
IRRATIONALITY OF SQUARE ROOTS1

Theorem. Let n be a positive integer such that
√
n is not an integer. Then

√
n is irrational.

The following proofs do not rely on the prime factorization of n. They are based on proofs that appeared
at various places in the twentieth century. The first such place appears to be Carl B. Boyer’s book on the
history of mathematics, where the irrationality of

√
3 is proved. Later, the irrationality of

√
2 is proved

along these lines by Theodor Estermann. Finally, Colin Richard Hughes, who was aware of Estermann’s
publication, used the method to prove the above result in its full generality. There is, however, no reason to
assume that Boyer was not aware that the method is usable to prove the general result.2

First Proof. Assume
√
n is rational. Let l be the smallest positive integer such that

√
n = k/l for some

integer k. Then l
√
n = k and k

√
n = (l

√
n)
√
n = ln. Let q be an integer such that q <

√
n < q + 1. Then

√
n =

k

l
=

k(
√
n− q)

l(
√
n− q)

=
k
√
n− kq

l
√
n− lq

=
ln− kq

k − lq
.

On the right-hand side
√
n is represented as the ratio of two integers. Since k − lq = l(

√
n − q), and

0 <
√
n− q < 1, we have

0 < k − lq < l,

which contradicts the choice of l, according to which l is the least positive integer for which
√
n = k/l. This

contradiction shows that
√
n is irrational. �

The second proof is essentially the same as the first proof, but it is explained somewhat differently.

Second Proof. Assume, on the contrary, that
√
n is rational. Then there are positive integers k and l such

that
√
n = k/l, i.e., such that l

√
n = k. Assume l is the smallest integer for which an integer k satisfying

this equation exists. Let q and r be integers such that k = ql+ r and 0 ≤ r < l. We cannot have r = 0 here
since r = 0 would mean that lq = k, which, together with the equation l

√
n = k would mean that q =

√
n,

whereas we assumed that
√
n is not an integer. Then we have k

√
n = (l

√
n)
√
n = ln, and so

r
√
n = (k − ql)

√
n = k

√
n− ql

√
n = ln− qk.

Hence r
√
n is an integer. This is, however, a contradiction, since 0 < r < l and l is the smallest positive

integer for which l
√
n is an integer. This contradiction proves that

√
n is not rational. �
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