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1 Polar coordinates and the Laplacian

1.1 Polar coordinates in n dimensions

Let n ≥ 2 be an integer, and consider the n-dimensional Euclidean space R
n. The Laplace operator

in R
n is Ln = ∆ =

∑n
i=1 ∂

2/∂x2
i . We are interested in solutions of the Laplace equation Lnf = 0

that are spherically symmetric, i.e., is such that f depends only on
∑n

r=1 x
2
i . In order to do this, we

need to use polar coordinates in n dimensions. These can be defined as follows: for k with 1 ≤ k ≤ n
define r2k =

∑k
i=1 x

2
i and put for 2 ≤ k ≤ n write

(1) rk−1 = rk sinφk and xk = rk cosφk.

rk−1 = rk sinφk and xk = rk cosφk. The polar coordinates of the point (x1, x2, . . . , xn) will be
(rn, φ2, φ3, . . . , φn).

In case n = 2, we can write y = x1, x = x2. The polar coordinates (r, θ) are defined by r2 = x2 + y2,

(2) x = r cos θ and y = r sin θ,

so we can take r2 = r and φ2 = θ. In case n = 3, the polar coordinates (r, θ, φ) are called spherical

coordinates, and we have y = x1, x = x2, z = x3, r
2 = x2 + y2 + z2, x = r sinφ sin θ, y = r sinφ cos θ, and

x = r cosφ, so we can take r3 = r, φ2 = θ, and φ3 = φ. When using spherical coordinates, one often makes

the restrictions r ≥ 0, 0 ≤ θ < 2π, and 0 ≤ φ ≤ φ, although it may occasionally be preferable to change

these restrictions.

∗Written for the course Mathematics 4211 at Brooklyn College of CUNY.
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1.2 Cartesian and polar differential operators

The transformation T : (x1, x2, . . . , xn) → (rn, φ2, . . . , φn) is not one-to-one, since there are several

possible choices are for polar coordinates. If P0 = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
n ) is a point for which r

(0)
k 6= 0

for any k with 2 ≤ k ≤ n then there is a neighborhood of the point P0 in which T can be defined
in a one-to-one way, and, furthermore, the transformation T so defined is differentiable any number
of times. If this condition is not satisfied, then there is no neighborhood of P0 in which T can be
defined in a one-to-one way; further T is not be differentiable at the point P0. We would like to find
the partial derivatives of the inverse transformation T−1 of T ; in order to do this, it will be easier to
first determine the partial derivatives of T . Using equations (1) with k = n, it is easy to calculate
the Jacobian matrix

∂(rn−1, xn)

∂(rn, φn)
=

[

∂rn−1/∂rn ∂xn/∂rn
∂rn−1/∂φn ∂xn/∂φn

]

=

[

sinφn cosφn

rn cosφn −rn sinφn

]

.

Equations (1) with k = n can be inverted to determine the functions rn = rn(rn−1, xn) and φn =
φn(rn−1, xn) in a neighborhood of a point for which rn 6= 0, i.e., we have rn ≡ rn(rn sinφn, rn cosφn)
and φn ≡ φn(rn sinφn, rn cosφn) in such a neighborhood. Differentiating the latter equations with
respect to rn and φn, it follows from the chain rule of differentiation that the Jacobian matrix
∂(rn, φn)/∂(rn−1, xn) is the inverse of the matrix ∂(rn−1, xn)/∂(rn, φn). That is,

∂(rn, φn)

∂(rn−1, xn)
=

[

∂rn/∂rn−1 ∂φn/∂rn−1

∂rn/∂xn ∂φn/∂xn

]

=

[

sinφn r−1
n cosφn

cosφn −r−1
n sinφn

]

.

We can illustrate with polar coordinates in case n = 2 why this is a better approach than calculating the
Jacobian matrix ∂(rn−1, xn)/∂(rn, φn) directly. In this case, equations (2) can be inverted as r =

√

x2 + y2

and θ = arctan(y/x). The problem is that arctan(y/x) is not defined if x = 0, even if y 6= 0, when
equations (2) are invertible. In fact, we can also take

θ =
π

4
+ arctan

y − x

y + x

instead, and there is no trouble with this expression when x = 0 and y 6= 0. This problem is avoided by

obtaining the desired Jacobian as the inverse of another Jacobian.

So, writing Drn = ∂/∂rn, Dxn
= ∂/∂xn, Drn−1

= ∂/∂rn−1, and Dφn
= ∂/∂φn, according to the

chain rule we have

(3) Drn−1
=

∂rn
∂rn−1

∂

∂rn
+

∂φn

∂rn−1

∂

∂φn

= sinφnDrn +
cosφn

rn
Dφn

and

Dxn
=

∂rn
∂xn

∂

∂rn
+

∂φn

∂xn

∂

∂φn

= cosφnDrn −
sinφn

rn
Dφn

1.3 Calculating the Laplacian in polar coordinates

We want to evaluate the differential operator D2
rn−1

+ D2
xn
. In case n = 2 we have r1 = x1 and

so this is in fact the Laplacian; in case n > 2 the formula we obtain will give a recursive equation
that will help in evaluating the Laplacian. To speed up the evaluation of the differential operator
D2

rn−1
one may observe that the result will consist of a sum second order differential operators, which
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may be called the principal part, and a sum of first order differential operators. The principal part
results from moving all differential operators to the right (as one of the terms in using the product
rule of differentiation), and the first order part results when the the differential operator on the left
is used up in differentiating a function following it (as the other term in using the product rule).
A brief consideration shows that principal part can be calculated by using the binomial theorem;
see [1, pp. 3-5] for details All this assumes that these differential operators are applied to functions
that the order of derivatives in mixed second derivatives does not make any difference; for this it is
sufficient to assume that the functions are twice continuously differentiable, but the conclusion also
holds under weaker assumptions; see [2]. We have

D2
rn−1

=

(

sinφnDrn +
cosφn

rn
Dφn

)(

sinφnDrn +
cosφn

rn
Dφn

)

= sin2 φnD
2
rn

+
2 sinφn cosφn

rn
DrnDφn

+
cos2 φn

r2n
D2

φn

−
cosφn

r2n
Dφn

+
cos2 φn

rn
Drn −

cosφn sinφn

r2n
Dφn

.

Similarly,

D2
xn

=

(

cosφnDrn −
sinφn

rn
Dφn

)(

cosφnDrn −
sinφn

rn
Dφn

)

= cos2 φnD
2
rn

−
2 cosφn sinφn

rn
DrnDφn

+
sin2 φn

r2n
D2

φn

+
cosφn

r2n
Dφn

+
sin2 φn

rn
Drn +

sinφn cosφn

r2n
Dφn

.

Adding these two equations, we obtain

(4) D2
rn−1

+D2
xn

= D2
rn

+
1

r2n
D2

φn
+

1

rn
Drn .

For n = 2, taking have rn−1 = y, xn = x, rn = r =
√

x2 + y2, and φn = θ, this gives the Laplace
operator in two dimensions:

(5) D2
x +D2

y = D2
r +

1

r
Dr +

1

r2
D2

θ =
1

r
DrrDr +

1

r2
D2

θ .

For n = 3 with y = x1, x = x2, z = x3 we have θ = φ2, φ = φ3, r = r3, and ρ =
√

x2 + y2 =
r2 = r sinφ. According to (5) we have

∆ = (D2
x +D2

y) +D2
z =

(

D2
ρ +

1

ρ
Dρ +

1

ρ2
Dθ

)

+D2
z

=
1

ρ
Dρ +

1

ρ2
Dθ + (D2

ρ +D2
z) =

1

r sinφ
Dρ +

1

r2 sin2 φ
D2

θ +

(

D2
r +

1

r
Dr +

1

r2
D2

φ

)

,

where the for the last equation we used (4) and the equation ρ = sinφ. Using (3) with n = 3 to
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express Dρ on the right-hand side, we obtain we obtain

∆ =
1

r sinφ

(

sinφDr +
cosφ

r
Dφ

)

+
1

r2 sin2 φ
D2

θ +

(

D2
r +

1

r
Dr +

1

r2
D2

φ

)

,

= D2
r +

2

r
Dr +

cosφ

r2 sinφ
Dφ +

1

r2
D2

φ +
1

r2 sin2 φ
D2

θ

=
1

r2
Drr

2Dr +
1

r2 sinφ
Dφ sinφDφ +

1

r2 sin2 φ
D2

θ .

As n gets larger, the expression for the Laplacian gets more complicated; in any case, for any
n ≥ 2 we have

(6)

n
∑

i=1

D2
xi

= D2
rn

+
n− 1

rn
Drn +

1

r2n
Λn,

where Λn is a second order differential operator involving only the angular variables φ2, φ3, . . ., φn,
(i.e., it does not involve rn). Indeed, assuming that this is true for n− 1 replacing n, where n > 2,
and using the equations rn−1 = rn sinφn and equations (3) and (4), we obtain

n
∑

i=1

D2
xi

=

n−1
∑

i=1

D2
xi

+D2
xn

=
1

r2n−1

Λn−1 +
n− 2

rn−1
Drn−1

+D2
rn−1

+D2
xn

=
1

r2n sin
2 φn

Λn−1 +
n− 2

rn sinφn

(

sinφnDrn +
cosφn

rn
Dφn

)

+

(

D2
rn

+
1

r2n
D2

φn
+

1

rn
Drn

)

= D2
rn

+
n− 1

rn
Drn +

1

r2n

(

1

sin2 φn

Λn−1 + (n− 2) tanφnDφn
+D2

φn

)

.

This establishes (6) with

Λn =
1

sin2 φn

Λn−1 + (n− 2) tanφnDφn
+D2

φn
.

Equation (6) can also be written as

(7)
n
∑

i=1

D2
xi

=
1

rn−1
n

Drnr
n−1
n Drn +

1

r2n
Λn.

2 Changes of variables in harmonic functions

A function u is called harmonic if it satisfies the Laplace equation ∆u = 0. It is of great interest of
finding functions that are harmonic in a region. Once such a function has been found, by a change
of variables we may be able to find a harmonic function in a different region.

2.1 Inversion with respect to the unit sphere

We consider polar coordinates in R
n, where n ≥ 2 is an integer. Instead of rn we will simply write r.

For (φ2, . . . , φn) we may write φ, so that the polar coordinates of a point may be written as (r,φ).
The change of variables called inversion with respect to the unit sphere maps the point (r,φ) to
(1/r,φ). Such a change of variables has an important property with respect to harmonic functions,
in that, given a harmonic function, using inversion we can find a new harmonic function, as described
in the following
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Theorem 1. If u(r,φ) is harmonic at the point (r(0),φ(0)) of R
n, then r2−nu(1/r,φ) is harmonic

at the point (1/r(0),φ(0)).

Proof. Write ρ = 1/r. Write ∆(r,φ) for the Laplace operator in polar coordinates (r,φ); see (6) or
(7), where now we write r instead of rn. We will show that

(8) ∆(r,φ)r
2−nI = ρn+2∆(ρ,φ),

where I denotes the identity operator. We wrote it on the left-hand side to indicate that we have
an operator on the left-hand side, and not the function resulting from applying the operator ∆(r,φ)

to the function whose value of is the expression r2−n; the latter would be written as ∆(r,φ)r
2−n

(the point is, that to make sure we indicate an operator, the last symbol of the term should be an
operator; the expression on the right-hand side ends with an operator, so there is no need to add I
on the right). The assertion of the theorem clearly follows from this equation. Indeed, applying the
operators on both sides of equations (8) to the function u(1/r,φ) = u(ρ,φ), we obtain that

∆(r,φ)r
2−nu(1/r,φ) = ρn+2∆(ρ,φ)u(ρ,φ).

If u is harmonic at the point (r(0),φ(0)), the right-hand side is zero for ρ = r(0) and φ = φ(0), so

the left-hand side must be zero at r = 1/ρ = 1/r(0) and φ = φ(0).
To establish (8), observe that, by the chain rule, we have

(9) Dr =
dρ

dr
Dρ = −

1

r2
Dρ = −ρ2Dρ.

Hence, using (7) with r replacing rn, we obtain

∆(r,φ)r
2−nI = r1−nDrr

n−1Drr
2−nI + r−nΛn

= r1−nDrr
n−1

(

(2− n)r1−nI + r2−nDr

)

+ r−nΛn,

where the right-hand side was obtained by the product rule; according to this rule DrfI = ((Drf)I+
fDr for and arbitrary function f . The right-hand side further equals

r1−nDr

(

(2− n)I + rDr

)

+ r−nΛn = r1−n
(

(2− n)Dr +DrrDr

)

+ r−nΛn

= ρn−1
(

(2− n)(−ρ2)Dρ + (−ρ2)Dρρ
−1(−ρ2)Dρ

)

+ ρnΛn

= ρn−1ρ2
(

(n− 2)Dρ +DρρDρ

)

+ ρnΛn,

where the second line was obtained by using (9) and the equation ρ = r−1. According to the product
rule we have DρρI = I + ρDρ; hence the right-hand side further equals

ρn+1
(

(n− 2)Dρ +Dρ + ρD2
ρ

)

+ ρnΛn = ρn+1
(

(n− 1)Dρ + ρD2
ρ

)

+ ρnΛn

= ρn+2

(

n− 1

ρ
Dρ +D2

ρ +
1

ρ2
Λn

)

= ρn+2∆(ρ,φ),

where the last equation follows according to (6). This establishes (8), completing the proof.
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