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1 Telescoping sums

The following two equations are easy to show. Let ak be a real number for all integers k ≥ 0. Then

(1)

n
∑

k=1

(ak − ak−1) = an − a0

for every integer n ≥ 0. Indeed, we have

n
∑

k=1

(ak − ak−1) = (a1 − a0) + (a2 − a1) + (a3 − a2) + (a4 − a3) + . . .

+ (an−2 − an−3) + (an−1 − an−2) + (an − an−1) = an − a0;

the last equation holds because of cancelations. Similarly, let ak be a real number for all integers
k ≥ 1. Then

(2)

n
∑

k=1

(ak − ak+1) = a1 − an+1

∗Written for the course Mathematics 2001 at Brooklyn College of CUNY.
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for every integer n ≥ 0. Note that for n ≥ 1 the equations are true since all terms not shown on
the right-hand side cancel; for n = 0 they are true since the sums on the left are empty, and empty
sums are 0 by convention, while the right-hand sides are also 0. Such sums are called telescoping or
collapsing sums. The reason for the name “telescoping” is that some telescopes are constructed of
several tubes of different diameters that can be collapsed or pushed into one another for compact
storing of the telescope.

2 Telescoping sums for polynomials and their reciprocals

2.1 Sums for polynomials: an example for formula (1)

As an example for applications of the first equation, consider

(3) ak =

l
∏

j=0

(k + j) (l ≥ 0).

Then, for k ≥ 1 we have

ak − ak−1 =

l
∏

j=0

(k + j)−

l
∏

j=0

(k − 1 + j) = (k + l)

l−1
∏

j=0

(k + j)− (k − 1)

l
∏

j=1

(k − 1 + j)

= (k + l)

l−1
∏

j=0

(k + j)− (k − 1)

l−1
∏

j=0

(k + j) =
(

(k + l)− (k − 1)
)

l−1
∏

j=0

(k + j)

= (l + 1)

l−1
∏

j=0

(k + j).

Observe that this calculation is valid even in case l = 0, since the empty product is taken to equal 1
by convention. Noting that a0 = 0, it follows from (1) that

n
∑

k=1

(l + 1)

l−1
∏

j=0

(k + j) =

l
∏

j=0

(n+ j);

that is, dividing both sides by l + 1, we obtain

(4)

n
∑

k=1

l−1
∏

j=0

(k + j) =
1

l + 1

l
∏

j=0

(n+ j).

For l = 0 this gives
n
∑

k=1

1 = n.

For l = 1 it gives
n
∑

k=1

k =
n(n+ 1)

2
.
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For l = 2 it gives
n
∑

k=1

k(k + 1) =
n(n+ 1)(n+ 2)

3
.

For l = 3 it gives
n
∑

k=1

k(k + 1)(k + 2) =
n(n+ 1)(n+ 2)(n+ 3)

4
.

As an application of these formulas, we have

n
∑

k=1

k2 =

n
∑

k=1

(

k(k + 1)− k
)

=

n
∑

k=1

k(k + 1)−

n
∑

k=1

k =
n(n+ 1)(n+ 2)

3
−

n(n+ 1)

2

=
2n(n+ 1)(n+ 2)− 3n(n+ 1)

6
=

n(n+ 1)
(

2(n+ 2)− 3)
)

6
=

n(n+ 1)(2n+ 1)

6
.

2.2 Sums for reciprocals of polynomials: an example for formula (2)

As an example for the application of the second equation, consider

(5) ak =
1

∏l

j=0(k + j)
(l ≥ 0).

Then, for k ≥ 1 we have

ak − ak+1 =
1

∏l

j=0(k + j)
−

1
∏l

j=0(k + 1 + j)
=

1
∏l

j=0(k + j)
−

1
∏l+1

j=1(k + j)

=
k + l + 1

(k + l + 1)
∏l

j=0(k + j)
−

k

k
∏l+1

j=1(k + j)
=

k + l + 1
∏l+1

j=0(k + j)
−

k
∏l+1

j=0(k + j)

=
(k + l + 1)− k
∏l+1

j=0(k + j)
=

l + 1
∏l+1

j=0(k + j)
.

Thus, by equation (2) we have

n
∑

k=1

l + 1
∏l+1

j=0(k + j)
=

1
∏l

j=0(1 + j)
−

1
∏l

j=0(n+ 1 + j)

=
1

∏l+1
j=1 j

−
1

∏l+1
j=1(n+ j)

=
1

(l + 1)!
−

1
∏l+1

j=1(n+ j)

Dividing both sides by l + 1, we obtain

(6)
n
∑

k=1

1
∏l+1

j=0(k + j)
=

1

l + 1

(

1

(l + 1)!
−

1
∏l+1

j=1(n+ j)

)

For l = 0 this gives
n
∑

k=1

1

k(k + 1)
= 1−

1

n+ 1
.
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For l = 1 it gives
n
∑

k=1

1

k(k + 1)(k + 2)
=

1

2

(

1

2
−

1

(n+ 1)(n+ 2)

)

.

For l = 2 it gives

n
∑

k=1

1

k(k + 1)(k + 2)(k + 3)
=

1

3

(

1

6
−

1

(n+ 1)(n+ 2)(n+ 3)

)

.

For l = 3 it gives

n
∑

k=1

1

k(k + 1)(k + 2)(k + 3)(k + 4)
=

1

4

(

1

24
−

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

)

.

2.3 Sums of binomial coefficients

The binomial coefficient
(

α
k

)

for any integer k ≥ 0 and any real α is defined as

(7)

(

α

k

)

def
=

k−1
∏

j=0

α− j

k − j
=

1

k!

k−1
∏

j=0

(α− j).

From here it is easy to conclude that

(8)

(

α

k + 1

)

=
α− k

k + 1

(

α

k

)

and

(

α+ 1

k + 1

)

=
α+ 1

k + 1

(

α

k

)

Hence

(9)

(

α

k

)

+

(

α

k + 1

)

=

(

1 +
α− k

k + 1

)(

α

k

)

=
α+ 1

k + 1

(

α

k

)

=

(

α+ 1

k + 1

)

for any real α and any integer k ≥ 0,
If α is a positive integer, then equation (7) agrees with the well-known definition of the binomial

coefficients. Even if α is not an integer, the definition is used in describing the binomial series

(1 + x)α =

∞
∑

k=0

(

α

k

)

xk (|x| < 1).

In case α is a positive integer then
(

α
k

)

= 0 for k > α, since the factor α− j is zero in the numerator
on the right-hand side of (7) for j = α, and the above equation becomes the binomial formula. For
positive integers α, equation (9) is the well-known property used in building the Pascal triangle,
saying that each entry in the Pascal triangle is the sum of the two neighboring entries above it.

Given positive integers k and m with m ≥ k and a real α, using equation (9) we can see that

m
∑

n=k

(

α+ n

k

)

=
m
∑

n=k

((

α+ n+ 1

k + 1

)

−

(

α+ n

k + 1

))

=

(

α+m+ 1

k + 1

)

−

(

α+ k

k + 1

)

.
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In case α = 0, this becomes

m
∑

n=k

(

n

k

)

=

(

m+ 1

k + 1

)

−

(

k

k + 1

)

=

(

m+ 1

k + 1

)

,

where the last equation holds since
(

k
k+1

)

= 0. This equation is easily shown to be equivalent to
equation (4) after some change of notation.

3 Trigonometric telescoping sums

3.1 A sum Archimedes considered

The sum

(10) S =

n−1
∑

k=1

sin
kθ

n

can be evaluated using the trigonometric identities

(11) 2 sinx sin y = cos(x− y)− cos(x+ y).

This identity is an easy consequence of the addition and the subtraction formulas for cosine:

cos(x+ y) = cosx cos y − sinx sin y,

cos(x− y) = cosx cos y + sinx sin y.
(12)

The second one of these is not really a separate formula, since it is a consequence of the first one by
replacing y with −y and noting that sin(−x) = − sinx and cos(−x) = cosx:

cos(x− y) = cos
(

x+ (−y)
)

= cosx cos(−y)− sinx sin(−y) = cosx cos y + sinx sin y.

Multiplying equation (10) by 2 sin(θ/2) and using identity (11), we obtain

2S sin
θ

2n
=

n−1
∑

k=1

2 sin
kθ

n
sin

θ

2n
=

n−1
∑

k=1

(

cos
(2k − 1)θ

2n
− cos

(2k + 1)θ

2n

)

Writing

ak = cos
(2k − 1)θ

2n
,

the sum on the right hand side can be written as

n−1
∑

k=1

(ak − ak+1) = a1 − an.

where the equation holds according to (2) with n− 1 replacing n. Thus

(13) 2S sin
θ

2n
= cos

θ

2n
− cos

(2n− 1)θ

2n
.

In other words

S =
cos θ

2n − cos (2n−1)θ
2n

2 sin θ
2n

.

5



3.2 Archimedes’s sum and the surface area of the sphere segment

Given the unit circle x2+y2 = 1, using polar coordinates, the surface area of a segment of the sphere
obtained by rotation about the x-axis the arc of this circle between the angles θ = 0 and θ = θ0
(0 ≤ θ0 ≤ π) can be expressed as the integral

(14)

∫ θ0

0

2π sin θ dθ = 2π(1− cos θ0).

This integral was evaluated by Archimedes. Using geometry, he established an identity that can be
expressed in terms of trigonometry as the identity

(15) 2
n−1
∑

k=1

sin
kθ

n
sin

θ

2n
+ sin θ sin

θ

2n
= cos

θ

2n
− cos θ cos

θ

2n
.

Moving the term after the sum to the right-hand side and using equation (13), this identity can be
seen to be equivalent to

cos
θ

2n
− cos

(2n− 1)θ

2n
= cos

θ

2n
−

(

cos θ cos
θ

2n
+ sin θ sin

θ

2n

)

.

Applying the subtraction formula for cosine in (12) to the expression in parentheses on the right-hand
side, the two sides become identical, showing that Archimedes’s identity (15) is indeed valid.

We have

∫ θ

0

sinx dx = lim
n→∞

n
∑

k=1

(

sin
kθ

n

)

θ

n
= lim

n→∞

2

n
∑

k=1

θ
2n

sin θ
2n

sin
kθ

n
sin

θ

2n

= lim
n→∞

2
n
∑

k=1

sin
kθ

n
sin

θ

2n
= lim

n→∞

(

2
n−1
∑

k=1

sin
kθ

n
sin

θ

2n
+ sin θ sin

θ

2n

)

;

The second equality here holds in view of the equation limx→0(x/ sinx) = 1 with θ/(2n) replacing x,
and the third one follows since limn→∞ sin

(

θ/(2n)
)

= 0. According to equation (15), the right-hand
side here equals

lim
n→∞

(

cos
θ

2n
− cos θ cos

θ

2n

)

= 1− cos θ ;

the equation here holds since limx→0 cosx = 1, with θ/(2n) replacing x. Hence

∫ θ

0

sinx dx = 1− cos θ,

which, with a change of notation, is equivalent to equation (14).
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