
APPROXIMATION OF NUMBERS BY FRACTIONS
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The number π expressing the ratio of the circumference to the diameter of the circle is approximately
3.141,592,653,589,793 . . . . π can be approximated by common fractions as
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As a measure of how good this approximations are, consider the following approximate equations:

π −
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7
≈ −.001,264,489 ≈ −.0619 ·
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≈ 8.321,963 · 10−5 ≈ 0.935 ·
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,
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≈ −2.667,642 · 10−7 ≈ −0.0034 ·
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, π −
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≈ 5.778,906 · 10−10 ≈ .633 ·

1

331022
;

the goodness of each of these approximations is measured in terms of 1 divided by the square of the de-
nominator of the approximating fraction. The following theorem will explain why this way of measuring the
goodness of the approximations make sense. The theorem is proved by a direct application of the pigeon
hole principle:

Theorem. Let x be a real number and n a positive integer. Then there are integers k and l such that

1 ≤ l ≤ n and

(1) |lx− k| ≤
1

n+ 1
.

Noting that l 6= 0, the inequality here can also be written as
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In other words, given any positive integer n, a real number x can always be approximated by a common
fraction whose denominator l is ≤ n such that the error of the approximation is less than or equal to

1

l(n+ 1)
.

Since 1 ≤ l ≤ n, this error is less than 1/l2.

Proof. For a real number y, denote by [y] the integer part of y. That is, [y] is the largest integer m ≤ y.

Further, denote by {y} the fractional part of y; that is, {y}
def
= y − [y].2 Clearly, 0 ≤ {y} < 1.

Assume that no k and l satisfying the assertion of the theorem exist. Then for any integer l with 1 ≤ l ≤ n
we must have

(2)
1

n+ 1
< {lx} <

n

n+ 1
.

1Notes for Course Core Studies 3.11 at Brooklyn College of CUNY. Attila Máté, April 25, 2010.

2The symbol
def
= describes an equation where the left-hand side is defined by means of the expression on the right-hand side.
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Indeed, writing s = [lx], we have {lx} = lx − s. Thus, if the first inequality fails then, noting that lx ≥ s,
we have

0 ≤ lx− s ≤
1

n+ 1
,

the inequality (1) claimed in the theorem is satisfied with k = s. If the second inequality fails then, noting
that lx− s = {lx} < 1, we have

n

n+ 1
≤ lx− s < 1.

Subtracting 1 from all the members of the inequality,3 we obtain

−
1

n+ 1
≤ lx− (s+ 1) < 0.

In this case, inequality (1) claimed in the theorem is satisfied with k = s+ 1.
Given that (2) is satisfied, each of the n numbers {1x}, {2x}, {3x}, . . . , {nx} belongs to at least4 one of

the n− 1 intervals
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Since there are n numbers and n − 1 intervals here, there must be (at least) one among these intervals to
which (at least) two of these numbers belong. That is, there are integers p and q with 1 ≤ p < q ≤ n such
that {px} and {qx} belong to the same one among these intervals.5 Since the length of each of these intervals
is 1/(n+ 1), we then must have

|{qx} − {px}| ≤
1

n+ 1
;

Writing r = [px] and s = [qx], we have {px} = px−r and {qx} = qx−s; hence the above inequality becomes

|(q − p)x− (r − s)| ≤
1

n+ 1
;

here p, q, r, s are integers. Writing l = q − p and k = r − s, this inequality becomes identical to (1), the
inequality we wanted to show. As 0 ≤ p < q ≤ n, the inequality 1 ≤ l ≤ n also follows. �

3The members of the inequality are the expressions on the left-hand side, the middle, and on the right-hand side, separated
by the inequality signs.

4The interval [a, b] is the set of points {x : a ≤ x ≤ b}. In case {px} is one of the numbers
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, . . . ,
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then {px} belongs to each of the two intervals whose one endpoint is {px}.
5Saying that 1 ≤ p < q ≤ n amount to saying that there are two distinct integers p and q with 1 ≤ p ≤ n and 1 ≤ q ≤ n

such that {px} and {qx} belong to the same interval, and the notation is so chosen that the smaller integer is denoted by p and
the larger one by q.
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