
THE ROTATION OF A COORDINATE

SYSTEM AS A LINEAR TRANSFORMATION1

Representation of vectors and linear transformation. Let V be a finite dimensional vector space over
the field F , and let X = (x1,x2, . . . ,xn) be a basis of V .2 For a vector x ∈ V we have x =

∑n

i=1
cix

i for
some ci ∈ F (1 ≤ i ≤ n). Let c be the column vector c = (c1, . . . , cn)

T , where the superscript T indicates
transpose. We will write

x =
n
∑

i=1

xici = Xc,

where for the second equation we consider X a row vector, and then the product on the right-hand side is
viewed as a product of a row vector and a column vector. We introduce the notation

RXx
def
= c,

and call the column vector c the representation of the vector x with respect to the basis X .
Now, let V and W be vector spaces over F , let X = (x1,x2, . . . ,xn) be a basis of V , let Y = (y1,y2, . . . ,

ym) be a basis of W , and let T : V → W be a linear transformation. For any i with 1 ≤ i ≤ n we have
Txi =

∑m

j=1
yjaji with some aji ∈ F . For an arbitrary vector x = V such that c = (c1, . . . , cn)

T = RXx

we have x =
∑n

i=1
xici and Tx =

∑i

j=1
yj

∑n

i=1
ajici. In matrix form, this equation will be written as

Tx = TXc = YAc where A is the n×m matrix with entries aji in the jth row and the ith column. In the
last equation, we may omit the column vector c on the right-hand side and write TX = YA. We will call
the matrix A the representation of the linear transformation T with respect to the bases X and Y, and write

RYXT
def
= A.

The basic properties of representations of vectors and of linear transformations are discussed in [1].

Addition formulas for trigonometric functions. In using vectors to discuss plane geometry, it is natural
to introduce the vector i, of unit length, pointing in the direction of the positive x axis, and the vector j,
also of unit length, pointing in the position of the positive y axis. Then, for any point P with coordinates
(x, y) in the plane, the vector with initial point at the center O of the coordinate system and terminal point
at P , one can write

−→
OP = xi+ yj = ix+ jy = (i, j)

(

x
y

)

.

The vector
−→
OP is called the position vector of the point P . Denote by E2 the space of all position vectors in

the plane.3 The family X = (i, j) is clearly a basis of E2. The displayed equation above can also expressed
by saying that

RX
−→
OP = (x, y)T ,

where the superscript T denotes transpose; in other words, the representation of the vector
−→
OP in the basis

X is the column vector (x, y)T .

1Notes for Course Mathematics 10.1 at Brooklyn College of CUNY. Attila Máté, November 7, 2007. Revised on April 15,
2013.

2Here 1, 2, . . . attached to vectors indicate superscripts, and are not exponents. As usual, in a field we assume that the
multiplication is commutative. A field with a noncommutative multiplication is now called a skew field or a division ring.

3I.e., E2 is the set of all vectors in the given plane with initial point at the center O of the given Cartesian coordinate
system.
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Consider the mapping Tφ such that, for each vector
−→
OP , the result Tφ

−→
OP is the vector

−→
OP rotated about

the point O by the angle φ (counterclockwise if φ ≥ 0, clockwise if φ < 0). It is easy to see that Tφ is a linear
transformation. Indeed, one can think of the transformation Tφ as rotating the whole plane by the angle φ

about the fixed point O. If the vector ~a ∈ E2 gets rotated to
−→
a′ , then, for any real λ, λ~a gets rotated to λ

−→
a′ ;

this shows that Tφλ~a = λTφ. If the triangle OAB expresses the vector addition
−→
OB =

−→
OA+

−→
AB,4 then the

rotated triangle expresses the vector addition Tφ

−→
OB = Tφ

−→
OA+ Tφ

−→
AB; this shows that for any two vectors

~a,~b ∈ E2 we have Tφ(~a+~b) = Tφ~a+ Tφ
~b. Hence Tφ is indeed a linear transformation of E2 into itself.

Simple geometric considerations show that

Tφi = i cosφ+ j sinφ = (i, j)

(

cosφ
sinφ

)

and Tφj = −i sinφ+ j cosφ = (i, j)

(

− sinφ
cosφ

)

.

Using the linearity of Tφ, we therefore obtain that that for any vector v = (x, y)T ∈ R2,1 we have

TφXv = Tφ (i, j)

(

x
y

)

= Tφ(ix+ jy) = xTφi+ yTφj = (i, j)

(

cosφ
sinφ

)

x+ (i, j)

(

− sinφ
cosφ

)

y

= (i, j)

((

cosφ
sinφ

)

x+

(

− sinφ
cosφ

)

y

)

= (i, j)

(

cosφ − sinφ
sinφ cosφ

)(

x
y

)

= XAφv,

where

Aφ =

(

cosφ − sinφ
sinφ cosφ

)

.

That is, for any v ∈ R2,1 we have TφXv = XAφv, or else, for the representation of the linear transformation
Tφ we have RXXTφ = Aφ.

Now, if we rotate the vector ~a ∈ E2 by and angle β to form Tβ~a, and then we rotate it by the angle α to
obtain the vector TαTβ~a, we can also arrive at the same vector by rotating the vector ~a by the angle α+ β
to obtain Tα+β~a. That is, for any vector ~a ∈ E2 we have TαTβ~a = Tα+β~a; i.e., TαTβ = Tα+β . Hence, for
any vector v ∈ R2,1, we have

TαTβXv = Tα(TβXv) = Tα(XAβv) = TαX (Aβv) = XAα(Aβv) = X (AαAβ)v

on the one hand, and, on the other hand

TαTβXv = Tα+βXv = XAα+βv.

Thus, we have RXXTαTβ = AαAβ , and also RXXTαTβ = Aα+β . Since the matrix representation of a linear
operator with respect to given bases is unique, we have Aα+β = AαAβ . That is

(

cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)

=

(

cosα − sinα
sinα cosα

)(

cosβ − sinβ
sinβ cosβ

)

=

(

cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ − sinα sinβ + cosα cosβ

)

;

the second equality was obtained by multiplying out the matrices in the middle. Since the two matrices at
the ends are equal, their corresponding entries must be equal. Hence, by the equalities of the entries in the
first columns, we obtain

cos(α+ β) = cosα cosβ − sinα sinβ and sin(α+ β) = sinα cosβ − cosα sinβ.

Thus, the above considerations with linear transformations lead to a proof of the basic addition formulas for
sine and cosine.

4Of course,
−→
AB is not a position vector unless the point A is the same as O; however, it is considered to be equal to a

position vector of the same length and same direction.
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Rotation of the coordinate system. If we rotate the coordinate vectors i and j to obtain iφ = Tφi and
jφ = Tφj, the family Y = (iφ, jφ) will also be a basis of the space E2 of plane position vectors, and the above
equations can also be written as Y = TφX , where X = (i, j), as above. Note T−φTφ~a = ~a = TφT−φ~a for any
vector ~a ∈ E2. Indeed, the first of these equations just expresses the fact that that if we rotate the vector
~a first by an angle φ, and then rotate it by the angle −φ, we get back the vector ~a; the second equation
expresses a similar fact when we make the first rotation by the angle −φ and the second one by φ. Hence,
we have T−φTφ = I = TφT−φ, where I is the identity transformation on E2. That is, we have T−1

φ = T−φ.
I.e., for any column vector v ∈ R2,1 we have

Xv = IXv = (TφT−φ)Xv = Tφ(T−φXv)) = TφXA−φv = (TφX )A−φv = YA−φv.

The equation IXv = YA−φv can also be written as RYX I = A−φ.
Observe that A−φ is the inverse of Aφ. This is because

Xv = Tφ(T−φXv) = Tφ(XA−φv) = TφX (A−φv) = XAφ(A−φv) = XAφA−φv,

Similarly, Xv = XA−φAφv. Since these equations hold for any v ∈ R2,1, they mean that the identity
transformation is represented by the matricesRXX I = AφA−φ = A−φAφ. The equation IXv = X I2v, where
I2 denotes the 2× 2 identity matrix, shows that we also have RXX I = I2. Thus AφA−φ = A−φAφ = I2, so,

indeed, A−1

φ = A−φ.
5

Now, let u ∈ R2,1 be an arbitrary vector, and let v = Aφu. Then u = A−φv, since A−φ is the inverse
of the matrix Aφ. Thus, the equation Xv = YA−φv can be rewritten as Yu = XAφu, or as IYu = XAφu.
This equation can also be written as RXYI = Aφ.

Let P be a point in the plane, and let RX
−→
OP = (x, y)T , and RY

−→
OP = (xφ, yφ)

T . This means that, in
the coordinate system C with the positive x axis pointing in the direction of the vector i and the positive y
axis pointing in the direction of the vector j, the coordinates of the point P are (x, y), and in the coordinate
system Cφ with the same center but the axes rotated by an angle φ, the coordinates of P are (xφ, yφ). We
have

−→
OP = X

(

x
y

)

= Y
(

xφ

yφ

)

.

The equation Xv = YA−φv with v = (x, y)T then implies that

(

xφ

yφ

)

= A−φ

(

x
y

)

=

(

cos(−φ) − sin(−φ)
sin(−φ) cos(−φ)

)(

x
y

)

=

(

cosφ sinφ
− sinφ cosφ

)(

x
y

)

=

(

x cosφ+ y sinφ
−x sinφ+ y cosφ

)

.

This means that xφ = x cosφ+ y sinφ and yφ = −x sinφ+ y cosφ, describing the way how the coordinates
of a point transform under the rotation of a coordinate system by an angle φ. Similarly, the equation
Yu = XAφu implies with u = (xφ, yφ)

T

(

x
y

)

= Aφ

(

xφ

yφ

)

=

(

cosφ − sinφ
sinφ cosφ

)(

xφ

yφ

)

=

(

xφ cosφ− yφ sinφ
xφ sinφ+ yφ cosφ

)

.

5The equation AφA−φ = I2 can be written as

AφA−φ =

(

cosφ − sinφ

sinφ cosφ

)(

cos(−φ) − sin(−φ)
sin(−φ) cos(−φ)

)

=

(

cosφ − sinφ

sinφ cosφ

)(

cosφ sinφ

− sinφ cosφ

)

=

(

cos2 φ+ sin2 φ 0
0 sin2 φ+ cos2 φ

)

= I2 =

(

1 0
0 1

)

.

The equality of the last two matrices implies that cos2 φ + sin2 φ = 1. This is of course a well known identity; however, the
point is that the argument described here gives a proof of this identity. A proof of this identity was already implicitly contained

in an argument given earlier, since this identity also follows by applying the addition formula for cosine to the left-hand side of
the equation cos(φ+ (−φ)) = cos 0 and noting that cos 0 = 1.

3



Equating the corresponding entries, this gives the coordinate transformation equations x = xφ cosφ−yφ sinφ
and y = xφ sinφ+ yφ cosφ.

As an application, take φ = π/4, denote by (x, y) the coordinates of a point by P in the original coordinate
system C, and by (ξ, η) the coordinates of the same point in the coordinate system C ′ with axes rotated

by π/4 (i.e., by 45◦ counterclockwise). Then, noting that cos(π/4) = sin(π/4) = 1/
√
2, the coordinate

transformation equations with ξ and η replacing xφ and yφ become

ξ =
x+ y√

2
,

η =
−x+ y√

2
,

and

x =
ξ − η√

2
,

y =
ξ + η√

2
.

The equation
ξ2

2
− η2

2
= 1

represents a hyperbola with its real axis along the ξ coordinate axis (i.e., the first coordinate axis in the
coordinate system C ′), and imaginary axis along the η axis (i.e., the second axis in the coordinate system
C ′); its foci, described in the coordinate system C ′, that is, in the ξ, η-coordinate system, are (2, 0) and
(−2, 0).6 Using the coordinate transformation equations in the first column, the equation of the hyperbola
can be written as

(

x+y√
2

)2

2
−

(

−x+y√
2

)2

2
= 1,

or else as
xy = 1.

This is the equation of the hyperbola in question in the x, y-coordinate system. Using the coordinate
transformation equations in the second column, the (x, y) coordinates of the focus with (ξ, η) coordinates

ξ = 2 and η = 0 are x = (2− 0)/
√
2 = 2/

√
2 =

√
2 and y = (2 + 0)/

√
2 = 2/

√
2 =

√
2. Similarly, the (x, y)

coordinates of the focus with (ξ, η) coordinates ξ = −2 and η = 0 are x = (−2 − 0)/
√
2 = −2/

√
2 = −

√
2

and y = (−2 + 0)/
√
2 = −2/

√
2 = −

√
2. That is, the foci of the above hyperbola are located at the points

(
√
2,
√
2) and (−

√
2,−

√
2), as described in the x, y-coordinate system.
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6The canonical equation of the hyperbola with center at the origin, with semi-real axis a in the direction of the coordinate
axis ξ, and with semi-imaginary axis b, is

ξ2

a2
− η2

b2
= 1;

the foci are located at the points (c, 0) and (−c, 0) in the ξ, η-coordinate system, where c2 = a2 + b2 (c > 0). In the present

case, a = b =
√
2, so c = 2.
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