THE ROTATION OF A COORDINATE
SYSTEM AS A LINEAR TRANSFORMATION!

Representation of vectors and linear transformation. Let V be a finite dimensional vector space over
the field F, and let X = (x!,x?,...,x") be a basis of V.2 For a vector x € V we have x = Y1 | ¢;x" for
some ¢; € F (1 <4 < n). Let ¢ be the column vector ¢ = (¢, ... ,¢,)T, where the superscript T' indicates
transpose. We will write
n
X = Z x'¢; = Xe,
i=1

where for the second equation we consider X a row vector, and then the product on the right-hand side is
viewed as a product of a row vector and a column vector. We introduce the notation

def
Ryx = c,

and call the column vector ¢ the representation of the vector x with respect to the basis X.

Now, let V and W be vector spaces over F, let X = (x!,x2,... ,x") be a basis of V, let Y = (y',y?,...,
v™) be a basis of W, and let T': V' — W be a linear transformation. For any ¢ with 1 < ¢ < n we have
Tx = Z;nzl yjaji with some aj; € F. For an arbitrary vector x = V such that ¢ = (ci,. .. 7cn)T = Rxx
we have x = 37" x'c; and Tx = >0y’ > ;" ajici. In matrix form, this equation will be written as
Tx =TXc = YAc where A is the n x m matrix with entries aj; in the jth row and the ith column. In the
last equation, we may omit the column vector ¢ on the right-hand side and write TX = YA. We will call
the matrix A the representation of the linear transformation 7" with respect to the bases X and ), and write

RyxT % A

The basic properties of representations of vectors and of linear transformations are discussed in [1].

Addition formulas for trigonometric functions. In using vectors to discuss plane geometry, it is natural
to introduce the vector i, of unit length, pointing in the direction of the positive x axis, and the vector j,
also of unit length, pointing in the position of the positive y axis. Then, for any point P with coordinates
(z,y) in the plane, the vector with initial point at the center O of the coordinate system and terminal point
at P, one can write

OP = i +yj = iz + jy = (i.j) (§>

The vector O? is called the position vector of the point P. Denote by Fs the space of all position vectors in
the plane.® The family X = (i,j) is clearly a basis of E,. The displayed equation above can also expressed
by saying that

ROP = (z,9)7,

where the superscript 7' denotes transpose; in other words, the representation of the vector O? in the basis
X is the column vector (z,y)7.
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2Here !, 2, ... attached to vectors indicate superscripts, and are not exponents. As usual, in a field we assume that the
multiplication is commutative. A field with a noncommutative multiplication is now called a skew field or a division ring.

3l.e., E3 is the set of all vectors in the given plane with initial point at the center O of the given Cartesian coordinate
system.
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Consider the mapping Ty such that, for each vector 075, the result T¢O? is the vector O—}g rotated about
the point O by the angle ¢ (counterclockwise if ¢ > 0, clockwise if ¢ < 0). It is easy to see that T is a linear
transformation. Indeed, one can think of the transformation T as rotating the whole plane by the angle ¢
about the fixed point O. If the vector @ € Fs gets rotated to ?, then, for any real A\, A\@ gets rotated to )\(7;
this shows that TyAd@ = ATy. If the triangle OAB expresses the vector addition @ = @i + ﬁ .4 then the
rotated triangle expresses the vector addition T ¢@ =T, ¢,(ﬂ> + T¢E; this shows that for any two vectors

@,b € Ey we have Ty(d + b) = Tyd + T¢l;. Hence T} is indeed a linear transformation of Es into itself.
Simple geometric considerations show that

cos ¢

Tyi=icos¢+jsing = (1.]) <Sm¢> and  Tyj = —ising +jeos¢ = (i,j) (Si“¢) .

cos ¢

Using the linearity of T}, we therefore obtain that that for any vector v = (z,y)” € Ry we have

_ AN . N . . .o [COSO .. [ —sing
ToXv =T, (i.J) (y) = To(iz +jy) = 2Toi+yTsj = (1,j) (Sin¢> z+(1,]) < Cow) y

e s cos ¢ —sin ¢ .. [cOs¢p —sing Y\
= (i.J) ((sin¢)x+< cos¢>y> = (1)) (sinqb COS(;S) (y) = Xdyv,

Ay = (cosqﬁ singb) .

sin ¢ cos ¢

where

That is, for any v € Ry 1 we have Ty X'v = X Ay v, or else, for the representation of the linear transformation
T¢ we have Rxqug = A¢.

Now, if we rotate the vector @ € Ey by and angle 5 to form T;3d, and then we rotate it by the angle o to
obtain the vector T, T3d, we can also arrive at the same vector by rotating the vector @ by the angle o 4 3
to obtain T,4gd. That is, for any vector @ € Ey we have T,13d = Toy3d; i.e., ToTs = To4p. Hence, for
any vector v € Ry 1, we have

TaT5XV = Ta(TBXV) = TQ(XA,(;V) = TQX(ABV) = XA(X(ABV) = X(AQAB)V
on the one hand, and, on the other hand
T TgXv =ToigXv =X Aaypv.

Thus, we have RyxToTs = AaAp, and also RyxT, T3 = Aq+p. Since the matrix representation of a linear
operator with respect to given bases is unique, we have A,13 = Ay Ag. That is

<cos(a+5) —sin(a+6)):<cosa —sina) (cosﬁ —sinﬁ)

sin(a + ) cos(a + fB) sin « Cos « sin 8 cos 3
[ cosacosB —sinasinS —cosasinff —sinacosf \
~ \sinacosf +cosasinf3 —sinasinf + cosacosf )’

the second equality was obtained by multiplying out the matrices in the middle. Since the two matrices at
the ends are equal, their corresponding entries must be equal. Hence, by the equalities of the entries in the
first columns, we obtain

cos(a + ) = cosacos f — sin asin 8 and sin(a + ) = sinacos f — cos asin .

Thus, the above considerations with linear transformations lead to a proof of the basic addition formulas for
sine and cosine.

10f course, zﬁ is not a position vector unless the point A is the same as O; however, it is considered to be equal to a
position vector of the same length and same direction.
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Rotation of the coordinate system. If we rotate the coordinate vectors i and j to obtain i, = Ti and
Jo = Tyj, the family Y = (iy, j,) will also be a basis of the space E; of plane position vectors, and the above
equations can also be written as Y = T, X, where X = (i,j), as above. Note T_,Tyd@ = @ = TyT_4d for any
vector @ € 5. Indeed, the first of these equations just expresses the fact that that if we rotate the vector
a first by an angle ¢, and then rotate it by the angle —¢, we get back the vector a; the second equation
expresses a similar fact when we make the first rotation by the angle —¢ and the second one by ¢. Hence,
we have T_ 4Ty = I = TyT_4, where [ is the identity transformation on F,. That is, we have T(;l =T_,.
Le., for any column vector v € Ry ; we have

AV =IXv = (TyT_3)Xv =Ty(T_p X)) = TyXA_yv = (TpX)A_4yv = YVA_4v.

The equation IXv = YA_4v can also be written as Ryxl = A_g4.
Observe that A_, is the inverse of Ag. This is because

Xv = T¢(T_¢XV) = T¢(XA_¢V) = T¢X(A_¢V) = XA¢(A_¢V) = XA¢A_¢V,

Similarly, Xv = XA_4Asv. Since these equations hold for any v € Ry, they mean that the identity
transformation is represented by the matrices Ryxl = AgA_y = A_43A4. The equation IXv = XIpv, where
15 denotes the 2 x 2 identity matrix, shows that we also have RxxI = I>. Thus AyA_4 = A_3 Ay = I, so,
indeed, A;l =A_45

Now, let u € Ry ; be an arbitrary vector, and let v = Agu. Then u = A_y4v, since A_g is the inverse
of the matrix Ay. Thus, the equation Xv = YA_4v can be rewritten as Yu = X Ayu, or as IYu = XY Ayu.
This equation can also be written as Ryyl = Ag.

Let P be a point in the plane, and let RXO? = (z,y)T, and RyO? = (z4,ys)". This means that, in
the coordinate system C with the positive x axis pointing in the direction of the vector i and the positive y
axis pointing in the direction of the vector j, the coordinates of the point P are (z,¥), and in the coordinate
system Cy with the same center but the axes rotated by an angle ¢, the coordinates of P are (xy,yq). We

have
(ﬁ:){(“’) :y(%>.
Y Yo
The equation Xv = YA_,v with v = (z,y)” then implies that
<x¢) 4 (x) _ (cos(gzﬁ) sin(¢)> (x)
Ys o \y sin(—¢)  cos(—¢) ) \y
- cos¢ sing AN x cos ¢+ ysin¢
~ \ —sin¢g cos¢ y) \—zsing+ycose )’
This means that x4, = xcos¢ + ysin¢ and yg = —x sin ¢ + y cos ¢, describing the way how the coordinates

of a point transform under the rotation of a coordinate system by an angle ¢. Similarly, the equation
Yu = X Au implies with u = (z4,ys)7

TN oy (%) 2 cos¢ —sing Tp\ [ TpCcOSP — yYgsing
y) 0 \ys ) \sing  cosd)\ys ) \wpsing+yscosd )’

5The equation ApA_y = Iz can be written as
AA . — (cos¢ fsingi)) (cos(f¢>) fsin(f¢>)) _ (cos¢ fsin¢>) ( cos ¢ sin¢)
L sin ¢ cos ¢ sin(—¢) cos(—¢) ) \sing cos ¢ —sin¢g cos¢
_(c032¢+sin2¢ 0 )_[ _(1 0)
o 0 sin?¢ +cos2¢ ) 2=\o 1)

The equality of the last two matrices implies that cos? ¢ + sin® ¢ = 1. This is of course a well known identity; however, the
point is that the argument described here gives a proof of this identity. A proof of this identity was already implicitly contained
in an argument given earlier, since this identity also follows by applying the addition formula for cosine to the left-hand side of
the equation cos(¢ + (—¢)) = cos0 and noting that cos0 = 1.
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Equating the corresponding entries, this gives the coordinate transformation equations © = 4 cos ¢ —y4 sin ¢
and y = x4 sin ¢ + y4 cos @.

As an application, take ¢ = /4, denote by (z,y) the coordinates of a point by P in the original coordinate
system C, and by (§,7) the coordinates of the same point in the coordinate system C’ with axes rotated
by 7/4 (i.e., by 45° counterclockwise). Then, noting that cos(w/4) = sin(w/4) = 1/v/2, the coordinate
transformation equations with £ and 7 replacing x4 and y4 become

"~
I
3

T+y
V2
—r+y

n= \/5 ) Yy =

%

and

2
+
3

&

The equation
2 2
& o _y
2 2
represents a hyperbola with its real axis along the £ coordinate axis (i.e., the first coordinate axis in the
coordinate system C), and imaginary axis along the 7 axis (i.e., the second axis in the coordinate system
C"); its foci, described in the coordinate system C’, that is, in the &, n-coordinate system, are (2,0) and

(—2,0).5 Using the coordinate transformation equations in the first column, the equation of the hyperbola

can be written as ) )
T4y —zty
) (=)

2 2 ’

or else as
zy = 1.

This is the equation of the hyperbola in question in the z,y-coordinate system. Using the coordinate
transformation equations in the second column, the (z,y) coordinates of the focus with (£,7) coordinates
¢=2andn=0arex = (2-0)/vV2=2/vV2=+v2and y = (24 0)/v2 = 2/v/2 = v/2. Similarly, the (z,y)
coordinates of the focus with (£,7) coordinates ¢ = —2 and n = 0 are ¢ = (-2 — 0)/V2 = —2/v/2 = —/2
and y = (=2 +0)/v2 = —2/+/2 = —V/2. That is, the foci of the above hyperbola are located at the points
(v/2,v/2) and (=v/2, —v/2), as described in the z,y-coordinate system.
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SThe canonical equation of the hyperbola with center at the origin, with semi-real axis a in the direction of the coordinate
axis &, and with semi-imaginary axis b, is
e
> Loy
a? b
the foci are located at the points (c,0) and (—c,0) in the &, n-coordinate system, where c? = a? + b2 (¢ > 0). In the present
case, a = b =/2, so c= 2.
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