APPROXIMATION OF NUMBERS BY FRACTIONS!

The number 7 expressing the ratio of the circumference to the diameter of the circle is approximately
3.141,592,653,589,793 ... . 7 can be approximated by common fractions as

22 333 355 103993
77 1067 1137 33102 °

As a measure of how good this approximations are, consider the following approximate equations:

22 1 333
22 e 001264480 &~ —.0610 - — . 7 — 2% ~8.321.963- 1075 ~ 0.935 - ——
T % 7 106 : 1062°
355 1 103993 1
— =~ 26676421077 &~ —0.0034 - —— - ~ 5.778,906 - 1071% =~ 633 - ————:
7113 : 11327 " 733102 : 331022’

the goodness of each of these approximations is measured in terms of 1 divided by the square of the de-
nominator of the approximating fraction. The following theorem will explain why this way of measuring the
goodness of the approximations make sense. The theorem is proved by a direct application of the pigeon
hole principle:

Theorem. Let x be a real number and n a positive integer. Then there are integers k and 1 such that
1<1i<n and

1
1 — < —
(1) |l k\_n .

Noting that [ # 0, the inequality here can also be written as

TS iy

l

k ‘ 1

In other words, given any positive integer n, a real number = can always be approximated by a common
fraction whose denominator [ is < n such that the error of the approximation is less than or equal to

1
I(n+1)

Since 1 <[ < n, this error is less than 1/12.

Proof. For a real number y, denote by [y] the integer part of y. That is, [y] is the largest integer m < y.

Further, denote by {y} the fractional part of y; that is, {y} d:efy — [y].2 Clearly, 0 < {y} < 1.
Assume that no k and [ satisfying the assertion of the theorem exist. Then for any integer [ with 1 <[ <n
we must have

n

(2)

n+1
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d
2The symbol :ef describes an equation where the left-hand side is defined by means of the expression on the right-hand side.
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Indeed, writing s = [lz], we have {lx} = lx — s. Thus, if the first inequality fails then, noting that lz > s,
we have

1
0<ler —s< ——,
n+1

the inequality (1) claimed in the theorem is satisfied with k = s. If the second inequality fails then, noting
that iz — s = {lz} < 1, we have

<lr—s<1.
n+1

Subtracting 1 from all the members of the inequality,® we obtain

1
- <lx — 1) <0.
n+17~ z=(s+1)
In this case, inequality (1) claimed in the theorem is satisfied with k = s + 1.
Given that (2) is satisfied, each of the n numbers {1z}, {2z}, {3z}, ..., {nz} belongs to at least* one of
the n — 1 intervals
1 2 2 3 3 4 n—2n-1 n—1 n
n+1'n+1]" [n+1'n+1]" |n+1'n+1]" """ |n+1'n+1|" |[n+1'n+1]

Since there are n numbers and n — 1 intervals here, there must be (at least) one among these intervals to
which (at least) two of these numbers belong. That is, there are integers p and ¢ with 1 < p < ¢ < n such
that {pz} and {gz} belong to the same one among these intervals.® Since the length of each of these intervals
is 1/(n + 1), we then must have

1
_ < - .
g} — oo} <
Writing r = [pz] and s = [qz], we have {pz} = px —r and {gz} = gz — s; hence the above inequality becomes

1

_ _(r— < - .

(g —ple—(r=s) < —

here p, ¢, r, s are integers. Writing [ = ¢ — p and k = r — s, this inequality becomes identical to (1), the
inequality we wanted to show. As 0 < p < ¢ < n, the inequality 1 <! < n also follows. O

3The members of the inequality are the expressions on the left-hand side, the middle, and on the right-hand side, separated
by the inequality signs.
4The interval [a, b] is the set of points {z : a < x < b}. In case {px} is one of the numbers

1 2 3 n—2
n+1 n+1" n+1" 7777 n41’

then {px} belongs to each of the two intervals whose one endpoint is {px}.

5Saying that 1 < p < ¢ < n amount to saying that there are two distinct integers p and ¢ with 1 <p<nand1<qg<n
such that {pz} and {qz} belong to the same interval, and the notation is so chosen that the smaller integer is denoted by p and
the larger one by q.
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