The limit $\lim _{t \rightarrow 0} \sin t / t^{*}$

Attila Máté
Brooklyn College of the City University of New York

March 15, 2013

Consider the unit circle $x^{2}+y^{2}=1$ in the plane. Writing $|A B|$ for the length of the line segment between the point A and B, the length of an $\operatorname{arc} \overparen{P Q}$ on the unit circle is defined as the supremum of the sums

$$
\sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

for all integers $n>1$ and all sequences of points along the arc $\widehat{P Q}$ such that $P_{0}=P, P_{n}=Q$, and P_{i} is between P_{i-1} and P_{i+1} for all i with $0<i<n$. ${ }^{1}$ If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are distinct points in the first quadrant on the unit circle, then it is easy to see that

$$
\begin{equation*}
\left|x_{2}-x_{1}\right|<|A B|<\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right| . \tag{1}
\end{equation*}
$$

Hence, if the arc $\widehat{P Q}$ lies in the first quadrant, it is easy to see that all the sums above are less than 2 , and so the supremum of these sums exists and is ≤ 2. Denoting by π the arc length of the unit semicircle, it follows that $\pi / 2 \leq 2$. From the equilateral triangle, one can conclude that $\pi / 3>1$; hence one obtains the simple estimate $3<\pi \leq 4$.

Assuming $P\left(x_{P}, y_{P}\right)$ and $Q\left(x_{Q}, y_{Q}\right)$ are points in on the unit circle in the first quadrant such that $x_{P}>x_{Q}$ (and then $\left.y_{P}<y_{Q}\right)$, and $P_{i}\left(x_{i}, y_{i}\right)$ for $0 \leq i \leq n$ are points along the arc between P and Q as above, we have $x_{0}>x_{1}>\ldots>x_{n}$ and $y_{0}<y_{1} \ldots<y_{n}$. Furthermore,

$$
\begin{aligned}
x_{P}- & x_{Q}=x_{0}-x_{n}=\sum_{i=1}^{n}\left(x_{i-1}-x_{i}\right)<\sum_{i=1}^{n}\left|P_{i-1} P_{i}\right| \\
& <\sum_{i=1}^{n}\left(\left(x_{i-1}-x_{i}\right)+\left(y_{i}-y_{1}\right)\right)=\left(x_{0}-x_{n}\right)+\left(y_{n}-y_{0}\right)=\left(x_{P}-x_{Q}\right)+\left(y_{P}-y_{Q}\right) .
\end{aligned}
$$

Taking the supremum of the second sum for all choices of n and for all choices of the points P_{i}, this supremum being the length of the arc $\widehat{P Q}$, we obtain the inequality

$$
\begin{equation*}
x_{P}-x_{Q}<\overparen{P Q} \leq\left(x_{P}-x_{Q}\right)+\left(y_{P}-y_{Q}\right) \tag{2}
\end{equation*}
$$

If one writes P_{0} for the point with coordinates $(0,1)$ and denotes by P_{t} the point (x, y) on the unit circle such that the length of the $\operatorname{arc} \widehat{P_{0} P_{t}}$ is $|t|$ and the rotation about the origin from P_{0} to P_{t}

[^0]is counterclockwise for $t \geq 0$ and clockwise for $t \leq 0$, then t is a continuous function of x (or y) for P_{t} in each quadrant. From here it is easy to conclude with the aid of the Intermediate Value Theorem that to each real t there corresponds a point P_{t} on the unit circle. With the aid of the point $P_{t}(x, y)$ one can define the trigonometric functions as $\cos t=x, \sin t=y$, and $\tan t=\sin t / \cos t$ (this last one if $\cos t \neq 0)$.

Assuming $0<t<\pi / 2$ (so that P_{t} is in the first quadrant), inequality (2) for the arc $\widehat{P_{0} P_{t}}$ can be written as

$$
\sin t=\sin t-\sin 0<t \leq(\sin t-\sin 0)+(\cos 0-\cos t)=\sin t+1-\cos t
$$

Rearranging this, we obtain

$$
\begin{equation*}
1-\frac{1-\cos t}{t} \leq \frac{\sin t}{t}<1 \tag{3}
\end{equation*}
$$

Using the second inequality here and also noting that $0<\cos t<1$, we can see that

$$
\frac{1-\cos t}{t}<\frac{(1-\cos t)(1+\cos t)}{t}=\frac{1-\cos ^{2} t}{t}=t \cdot \frac{\sin ^{2} t}{t^{2}}<t
$$

Thus, (3) implies

$$
1-t<\frac{\sin t}{t}<1
$$

This implies that $\lim _{t \searrow 0} \sin t / t=1$. As $\sin t / t$ is an even function of t, we can conclude that

$$
\lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

[^0]: *Written for the course Mathematics 4201 at Brooklyn College of CUNY.
 ${ }^{1}$ To make it easy to define what is meant by P_{i} being between P_{i-1} and P_{i+1}, one may add the additional requirement that $\left|P_{k-1} P_{k}\right|<1 / 2$ for all k with $0<k \leq n$; in this case, all three points P_{i-1}, P_{i}, P_{i+1} lie in the same one of at least one of the four half planes $x \geq 0, x \leq 0, y \geq 0$, and $y \leq 0$, and then it is easy to define the concept of one point being between the other two.

