =

















−1 1 0 0 −1 −1
−3 7 5 5 2 −2
1 0 −2 0 −1 0
4 −10 −7 −7 −3 3

−1 3 2 2 1 −1
−2 6 4 4 2 −2

















.

We find that this matrix has rank 4; in fact, its first four columns are linearly independent, and the
rest of the columns linearly depend on them. Next, we need to find a vector u ∈ TV \ V for which
Tu = (A− I)0 = 0.

To find such a u, recall that Pmin,A(A) = (A − I)(A2 + I)2 = (A − I)(A2 + I)2 I; hence the
matrix A− I annihilates all the columns of the matrix

(A2 + I)2 =

















0 −4 0 −4 −4 0
0 8 0 8 0 4
0 −4 0 −4 −4 0
0 −8 0 −8 0 −4
0 4 0 4 4 0
0 8 0 8 0 4

















In fact, it is easy to see that the columns of this matrix span the space of vectors v ∈ V for which
(A− I)v = 0, but we do not need this fact for our present purposes.5 The rank of this matrix is 2,
so its column space is spanned by the vectors u1 = (1, 0, 1, 0,−1, 0)T , the fifth column multiplied by
−1/4, and u2 = (0, 1, 0,−1, 0, 1)T , the sixth column divided by 4.

We will define the space U1 as the space spanned by the by u = u1. Note that we have
(A − I)u1 = 0, so U1 is an invariant subspace (for A, or, what is the same, for A). Further, u1 is
not in TV = (A− I)V , since 1 is not an eigenvalue of A restricted to (A− I)V .

Next we need to pick the vectors wj to form the system (7). These vectors must be picked in
such a way that wj is not in the span of (u1) and W ′ = (A − I)V is in the span of SW (see (6).
The and the condition Twj ∈ W ′ is automatically satisfied, since W ′ = TV . Thus we can pick the
vectors w1, w2, w3, and w4 as the first four columns of the matrix A− I.

We need to put one more vector w5, and the most expedient choice w5 = u2, since as we will
see, this will lead to a further reduction of the matrix A. We change to the new basis

X1 = (u1,u2,w1,w2,w3,w4),

where we listed u2 = u5 second. That is, X1 is formed by the columns of the matrix

(19) S1 =

















−1 0 −1 1 0 0
0 1 −3 7 5 5

−1 0 1 0 −2 0
0 −1 4 −10 −7 −7
1 0 −1 3 2 2
0 1 −2 6 4 4

















5That is, we can continue with the example of finding the Jordan Canonical Form of A; but to show that this
procedure will work all the time, we would need to prove this fact.
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Changing to this new basis, we have

(20) A1 = S−1
1 AS1 = RXXT =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 4 2 2
0 0 −1 2 1 1
0 0 0 3 1 2
0 0 2 −4 −3 −2

















.

This matrix A1 can be written as a direct sum A1 = I1 ⊕ I1 ⊕ A2, where I1 is the 1 × 1 identity
matrix, and

A2 = RXXT =









−1 4 2 2
−1 2 1 1
0 3 1 2
2 −4 −3 −2









.

This means that the spaces 〈u1〉, 〈u2〉, and 〈w1,w2,w3,w4〉, are invariant subspaces of T spanning
V . The first two of these are already Jordan subspaces.6 Thus, we need to focus on the Jordan
decomposition of the third subspace; this amounts to determining the Jordan canonical form of the
matrix A2. Occasionally, we will write T1 for the transformation from C4,1 into C4,1 represented by
A2 with respect to the canonical basis of this space.

7.2 The next to Jordan subspaces

Since we removed two Jordan subspaces belonging to the eigenvalue 1 in forming the matrix A2, 1
may no longer be an eigenvalue of A2; indeed, we can ascertain of this by checking that A2 − I has
rank 4, and so 1 is in fact no longer an eigenvalue of A2. This removes the factor x − 1 from the
minimal polynomial of A and so the minimal polynomial of A2 is Pmin,A2

(x) = (x2 + 1)2. That is,

(21) A3 = A2
2 + I =









2 2 −2 2
1 0 −2 0
1 1 −1 1

−2 −1 3 −1









.

This matrix has rank 2, and we will use elementary row operations to simplify it. The kind of
elementary row operations we need adds λ times row j to row i (i 6= j); this row operation can be
performed by left-multiplication with the elementary matrix Eij(λ) = EIII,ij(λ), that is, a type III
elementary matrix having 1s in the main diagonal, having λ as the entry at the intersection of row
i and column j, with all other entries being zero. The inverse of this matrix is EIII,ij(−λ). (See [1,
pp. 47–57] for a discussion of elementary matrices.)

When choosing the elementary operations to be performed, we will try to make as many entries
in the matrix 0 as possible. With

EA3 = E = E23(−1)E34(1)E42(2)E13(−2) =









1 0 −2 0
0 −1 −1 −1
0 2 1 1
0 2 0 1









,

6The first of these we found by searching for it deliberately; the second one “accidentally,” though it could have
been anticipated on theoretical grounds that by making the choice of the eigenvector u2 as w1 we would obtain a
second Jordan subspace.
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we have

EA3 =









0 0 0 0
0 0 0 0
1 0 −2 0
0 −1 −1 −1









.

Using elementary row operations simplified the matrix A3 but it did not preserve its eigenvalues.
We want to preserve these eigenvalues, and so we need a similarity transformation, which represents
a change of basis in the vector underlying vector space (cf. (16). That is, instead of EA3, our real
interests are the matrices

B2 = EA2E
−1 =









−1 2 0 0
−1 1 0 0
0 −1 −1 2
0 0 −1 1









and

B3 = EA3E
−1 =









0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0









.

Observe that we have B3 = B2
2 + I; indeed, B2

2 + I = (EA2E
−1)2 + I = E(A2

2 + I)E−1 =
EA3E

−1 = B3. The minimal polynomial of A2 is (x2 + 1)2; the minimal polynomial of B2 is
the same. Hence, we have 0 = (B2

2 + I)2 = (B2− iI)(B2+ iI)B3. That is, the columns of the matrix

(B2 + iI)B3 =









0 0 0 0
0 0 0 0

−1 + i 2 0 0
−1 1 + i 0 0









are eigenvectors of B2 associated with eigenvalue i. Actually, the second column of this matrix is
−1 − i times its first column, so this matrix has (essentially, i.e., up to a scalar factor) only one
eigenvector. Similarly, since 0 = (B2

2 + I)2 = (B2 + iI)(B2 − iI)B3, the columns of the matrix

(B2 − iI)B3









0 0 0 0
0 0 0 0

−1− i 2 0 0
−1 1− i 0 0









are eigenvectors of B2 associated with eigenvalue −i. Again, we only get essentially one eigenvector,
since the second column of this matrix is −1 + i times its first column.

Pick the second columns of these matrices, and write z′3 = (0, 0, 2, 1+i)T and z′4 = (0, 0, 2, 1−i)T

for these eigenvectors of B2 associated with the eigenvalues i and −i, respectively. We will proceed
along the lines of the proof of Lemma 1. We will first deal with the eigenvector ũ′

3 = (0, 0, 2, 1+ i)T .
As in the proof of Lemma 1, we need to find vector z3 such that (B2 − iI)z3 = z′3; here B2 − iI,

z3, and z′3 are replacing T , u, and u′ in that proof. Writing z3 = (α, β, γ, δ)T , the equation
(B2 − iI)z3 = z′3 can be written as

(−1− i)α + 2β = 0,
− α − iβ = 0,

− β − (1 + i)γ + 2δ = 2,
− γ + (1− i)δ = 1 + i.
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The matrix augmented by the right-hand side of this system of equation brought into (unreduced)7

row echelon form is








1 −1 + i 0 0 0
0 1 1 + i −2 −2
0 0 1 −1 + i −1− i
0 0 0 0 0









.

This shows that in solving these equation, one can choose δ arbitrarily. After choosing δ is is a
simple matter to find the other unknowns: α = 4i, β = −2 + 2i, and γ = −1− i+ (1− i)δ. That is

z3 =









α
β
γ
δ









=









4i
−2 + 2i
−1− i

0









+ δ









0
0

1− i
1









=









4i
−2 + 2i
−1− i

0









+
δ

1 + i
z′3;

recall that z′3 was found to be an eigenvector of B2 associated with the eigenvalue i; that is (B2 −
iI)z′3 = 0. Hence, the presence of z′3 on the right-hand side of the equation z3 is to be expected;
after all, z3 is the solution of the equation (B2 − iI)z3 = z′3. The simplest choice is to take δ = 0;
then z3 = (4i,−2 + 2i,−1− i, 0). The vectors z3 and (B2 − iI)z3 span a Jordan subspace of B2 for
the eigenvalue i.

Similarly, for the eigenvector z′4 associated with the eigenvalue −i we need to find a vector z4
for which (B2 + iI)z4 = z′4. As the components of the matrix B2 are real, we can find z4 simply
by complex conjugation. Indeed −i is the complex conjugate of i and the components of z′4 are
the complex conjugates of z3; hence the components of z4 will be the complex conjugates of the
components of z3; that is, we have z4 = (−4i,−2− 2i,−1 + i, 0). Further, z4 and (B2 + iI)z4 span
a Jordan subspace of B2 for the eigenvalue −i.

7.3 The Jordan canonical form

Next we need to revert back to the matrix A2. Since we have B2 = EA2E1, we the vectors z3,
z′3, z4, and z′4 will be transformed into y3 = E−1z3, y

′
3 = E−1z′3, y4 = E−1z4, and y′

4 = E−1z′3.
Since we have E(A2 − iI)y3 = E(A2 − iI)E−1z3 = (EA2E

−1 − iI)z3 = (B2 − iI)z3 = z′3, we have
(A2 − iI)y3 = E−1z′3 = y′

3; similarly for the other equations. That is,

(22) (A2 − iI)y3 = y′
3, (A2 − iI)y′

3 = 0, (A2 − iI)y4 = y′
4, (A2 − iI)y′

4 = 0,

where

y3 =









−2 + 2i
−3 + i
−1− i
6− 2i









, y′
3 =









2− 2i
2

1− i
−3 + i









, y4 =









−2− 2i
−3− i
−1 + i
6 + 2i









, y′
3 =









2 + 2i
2

1 + i
−3− i









.

We have A1 = I1 ⊕ I1 ⊕ A2, so the Jordan subspaces of A1 are spanned by x1, x2, x3, x
′
1, x4, and

x′
4, where x1 and x2 are unit vectors, and x3, x

′
1, x4, and x′

4 were obtained from y3, y
′
1, y4, and y′

4

7The row echelon form discussed row echelon form discussed in [1, pp. 57–62] is often called reduced row echelon
form, where the first nonzero entry in the row echelon form, called the leading entry, of the matrix is 1, and this is
the only nonzero entry in the column. In the unreduced form it is not required that each leading entry be 1, and that
the entries above the leading entry to be nonzero. The relevant facts about the solution of systems of linear equation
discussed in [1] in the mentioned pages remain valid for this unreduced echelon form. In our case, the leading entries
are 1, but they are not the only nonzero entries in their column.
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by adding two 0 components on top:

x1 =

















1
0
0
0
0
0

















, x2 =

















0
1
0
0
0
0

















, x3 =

















0
0

−2 + 2i
−3 + i
−1− i
6− 2i

















,

x′
3 =

















0
0

2− 2i
2

1− i
−3 + i

















, x4 =

















0
0

−2− 2i
−3− i
−1 + i
6 + 2i

















, x′
3 =

















0
0

2 + 2i
2

1 + i
−3− i

















.

We have
A1x1 = x1, A1x2 = x2, A1x

′
3 = ix′

3,

A1x3 = x′
3 + ix3, A1x

′
4 = −ix′

4, A1x4 = x′
4 − ix4;

the first two of these equations can be verified immediately, while the rest of the equations, and the
rest of them are immediate consequence of equations (21) – the third one follows from the second
one above, the fourth from the first, the fifth from the fourth, and the sixth from the third. These
equations show that the matrix A1 in the basis X = (x1,x2,x

′
3,x3,x

′
4,x4) is the Jordan canonical

form of A1 (note the order the vectors are listed). That is, for the matrix

X = RXXT =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 2− 2i −2 + 2i 2 + 2i −2− 2i
0 0 2 −3 + i 2 −3− i
0 0 1− i −1− i 1 + i −1 + i
0 0 −3 + i 6− 2i −3− i 6 + 2i

















whose columns are the basis vectors in X , we have

J = X−1A1X =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 i 1 0 0
0 0 0 i 0 0
0 0 0 0 −i 1
0 0 0 0 0 −i

















That is, with the matrix S1 defined in (19), writing

S = XS1

=

















−1 0 2i −1− i −2i −1 + i
0 1 −2 + 6i 10− 14i −2− 6i 10 + 14i
−1 0 0 4i 0 −4i
0 −1 2− 8i −13 + 19i 2 + 8i −13− 19i
1 0 2i 3− 5i −2i 3 + 5i
0 1 4i 6− 10i −4i 6 + 10i

















,

we have S−1AS, where A is the matrix given in (18) (cf. (7.1)).
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8 Matrices and field extensions

The example described in Sections 6 and 7 gives a matrix over the field R of real numbers for which
the Jordan Canonical Form was over the field C of complex numbers; on the other hand, the minimal
polynomial was in the field of real numbers. The question then arises:

Let F be a subfield of F ′ and let A be a square matrix over the field F . Clearly, A can also be

considered as a matrix over F ′. Is the minimal polynomial of A considered as a matrix over F the

same as it is when A is considered as a matrix over F ′? Similarly, is the characteristic polynomial

of A considered as a matrix over F the same as it is when A is considered as a matrix over F ′?

The answer for the characteristic polynomial is an obvious yes, since the characteristic polynomial
is det(A − xI), where I is the identity matrix of the same size as A. The answer is also yes for
the minimal polynomial, but for less obvious reasons. In Subsection 4.4 we described how to find
the minimal polynomial of a linear transformation. In case the vector space is a space of column
vectors, the steps in this procedure do not change if we change the field from F to F ′. The reason
is that the linear independence of a system of column vectors does not change when we change the
field F to F ′; or, what amounts to the same, the rank of a matrix A is the same whether this matrix
is considered as a matrix over F or over F ′. This is because the rank of A can be determined by
the triangulating A, and this triangulation can be carried out in the field F .

As far as the Cayley–Hamilton theorem is concerned in Subsection 4.3, we needed to assume that
the underlying field F is algebraically closed; however, the determination of the minimal polynomial
did not depend on this fact. As for the characteristic polynomial, even its definition depended on the
algebraic closedness of F . However, we can define the characteristic polynomial by first representing
T as a matrix (see Subsection 5.1), assuming that V is finite dimensional, and then taking the
characteristic polynomial of the matrix representing T .

Even if F is not algebraically closed, it still remains to be true that the minimal polynomial
Pmin,T (x) of T is a divisor of the characteristic polynomial Pchar,T (x); hence the Cayley–Hamilton
theorem remains valid.

8.1 A further decomposition theorem

We have

Lemma 5. Let V be a finite dimensional vector space over a field F , let T : V → V be a linear

transformation. Further let P (x) be a polynomial such that P (T ) = 0, and assume that P (x) =
P1(x)P2(x) such that the greatest common divisor of P1(x) and P2(x) is 1. Let

Vi = {v : Pi(T )v = 0}

for i = 1 or i = 2. Then V = V1 ⊕ V2.

It is clear that V1 and V2 are invariant subspaces for T .

Proof. We need to prove that V1∩V2 = {0} and that V1 and V2 span V . Since the greatest common
divisor of P1(x) and P2(x) is 1, we have polynomials Q1(x) and Q2(x) such that

P1(x)Q1(x) +Q2(x)R2(x) = 1.

Hence, for any vector v ∈ V we have

(23) P1(T )Q1(T )v +Q2(T )R2(T )v = (P1(T )Q1(T ) +Q2(T )R2(T )) = Iv = v,
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where I : V → V is the identity transformation. Now, if v ∈ V1 ∩ V2 then P1(T )Q1(T )v = 0, since
v ∈ V1, and P2(T )Q2(T )v = 0 since v ∈ V2; thus the vector on the left-hand side of (23) is 0; hence
v = 0. This shows that V1 ∩ V2 = {0}.

If v ∈ V is an arbitrary vector, then we have v = v1 + v2 according to (23) with v1 =
P2(T )Q2(T )v and v2 = P1(T )Q1(T )v. As P (T ) = P1(T )P2(T ) = 0 we have

P1(T )v1 = P1(T )P2(T )v1 = P (T )v1 = 0,

and so v1 ∈ V1. Similarly,

P2(T )v2 = P2(T )P1(T )v2 = P (T )v1 = 0,

and so v2 ∈ V2. This shows that v is in the span of V1 and V2, completing the proof.

Corollary 3. Let V be a finite dimensional vector space over a field F , let T : V → V be a

linear transformation. Further let P (x) be the minimal polynomial of T , and assume that P (x) =
∏n

i=1 Pi(x) such that the greatest common divisor of Pi(x) and Pj(x) is 1 for any i and j with

1 ≤ i < j ≤ n. Let

Vi = {v : Pi(T )v = 0}
for i with 1 ≤ i ≤ n. Then V =

⊕n
i=1 Vi.

This can be proved by repeated application of Lemma 5 by making use of the fact that V1 and
V2 are invariant subspaces for T of V .
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