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1 Introduction

In these notes we present some aspects of time series, maimhathematical rather than statistical.
There are many important mathematical issues that are oftennot discussed in time series text-
books. One needs a basic understanding of complex Taylor ses and the behavior of solutions of
homogeneous linear di erence equations to see the reason witertain models of stationary time
series assume that the polynomials involved have all their @ros outside the unit circle. Frequency
analysis demands some basic familiarity of Fourier serieghe Fourier transform and trigonometric
interpolation. This is provided without getting involved w ith convergence issues, even though occa-
sionally we point out the presence of such issues. For examglat times we indicate that Riemann
integration theory is inadequate to deal with certain of the subtleties, and one needs Lebesgue in-
tegration theory; we, however, try to keep such discussionson-technical, so as to make it available
for advanced undergraduates. Wavelets are extremely impaant for time series, and, after a late
start, they are exerting an increasing in uence in applications for nance, yet introductory tex-
books almost never discuss wavelets. Here we give the basi@athematical background, and not just
calculational algorithms. The Kalman lter is ubiquitous i n its application; we provide the basic
mathematical background. An everyday cell phone uses wavets for image representation, and it is
running several Kalman Iters. The notes are written with ad vanced undergraduates in mind, and
issues of mathematical precision are often treated lightly No applications are mentioned, and in
general we underemphasized aspects of time series that ardegjuately represented in introductory
texts. In particular, the book [11] gives an excellent coveage to these aspects. The book also gives
numerous examples as to how to use th® programming language to build practical models of time
series.

There are many footnotes in these notes, to provide additioal insight where including these
comments in the main text would have interrupted the main ow of reasoning. In old times, printers
used to complain about footnotes, since it was hard to typedethem and to make sure that the page
had the correct size. This is no longer an issue with computéred typesetting, and the quantity
of footnotes is simply a matter of writing style. These noteswere written in LaTeX running under
Debian Linux.


https://en.wikibooks.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Linux

2 The multivariate normal distribution

2.1 The single variable normal distribution

Let and be reals, and assume that > 0. The random variable X is said to have a normal
distribution with mean  and standard deviation if its density function fx is

1 X 2
(2.1) fx (x) = sz exp (272)
The factor before the exponential ensures that
z 1
(2.2) fx (x)dx =1:
1
This is easy to see, since
Z 1 2 2 Z 1 2 Z 1 2 Z 1 Z 1 2 2
e “dx = e * dx e ¥ dy= e *e Y dydx
0 77 0 0 77 0 0
= e X yzdydx= e "rdrd:
f(xy):x 0y Og f(r, ):r 0;0 =2g

The last integral was obtained by transforming the double irtegral in Cartesian coordinates to polar
coordinates. This last integral is easily evaluated by iteated integration; it equals
Z =2 Z 1 Z =2
r2 1 _ .
e "rdrd —drd = —;
0 0 0 2 4
the inner integral was evaluated by the substitution t = r2. This implies that
Z, Z, r_

(2.3) e dx=2 e X dx=2 7:p,:
1 0 4

As we said, From here [(2.2) follows by a simple change of varfide. The single variable normal

distribution with mean  and standard deviation , i.e., variance 2 is denoted asN (; ?2).

2.2 The multivariate normal distribution

Writing AT for the transpose of the matrix A, consider the random column vectorX = (X1, X,
115, Xn)T. X is said to have a multivariate normal distribution if there i s a random column vector
Z = (Z1, Zs, i, ZK)T for some integerk with 0 k  n whose components are independent
random variableg*! each with distribution N (0;1), ann k matrix A of reals, and ann-dimensional
column vector such that

(2.4) X = AZ +

21what we mean here is that the whole collection of of these random varia bles is independent, which is a stronger
condition than saying that they are pairwise independent; the latter means that any two of them are independent. In
case we are given an in nite number of random variables, by their indep endence we mean that any nite subcollection
is independent. We will always use independence in this sense; when we mean pa irwise independence, we will explicitly
say so.



If k = n and A is a nonsingular matrix, then X is said to have a nondegenerate multivariate normal
distribution; if k<n ork = nandA is a singularn n matrix, then X is said to have a degenerate
multivariate normal distribution. [22/ While the degenerate case is important for statistics, sine it can
happen that the residuals in case of a least-squares tting Bve a degenerate multivariate normal
distribution, discussing the degenerate case is more conipated with the means at our disposal,
since the joint density function does not exist in the degengate case (this causes no di culty with
more advanced tools from measure theory).

2.3 The covariance matrix

Write A =(¢aij )1 i k1 k, and = Pl; 2:0i0 n)'. Let p, gbeintegers with 1 p;j n. We
have X, = ikzl aiZi+ pand Xq= }‘:1 ag Z; + ¢. Let j; be Kronecker's delta, that is

C_ 1 ifi=g

! 0 ifi6j

Using the independence of theZ;, we obtain

X X
i=1 j=1
XX XX X«
= apiaq E(ZiZ;) = apidg j =  Gpidg
i=1 j=1 i=1 j=1 i=1

Putting = AAT, the right-hand side is the entry in the pth row and the gth column of . For this
reason, is called the covariance matrix of the random vecta X . For a random vector X, we will
write Cov(X) for its covariance matrix.23| Note that if X is a random column vector andE (X) =
then

(2.5) Cov(X)=E (X X )T

xX x0T

isann n matrix with the entry ( X,  p)(Xq  ¢) inthe pth row and gth column. Given a matrix

(Zpq) of random variables, its expectation is taken entry-wise,that is E (Zpq) = E(Zpq) -
2.4 The density function of a nondegenerate multivariate no rmal distri-
bution

While the degenerate case is important for statistics, sine it can happen that the residuals in case of
a least-squares tting have a degenerate multivariate nornal distribution, discussing the degenerate
case is more complicated with the means at our disposal, siecthe joint density function does not

22\We may require A tobeann n matrix. If Aisann k matrix, we can replace it with the n n matrix A°
whose rst k columns agree with those of A, and the remaining columns are zero.

23 Note that there is no cause for confusion between the notation Cov( X;Y ), with two arguments, denoting the
covariance of two random variables and Cov( X), with a single argument, denoting the covariance matrix of the
random vector X.



exist in the degenerate case (this causes no di culty with mae advanced tools from measure theory).
Hence, for discussing the density function, we assume that = n and the matrix A is nonsingular.
Writing z = (z1, 22, :::, z)", the joint density function of Z is

X 14

(2.6) f2(2")=fz(z1;22;::5,20)=(2 ) ™2exp = 22 =(2 ) ™2exp 527z
i=1

Assuming A is nonsingular, for x = Az + , writing we have z = A (x ). The Jacobian

matrix @=@ equalsA . Let = AAT be the covariance matrix discussed above. Then we have
det =det( AAT)=det AdetAT = (det A)?. Hence
(2.7) det@ = jdet(A 1)j=(det) 2
@
Furthermore
(2.8) zZTz=(x  )TA DA )=(x )T xo)

. . P
the last equation holds since ' =(AAT) 1=(AT) 'A 1 Notethat z"z= [, z2 0 unless
z = 0. Thus, the above equation withy = x shows thaty y > 0 unlessy = 0 (note that
y = A 1z = 0onlyif z= 0). Hence, the matrix is positive de nite { see [23,| x35, pp. 159{]. We
cannot recover the matrix A from , there is, however, a uniqu% positive de nite magix A°such that
(A92 = . We call AP°as the square root of . and we write = for this matrix, is symmetric
and it commutes with { see [24, Subsection 9.5, p. 27]. For the density function fx we have

W @ Y W
fz(z') dz="fz(z") & dx; = fx (x)  dx;:

i=1 i=1 i=1

Thus, by equations (2.6) (2.7), and (2.8), we have
(2.9) fx(x)=(2 ) "?(det) *Pexp %(X o)

According to this formula, if we take A®= P ,and X°%= AZ+ | then X and X °have exactly the
same density functions, and sX = X% So, in our considerations, we may, without loss of generatj,
assume thatA is a positive de nite symmetric matrix. 24

2.5 Marginal distributions of the multivariate normal dist ribution
Given a positive de nite symmetric matrix , the matrix 1 is also positive de nite. This is
because, given any nonzero column vector, with A =", put u= A x, we have

x' Wx=(Au)" YAu)= uTAT Au=u" AAu=u" ! u=uTu>o0;

For the third equation, note that A is symmetric and it commutes with , and therefore also
with  1; namely multiplying the equation A = A by ! from both left and right, we obtain
A=A 1L
24 That is, it is positive de nite if it is nonsingular. In the singula r case we can only assume that it is positive
semide nite. We will comment on the case of singular A at the end.




Writing y = X JY =(ynyziinya),and P =(pj)= ! we have

T 1 T X
x ) (x )=y Py= YiPj Vi
i=1 j=1
) X0 XX
= puyit2y: puyi t YiDij Vi
i=2 2=
(2.10) 0 ou P2 30 p%i , XX
=P Y1t —Vi —Yi * YiBij Y
i P11 | i P11 i=2 j=2
X2 XX >
=P Y1t EYi + Yi P i P4 Yi
i=p P11 i=2 j=2 P11

where in the third equation we made use of the fact thatp; = p; .

Substitute this into (2.9) and integrate with respect to dx;. Noting that dx; = dy;, we will use

the substitution 0 I
1 o .
t= p="pn vit Ay
2 izp P11

Z,
_ o Pp-_P= _
fx,(y2)") = fx(y)T)dx;=(2 ) "?(det) 2(pyy) *°
o ! 1
1 XX 2
exp@ = Yi B i P yi A
2 P11
i=2 j=2
0 1
(n 1)=2 1=2 1=2 14 X Péi A
=2 ) (det) (p11) exp@ > Yi DBi i Y&
i=2 j=2 P11

This has the form of the density function of a multivariate normal distribution. To make sure that
it is indeed represents multivariate normal distribution, we only need to ascertain that the matrix

with entries

B i (2 &j n)
P11

is positive de nite, i.e., that

XX Pii

Yo B i~ ¥%>0

i=2 j=2 P11
unlessy, = y3 = ::: =y, = 0. This is however immediate, since the the expression is igntical to the
right-hand side of (2.10) for the choice ofy; that makes the expression under the square in the rst
term there zero, since we know that his right-hand side is pasive unlessy; = yo, = ::: =y, =0.

Once we know that the marginal density ofX , is a multivariate normal distribution, we can write
this density function in a simpler form since the covariancematrix of X is the matrix obtained by
deleting the rst row and the rst column of (since the covar iances ofX; and X; are the entries

of ).



2.6 The degenerate normal distribution

If the matrix A in equation (2.4) is singular, we are led to a degenerate norai distribution, and
the discussion in Subsection 2.4 breaks down because the miat is singular; in this case is only
positive semide nite (thatis x x 0 always, but it can equal 0 even ifx 6 0). However, if > 0
and| isthen n identity matrix, then the matrix + | is nonsingular. This is because a matrix is
singular if and only if O is one of its eigenvalues. As is posiive semide nite, all its eigenvalues are
nonnegative real numbers, and all the eigenvalue of + | are of form + with and eigenvalue
of . The singular case then can be handled with replacing by + |, and making & 0. The
density function will exist for all > 0, and so does the joint distribution function. The limit of t he
joint distribution when & O will de ne the joint distribution function for = 0, while the joint
density function will remain unde ned. One needs some machiery from measure theory to de ne
the density function (or, rather, more properly, the density measure) in case = 0.

2.7 Independence and no correlation

We have the following

Theorem 2.1. Assume the random variables andY have a joint normal distribution. If Cov(X;Y ) =
Othen X and Y are independent.

Proof. Assume Cov(X;Y ) = 0; then the covariance matrix of ( X;Y ) has form
- x 0
o 7
If x =0then X is constant with probability 1, in which case X and Y are independent; similarly,
if vy=0.1f x 60and vy 60, then is nonsingular, and we have

1. x> 0
0 v2

The joint density function of X and Y is given by

‘yY — 1 (x )%y 2)
fxy (Xy) = 2 . P 22 22
according to (2.9), and sof x.vy (X;y) = fx (xX)fv (y), sincefx and fy is given by (2.1) with appro-
priate modi cations. O

This result naturally extend to two vector variables X and Y having a joint normal distributions.
If in the joint covariance matrix, each entry involving an X component and a¥Y component is zerg?s
then X, and Y are independent as vector variables, that is that is, for jont the density function we
have
fxv (X5y) = fx (X)fy (y):
The proof of this is similar to that of the above theorem; we onit the details.

2.8 Problem

Problem 2.1. Given a positive integern, an n  n matrix A with real entries is called positive
semide nite if xT Ax 0 for every n-dimensional column vectorx with real components. AssumeX
is a random column vector with real entries. Show that its coariance matrix is positive semide nite.

25|n this case, one says that X and Y are uncorrelated .

10



3 Some background from complex function theory

The theory of complex functions of a single variable is an ex@nsion of single variable calculus, in that
the functions are de ned in a part of the complex plane, and the values are also complex numbers.
Such a functionf dened on adiskD = fz2 C:jz aj <r, whereais a complex nhumber,r is
a positive real, and C denotes the set of complex numbers, is called di erentiableén D if for any
z 2 D the limit ; ;

im O @

1z z
exists, and this limit is denoted asf {z) and is called the derivative of f at z. So far this is the
same de nition as given in real variable calculus, but the requirement for di erentiability much more

stringent. To explain this, note thatis z = x + iy wherex and y are real, thenf (z) can be written
as

f(2) = u(xy) + iv(x;y);

where u and v are real functions of two real variables. The existence of th limit above means, in
particular, that, for real h the limits

» . .
im (x+ h)+ iy f(x+iy)
h! 0 h

and

”mf X+I(y+h) f(x+iy)
h! 0 ih

are equal. The equation of these limits can be written in terns of the functionsu and v as

@ .. @ @ - @
@)y(x,y)— @y(x,y) and @y(x,y) @)y(x,y)-

These equations are called the Cauchy{Riemann equations. ¥ will have no use for them in what
follows, we mention them only to underline the di erences béween real and complex analysis.

The rules of di erentiation (di erentiation of sums, produ cts, fractions, and composition of
functions) are the same in complex variables as in real vartales, but there are some features in
complex analysis that are very di erent from what we know in real analysis. In particular, if f is
di erentiable in D then f % is also di erentiable in D { nothing like this is true for real variables.
Furthermore, if f is di erentiable in D, then the Taylor series

R £ (k)(a)
"] (z a)

k=0

absolutely converges tof in D.

The above facts have the following consequence, importantof time series: if P(z) and Q(z)
are polynomials, andQ(z) has no zeros inD, then the Taylor series of P(z)=Q(z) at a absolutely
converges inD. We will need this result with a = 0. If P(z) and Q(z) have real coe cients and a
is real, then the Taylor series isP(z)=Q(z) at a will have real coe cients, since the whole Taylor
series can be determined by staying within the realm of real ambers. Determining the coe cients
by repeated di erentiation is usually to time-consuming, and it is easier to use polynomial division
to do this in casea = 0, the main case of interest to us. The usual method of dividhg polynomials
can be used, but the polynomials need to be arranged in increing powers, and the terms with the
lowest power need to be divided at each step.

11
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3.1 The natural exponential function with a complex argumen t

There are several ways to extend the natural exponential funtion expx = € for complex values of
X. One is to use the Taylor series

Rooyn
e = —
heo N
another one is using the limit .
. X
e =lim 1+= ;
n!l n

the latter approach has more intuitive appeal { see/[25]. In he quoted note, one can nd a proof of
Euler's equation

(3.1) X =cosx + i sinx;

wherei is the imaginary unit. This equation is true for real and complex values ofx; in [25], the
proof given only for real x.3*

4 Homogeneous linear recurrence equations

An equation of form

X
(4.1) ayt k=0 (a060;a,60;, m>0;, 1 <t< +1)
k=0

is called arecurrence equation more precisely, ahomogeneous linearrecurrence equation. (If the
right-hand side is replaced with some function ofn that is not identically zero, then what he get
is called aninhomogeneousrecurrence equation. In this section, we will only discuss bmogeneous
recurrence equations.) Hereay for integers k with 0 k  m are given numbers, and we seek
solutions y, such that these equations are satis ed for all nonnegativertegersn. m is called the
order of this equation. The assumptionsay 6 0 and a, 6 O are reasonable in the sense that if
either of these assumptions fail, the equation can be replad with a lower order equation. It will
be advantageous to work with complex numbers; i.e., the numbrs ax and y, will be allowed to be
complex. It is convenient to consider a solution of this equ&on as a vector

y =Ry 21y 1iYoiyiiye; i
with two-way in nitely many components. These vectors can be added componentwise, that is
hosly 20y YoiyaYesiii + iz 2,2 1520120522500
=hiny otz 2ly 1+ Z Yot Zoiy1t Z1ya t 25t
and can be multiplied by scalars, that is
iy 20y Yo Yy i =hiy 25y 15Yo0 Y, Yot

3.1 Euler's equation has an appealing intuitive content for real  x if one considers the extension of exp x for complex
X using the limit above. The equation is easy to prove for complex x if one uses the Taylor series of exp x, cosx, and
sin x, but such a proof has no intuitive content.
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The solution vectors form an n-dimensional vector space. First, they form a vector spacesince ify
and z are solutions then y + zis also a solution. It is also clear that the dimension of thisvector
space ism since each solution is determined if we specify the numbey; for m consecutive integer,
for example, for each each integef with O i m 1 (indeed,y; forj m is then determined
by the recurrence equation, asag 6 0 and a,, 6 0), and the numbers y; for these m consecutive
integers can be speci ed arbitrarily.

Write

xXn
4.2) P()= a
k=0

The polynomial P ( ) is called the characteristic polynomial of the recurrencesquation (4.1), and the
polynomial equation P( ) = 0 is called its characteristic equation. Here is a complex variable?*

4.1 The forward and backward shift operators

The backward shift operator B on functions of de ned on the set of all integersZ is given by writing
Bf (t) = f(t 1)@ The powers of the operatorB can be de ned by B"f (t) = B B" f )f (t)
in addition, we can also use the identity operatorl. Polynomials of the operator B will be called
di erence operators@ y: will be considered as a function ofn, and the operator B on y; will act
according to the equationBy; = y; 1144 The recurrence equation [(4.1) can be written in terms of
the operator B as

X
(4.3) aBX yy=0 (t22):
k=0

The forward shift operator on function de ned on the set of al | integers Z given by writing Ef (t) =
f(t+1). We have B = E !, so equation (4.3) can also be written asP (E !)y: = 0. Multiplying both sides
by E™ (the degree of P ( )) makes no di erence, since this equation is supposed to hold for all t 2 Z, so this
equation is more conveniently written as

E"P(E Yy, =0:
Observe that Q( ) & mp( 1) is also polynomial, and this is called the characteristic polynomial of
equation (4.1) when the equation is written in terms of the forw ard shift operator. When discussing di erence
equations, usually the forward shift operator is used, but in the theory of time series it is more common to
use the backward shift operator. The solutions of equation (4.2) will be discussed in terms of the zeros of

410r an indeterminate, from an alternative viewpoint. An indetermina te is a symbolic variable used in de ning a
polynomial ring, and is not to be interpreted as representing a number

42 The backward shift operator is always associated with a variable; if  more than one variable were associated with
backward shift operators, the notation should indicate the varia  ble in question as well, for example E: would shift
the variable t forward, while Es would shift the variable s, etc.

In a more rigorous treatment, however, B always acts on the function, and not the variable. Thatis, Bf is the
function such that ( Bf )(t) = f)(t 1) forall t. Itis, however, useful to maintain the ction that B acts on a variable
in order not to complicate the notation too much.

4.3 A basic di erence operation is the backward di erence operator r =1 B. Sincewe haveB = | r , arecurrence
equation can also be written in terms of the backward di erence operato r. For this reason, a recurrence equation is
also called a di erence equation .

44 |t would be formally more correct, but less convenient, to say that B actsonvectors yh::;y 2:y 1Yo y1;y2;:::i.
In fact, properly, the vector y can be considered a function on the set of integers Z, where y; stands for y (t).
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the equation P( ) = 0. Since P( )=0ifand only if Q(1=) = 0.%% Hence, results stated in terms of the
zeros of P( ) can easily be also described in terms of the zeros of)( ); in fact, the latter description is more
common { except when discussing time series.

By solving the characteristic equation, the characteristc polynomial can be factored as the
product of m linear factors; assuming that ; is a zerds of multiplicity m; of the characteristic
polynomial for j with 1 j N (the ;'s are assumed to be pairwise distinct), we have

X ¥ X
=am ( )™ where m; = m;

the second equation here just says that the above polynomiatquation (of degreem) has m roots,
counting multiplicities. The di erence operator in recurr ence equation [(4.3) has a corresponding
factorization:

A
aB“=a, (B )M;
k=0 j=1
here B j could also have been written asB I, but the identity operator is often omitted
when is has a number coe cient. This is because the rules of glebra involving polynomials of the
variable and polynomials of the forward shift operator B are the same*’
The degree of a polynomialP (t) of t will be denoted by degP (t); the constant polynomial that
is not identically zero will have degree zero, and the identially zero polynomial will have degree 1.
Then we have

Lemma 4.1. Let and be nonzero complex numbers, and lé? (t) be a polynomial oft that is not
identically zero. Then

(B )P '=Q
where Q(t) is another polynomial of t such that degQ(t) = deg P(t) if 6  and degQ(t) =
degP(t) 1if =

Proof. Given an integerk 0, we have

ook .
(B )tk t — (t 1)k (t 1) t k t— . tj( 1)k j t+1 t k t
0 17
K1 ok | ,
=@ i+ S PO TA T
=0
the second equality was obtained by using the Binomial Theagm. This equation says it all; if =

then the term involving tX will cancel, and if 6 then this term will not cancel. In the former
case, the operator lowers the degree df in the term t* ! by one. (In this case, ift is the term

of the highest degree of the polynomialP (t), then the resulting term '; tk 1t will not cancel
against the terms resulting from lower degree terms of (t), since the degrees of those terms will
also be lowered.) The proof is complete. O

45 =0 cannot happen here, since P(0) = ap 6 0 by our assumptions. Similarly, Q(0) = am 6 0.
46 A zero of a polynomial is a root of the equation obtained by equating the polynomial to zero.
47 In particular, given complex numbers and the operators B and B commute; that is

(B )XB )=(B )XB )

Note that B does not commute with expressions involving t. For example, tBt 2 = t(t 1)2, and t2Bt = t2(t 1).
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4.2 Linear independence of certain functions

Functions here mean functions onZ; instead of the word \function" we could have used the phrase
\two-way in nite sequence." The lemma just established hasseveral important corollaries.

Corollary 4.1 (Linear Independence) Let r 1 be an integer. Letfy(t) = Py (t) kt be functions
of t for k with 1k r, where Py (t) is a polynomial of t that is not identically zero, and  is
a nonzero complex number, such that it k <| r then either 6 |, orif , = | then
degPy (t) 6 deg P (t). Then the functions fy are linearly independent.

Proof. Assume, on the contrary, that we have

&Pu(t) " O
k=1

where not all the complex coe cients ¢ are zero (  here means that equality holds identically; in
the present case this means that equality holds for every irggert). We will show that this equation
cannot hold. To this end, without loss of generality, we may asume that none of the coe cients
are zero, since the terms with zero coe cients can simply be &carded. Further, we may assume
that among the terms Py (t) | ' the polynomial Py(t) is the one that has the highest degree (other
polynomials Py (t) with nonzero ¢« for ¢ 6 1 may have the same degree, but not higher). Led
be the degree ofP,(t). Then

B d Y B d+1 )<r P t — t.
( 1) ( k) Ckk(t)k_cla
k2 k k=1
k6 1

with a nonzero c. The product is taken for all k for which ¢ is dierent from 1JT8\ The reason
for this equation is that the di erence operator (B k)91 annihilates the term Py (t) k‘ when

x 6 1 according to the Lemmal4.1 above, (since deB(t) d). These operators will not
change the degree of the polynomial in the termP(t) ;' according to the same Lemma (because

k 6 1). The operator (B 1)9 will annihilate the term Py (t) k‘ incase x = 1 andk 61 (since
degPyk (t) < d in this case, according to our assumptions). Finally, the ogrator (B 1)9 lowers
the degree ofPy(t) by d in the term Py(t) ;' according to the Lemma (while none of the other
operators change the degree dP4(t) in this term, as we mentioned). Hence, after the applicatin
of the above di erence operators, the resulting function wil be ¢ ;' with ¢ 6 0; this con rms the
above equation. So, applying the di erence operator to bothsides of the equation expressing linear
dependency, we obtain that

c, 0;

while ¢ 8 0. This is a contradiction since ; 6 0 according to assumptions, showing that the
functions in question are linearly independent. O

4.3 The solution of the recurrence equation

Corollary 4.2 (Solution of the Homogeneous Equation) Assuming

xo ) W X
a “=amn | i)™ where m; = m;
k=0 j=1 j=1
48 This arrangement is of course highly redundant, because if = |, there is no need to take both of the factors
(B )91 and (B 1)94*1 | but such redundancy is harmless and it serves to simplify the notation
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and the ;'s are pairwise distinct, the functions t" Yforr andj with 0 r< mj;andl j N
representm linearly independent solutions of the di erential equation

xn
aB* y; =0:
k=0

Proof. The linear independence of the functions claimed to be repsenting the solutions have been
established in Corollary[4.1. Since a recurrence equationfmrder m can have at mostm linearly
independent solutions, these functions will represent a aoplete set of linearly independent solutions.
To see that each of these functions is a solution, it is enouglto note according to the equation

xn W
akBk = an (B j)mj
k=0 j=1
that, in view of Lemma (4.1, the di erence operator
(B M
annihilates the function t" “forr<mj. O

Thus we exhibited m linearly independent solutions of equation [(4.1). If follavs that any solution
of (4.1) is a linear combination of these solutions.

4.4 The inhomogeneous linear recurrence equation
Given by for all t 2 Z, the equation

X

(4.4) ayt k=h  (t22)
k=0

is called an inhomogeneous recurrence equation, with (4.8s the corresponding homogeneous equa-
tion. If the vectors

1 1 1 1 1 . 2 2 2 2 2 .
yr=heny@y®yE iy oy i and ye = ny@y@ Ry y?

are solutions of the inhomogeneous equation, then, clearly, Yy; is a solution of the homogeneous
equation. Stated in another way, if we nd a solution y, of the inhomogeneous equation, then every
solution of the inhomogeneous equation can be obtain ag, + yn, whereyy, is a solution of the
homogeneous equation. The solutiory, is often called aparticular solution.

45 Problems

Problem 4.1. The Fibonacci numbersy;, t = 0, 1, 2, ::: are de ned by the equationsyy = O,
yi=1land y; =y 1+ Yy » foreveryintegert 2. Write a formula expressingy;.

Problem 4.2. Write a di erence operator that annihilates all but the rst term in the expression
cat® 3 '+t 2 Y+ gt? 5

while it reduces the rsttermto ¢ 3 !, wherecis a nonzero constant (it is assumed thatc; 6 0).
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5 Dierencing and other transformations of time series

5.1 Stationary time series

A sequence
fYtg: hYt t2 Zi

of random variablesY; is called a time series. Considering two-way in nite time seies is an idealiza-
tion. A time series is usually observed in a nite interval. fY;g is called strictly stationary if given
any n 0, the joint distribution of the sequence of random variables hYi,+x : 0 k ni does not
depend ont 2 Z. It is called stationary if E(jY;j°) < 1 for all t, E(Y;) does not depend ort,>! and
for any n 2 Z, the covariance Cov(Y;; Y+ ) does not depend ont.>2

5.2 Time series and recurrence equations

Let P (x) be a polynomial with constant term 1, and assume the time sdesf Y; g satis es the equation
(5.1) PB)Y.=E  (t O0)

where E; is the error at time t; at this point, we do not assume anything about E {53 in fact, we

would treat the whole question as involving a numerical sems, except that our concern is to turn

the time seriesf Y;g into a stationary series. Normally, equations of the type (51) are considered in
autoregressive models of time series. Here, we are not conged with modeling; in fact, we are not

assuming that our time series is stationary, and autoregresive modeling is usually considered for
stationary time series. So, before modeling, one wants to tun the time series into a stationary time

series. The main tools for this is di erencing and seasonal icerencing, and other transformations.

One might ask, why would a time series satisfy an equation such as(5.1). In fact, Section 23, especially
Subsection[23.2 gives an answer. State space models descebhow the random variable Y; produced at time
t is produced by the state of the system. Such states may be natural for all time series; however, in most
situations, not much if anything can be known about the state. On ly in models of engineering processes
would be a more or less clear understanding of states. Usual, the only choice one has is to try to model
the time series, whatever mechanism produces it.

We do not assume that the polynomialP (x) is known to the person analyzing the time serie$ Y, g;
in fact, we assume that it is not known. The only use we are makig of equation (5.1) is to explain
certain patterns of behavior of the time series that is obsered by analyst, without knowing anything
about this equation. All the actions described below to remey the undesirable patterns of behavior
are to be taken without any knowledge of this equation. On theother hand, the e ects of these
actions can be best explained with this equation in sight.

5.3 Dierencing

Di erencing means applying the operator r ) Bto Y:, and considering the time seriedr Y;g,

and considering what equation the latter time series satises. We can analyze the e ects of such a
transformation in terms Lemma/4.1 and Corollary(4.2.

51The assumption E( jYtj2) < 1 implies that E( Y;) exists.
52 Note that the assumption E( jY{j?) < 1 implies that jE(Y;)j < 1 , we have

JE(X)i  E(X))=E(jX]j) EQ) E(jXj%) E@?)=E(X?),

where the second inequality holds by the Schwarz inequality (see 5.2) .
53f the degree of P(x) = m, then Y; needs to be de ned for all t m for the above equation to make sense.

17


https://en.wikipedia.org/wiki/Hermann_Schwarz

First note that equation (5.1) is an inhomogeneous recurrene equation, and, according to Sub-
section[4.4 its solution is a particular solution of this equation and a solution of the homogeneous
equation. In Corollary 4.2)we described the basic solution othe homogeneous equation; the general
solution of the homogeneous equation is a linear combinatio of these basic solutions. The coe -
cients of this linear combination are determined by the initial conditions, i.e., the initial observations
of the time seriesfY;g. Because of the random nature of these observations, all b&ssolutions of
the homogeneous equation are likely to occur with nonzero @cients.

According to Corollary 4.2, the solutions of the homogeneos equation involve terms of form
t“ ' where is a zero of the polynomialP (x) with multiplicity greater than k (k 0). If j j> 1
then limyy t ' =0, so such terms cause trouble in the long run, i.e., they do ot prevent the

time series from being stationary, at least asymptotically On the other hand, ifj j< lorifj j=1
andk 1limgy, t< =1, soin this case the time serie$ Y,g will not be stationary. In view of
Lemmal4.1, the operatorr = (I B) has essentially no e ect on the termtX ', more precisely,

it will not change its degreek unless =1. So di erencing is of no use unlessP (1) = 0.

On the other hand, if 1 is ap-fold zero of P(x), then p successive di erencing will help. This can
be seen as follows. In this case, we hawe(x) = R(x)(x 1)°, whereRR(x) is a polynomial such that
R(1) 6 0. Then we have P(x) = ( 1)PR(X)(1 x)P and soP(B) = ( 1)?’R(B)r , and equation
(5.1) can also be written as

R(B)r PY; =( 1)°E; (t o)

This is an equation for r PY; where the characteristic polynomial R(x) no longer has a zero at 1.
But the other zeros have not been dealt with, and the remainig zeros with j j < 1 will cause
trouble.

If is azero of P(x) with j j> 1, the terms involving ' in the solution of the homogeneous equation

associated with equation (5.1) willtend to 1 in absolute value ast ! 1 ; S0 how come we are not concerned
about these zeros. One answer might be that we are concerned abut the future of the time series, and not
its past; but there is another answer. What ever happened in th e past, the errors E; in equation (5.1) were
such that they accommodated whatever values the time series assumed in the past. So the coe cients of
the various terms involving t were such that Y; remained within certain bounds in the past (if it indeed
did). On the other hand, we have no such control over the future , especially since the future errors E; are
random, so we very much need to be concerned with the troublesome terms ' with j j < 1, since these
term will tendto 1 whent!1l

5.3.1 Inverting di erencing (integrating)

Having obtained the time seriesf X;g by di erencing fY;g, we build a model for model forf Xg.
Then we can apply this model to analyzef Y; g by restoring it from the modeled time series. Assuming

(52) XI =T Yt = Yt Yt 1 (t 2 Z),

we have
Ye =Y 1+ Xy,

so, given the sequencéXg and an initial value for fY;g, we can easily restore the whole sequence.
For example

Xt
Ye= Yo+ Xk (t> 0):
k=1
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Given Y, restoration for Y; for t < 0 is also possible, given equation (512), but usually is of no
interest in the context of time series. If we have performed sveral di erencing, we need to perform
inverting the same number of times.

5.4 Seasonal di erencing

If the time seriesf Y;g shows a periodic behavior of a periodl for somed, such a periodicity is called
seasonality. The origin of the term is that certain time series sampled once a month often naturally
show seasonality of period 12, since often such time serieseaa ected by the seasons of the year.

In this case, one usually applies the seasonal di erencingperator r 4 | B9 The e ect of this
can also be analyzed in terms of equationi (5!1). In terms of dations of the homogeneous equation
corresponding to this equation can be explained by the presee of aterm ' among the solutions
of the of the homogeneous equation that is periodic with pend d; this in possible only if = &=
for some integerl. This means that P(e?=9) = 0. For simplicity, assume that ™9 is a simple
zero (a zero of multiplicity 1) of P(x). In fact, assume all the terms t for = €= for any
integer | with 1 |1 < d causing periodicity of periodd are present. ThenP (e?’=¢ ) =0 for | with
1 |<d. The zeros of the equationxd 1=0are €™ for| with0 |<d. We have

& 1 ,
Xd 1= (X e2 il=d ),
1=0
and so, putting
4 1 . xd 1 X 1
(5.3) Q= (x eF)="—F= X
=1 1=0

the polynomial Q(x) must be a divisor of P(x); i.e., P(X) = R(X)Q(x) holds for some polyno-
mial R(x). Assuming, for the sake of simplicity, that eache?™® (1 I<d) is a simple zero (i.e., a
zero of multiplicity 1) of P(x), the numbers €?=¢ are no longer zeros oR(x). Now, equation (5.1)
can be written as

R(B) Q(B)Y: = E; (t O

This is an inhomogeneous equation foQ(B)Y;. The corresponding homogeneous equation no longer
has the seasonality termse?™=¢ (1 | <d). Thus, considering

g( 1
QB)Y:= B'Y,
1=0

instead of Y;, we successfully removed seasonality. B'=9 is a multiple zero of P(x), then we have
to repeat this process in order to remove seasonality.
However, often this is not what is done in practice. One takes

raYe=(1 BYY =(1 B)Q(B)Y;=r Q(B)Y::

The time seriesQ(B)Y; no longer has seasonality. Assuming thalQ(B)Y; is stationary, the di er-
encing with r on the left is unnecessary, and in our opinion it should not bedone, since it amounts
to overdi erencing; that is, applying a di erence operator to a time series where such application
is not necessary. The paper [9], or a shorter blog [10] by theasne author, discusses the danger
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of overdi erencing. The article [2] notes problem of the ovedi erencing with seasonal models, and
compares the overdi erenced model with another model that aoids overdi erencing, but it does
not seem to state the simple mathematical reason that causesverdi erencing in our opinion. The
lecture note [33, p. 6 of lec4-08.pdf] also points out that tie polynomial Q(B) rather than 1 B¢
should be used to remove seasonality.

5.4.1 Inverting seasonal di erencing

Having obtained the time seriesf X ;g by seasonal di erencing and building a model for it, we want
this model adapted for the original time series. Assuming

Xt = Q(B)Y: (t2 2);
with Q(x) given in equation (5.3), we have
(5.4) (1 B)X¢{=(1 BYY;:
That is, writing Z; = (1 B)X; = r X, we have
Zi=Yy Y o4

That is, if Yy is given form with 0 m < d and the time seriesf X;g, we can restore the time series
fYig. Indeed, givenX; for all t 2 Z, we can calculateZ;, and then, for n > 0 and

X0
Ym+nd = Ym + Zm+kd (t> 0):
k=1

If we have done several seasonal di erencing, we need to regteabove steps step of inverting seasonal
di erencing.

In equation (5.4), we did a di erencing by r , and, as the right-hand side shows, this amounts
to calculate r 4Y;, in spite of having said above that this may amount to overdi erencing; this
observation, however, misses the main point. We model the the seriesf Xg, and we use this model
to build a model for fY;g. That is, we calculater X, only after we modeledX;, and calculating it is
only used as a step to expresy; in terms of X;. The problem with overdi erencing is that it tries
to build a model for r X instead of building it for X;.

5.5 Logarithmic and other transformations

If the polynomial P(x) in equation (5.1) has a zero with j j < 1 then, as we pointed out above,
this zero will cause trouble, and di erencing or seasonal derencing will not help. In this case, one

might consider a logarithmic transformation, that is, instead of f Y;g one might one to study the
time seriesflogY;g.°*, assumingY; > 0 (if not, one might take log(cY; + d) with an appropriate

constants ¢ and d. There may be other reasons to consider a logarithmic transfrmation. For

example, in stock prices, one is usually concerned with peentage gains, i.e., multiplicative gains,
and taking logarithms converts these to additive gains, wheh are technically easier to handle. Other
transformations one may consider is to take

Y, 1
thit

54We use logx to denote the natural logarithm of ~ x. This is common mathematical practice, and In  x is rarely used
in mathematical writing.
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for some xed > 0. if Y; > 0. Incidentally, note that

. X 1
lim =log X
&0

for all x> 0, as one can easily verify by I'Hospital's rule.

5.6 Convolutions and linear lters

Given two functions f and g on R, their convolution f g is de ned as
z 1 z 1
f(x t)g(t)dt= . f()alx )d

def

(5.5) (f 9(x) =

provided the integral on the right exists; the second equatbn is obtained by the substitution =
x  t555 For two two-way in nite sequences (i.e., functions onz) we de ne>®

def

b3
(5.6) (f on) = f(n Kk = f(g(n 1):

k=1 I=1

These equations show that convolution is a commutative opeation, thatis, f g= g f both for
functions and for sequences.

If one thinks of two-way in nite sequences as functions on Z, then one can think of a (one-way) in nite
sequence as a functionf on Z*, the set of positive integers. Then a subsequenceg of f can be thought of
as the function f h, whereh:Z* ! Z" is a strictly increasing function.

In time series analysis, a convolution is usually called a tiear lter. If fY;gis a time series, then
one can take a (usually xed) number sequencd h;g, and de ne the ltered time series f X;g as the
convolution

(57) Xt = Yt khk:
k=1

If one wants to analyze the time seriesf Y;g in real time, then one also needs to assume that the
Iter has no future dependence, that is, hy =0 for k < 0.

5.6.1 Moving average

Given a positive integern, the following Iter is called a moving average Iter of length n: in equation

(5.7) put
he = 1=n if0 t<n;
‘ 0 otherwise
For example, stock analysts often talk about moving average of a stock price, such as, say, a 50 day
moving average, to even out uctuations.

55We have d = dt, but when we perform the substitution, we also have to interchange t he limits of the integral,
canceling the negative sign.

56 Sometimes it helps clear conceptual understanding to note that two-way  in nite sequences are just functions on
Z.
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5.7 Problems

Problem 5.1. Let X be a real-valued random variable such that EK ?) exists and P(X 6 0) > 0.
Show that E(X 2) 6 0.

Problem 5.2. Given two real-valued random variablesX and Y, show that
E(XY)? E(X2)E(Y?):
(This inequality is Schwarz's inequality for random variables).

Problem 5.3. Given two real-valued random variablesX and Y with nonzero variances, show that
1 Corr(X;Y) 1L

The assumption that the variances of X and Y dier from zero is necessary in order that their
correlation be de ned.

6 Estimating time series parameters

Given a stationary time seriesf Y;g, assume made observationgy at times k with 1k n. Itis
natural to estimate E(;), which, under the assumption of stationarity, is independent of t, as

1 X
E(Y) y= PR
k=1

Such a procedure is not justi ed without further assumptions. Namely, we only made a single
observation at time t, and estimating Y; by observations made at di erent times does not necessarily
give the correct result.

6.1 Convergence of random variables

Let X, :1 n< 1li be a sequence of random variables, and leX be a random variable. We say
that X, converges toX in the squared mean if

. . 2 _ .
nI!|1m E jX Xpj© =0:

The absolute value is not needed ifX and X, are real valued. There are many other ways for a
sequence of random variables to converge; for example, weysthat X, converges toX in the mean
if

lim E jX Xnj =0;

n!l

however, convergence in the squared mean is technically easto handle.

6.2 Ergodicity

A stationary time series f Y;g is called meanergodic when the above procedure is justi ed, that is,

when
o1 Xt
E(\\y) = rI1|Irln o Yt m:
m=0
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Here, usually convergence in the squared mean is considereith which case the process is called
autocovariance ergodic in the squared meaf?|
A stationary time series f Y;g is called autocovariance ergodic when

Xt
Cov(Yi; Yt k) = rI1||r1n - E Yim EMm) Yemk EMmk forall k2 Z:
' m=0
Here, usually convergence in the squared mean is considereith which case the process is called
mean ergodic or autocovariance ergodic in the squared me&.

7 The innovations algorithm

Let k 2 Z, and for each integerr  k let Y, be a random variable; for the sake of simplicity, assume
Y, is real valued, but these ideas can easily be modi ed so as topply to complex-valued random
variables. Assume, further, that E(Y,?) < 1 for eachn k. Let

X 1
(7.1) 9 = nt Yo'
n=k

for some coe cients ;. We say that ¥, is the best linear estimate forY; interms of hY,, :k n<ti
if for all choices of the coe cients , for n with k n<t, with

X 1

(7.2) Yi = nYn;
n=k

the expectation

(7.3) E (Y Y?

is minimal if , = . We have/ 1

Lemma 7.1. Assume?t is the best linear estimate forY; in terms of hy,, : k n<ti. Then we
have
E(; Y)Yn =0

forall mwithk m«<t.

61The term ergodic was introduced by Ludwig Boltzmann. Boltzman deduced th e distribution of the speeds of
molecules in a gas in equilibrium by studying the behavior of a small p art of the gas through time. To make such
a deduction possible, he had to assume that the time series associated with th e behavior of a small part of the gas
re ects the behavior of the whole volume of gas.

62 since f Yy g is assumed to be stationary here, the t on the right-hand side in the last two equations can be replaced
with an arbitrary t% One does not do this in a practical calculation, however, since the tim e series may only be
approximately stationary in practice, so out of prudence one would use the same t on both sides of this equation.

71 The geometric content of the lemma is that the shortest distance to a line  or plane from an outside point is found
by dropping a perpendicular on it. The quantity E( XY ) is an inner product on the space of real-valued random
variables on a given probability space, and this inner product creates a linear geometry. See Subsection 17.1] for a
discussion of inner product spaces.
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Proof. Let Y; be given by equation [(7.2). We have

X1 K1x1
EM: W? =E Y? 2 nYiYn + Yi nYa
n=k I=k n=k
X1 XKix1
=E Y? 2 nE(V1Yn)+ 10 ECYIYn):
n=k I=k n=k

To nd the minimum of this, we take partial derivatives @=@, (k m<t):

@ X1ix1
— E(Mt Y1) = 2E(YiYm)+ (m nt 1 mn)EYIYR)
m I=k n=k
K1
= 2EMYm)+2 n E(Ym Yn)
n=k

The minimum is assumed when the right-hand side is zero, i.eexactly when , for nwith k n<t
is such that
EM Y)Ym =0

for all m with k m <t. This completes the proo O

It follows from the above proof that for ¥, to be the best linear estimate the coe cients on the
right-hand side of (7.1) must satisfy the equations

K 1
(7.4) nt E(YmYn) =E(YiYm) (kK m<t):

n=k

7.1 Expressing the time series in terms of innovations

With the notation introduced above, write
& =Y Qt

fort k; to simplify the notation, we will assume k = 0 from now on. We call g the innovation at
time t. Observe that we have

X 1
(7.5) & =Y nt Yn (t 0

n=0

according to equation (7.1) with k = 0. It is easy in principle to solve these equations forY; in terms
ofe, for0O n t;thatis, we have

xt xt
(7.6) Yy = e | = t 1t € (t 0
1=0 1=0

721t is clear that the expression in (7.3) is a positive semide nite form in the variables n, so it must have a
minimum. So the equations we found describe the place of minimum.
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with appropriate coe cients. It is also easy to see that fort 0 in these equations we have
(7.7) ot = 1:

Further, note that Lemma 7.1 implies that

(7.8) E(ge,)=0 if 0 n<t

The innovations algorithm expresses the coe cients here interms of the expectations E(Y,Yy,). For
the sake of simplicity, we assume that for eache; 6 0 with positive probability for all t  O; this
implies that E(e2) > 0 { see Problem 5.17-3

Multiplying equation (7.6) by e, (0 n t) and taking expectations, and using [(7.8), we obtain

(7.9) E(Yien)= ¢ nt E(€2) (t O):

To evaluate the coe cients ; my, we need to evaluate Ef;e,) and E(e2). This is fairly simple
to do. Multiplying equation (7.6) by itself and taking expectations and taking (7.7) and (7.8) into
account, we obtain that

1

X
(7.10) E(Y?) = E( ) + 2 1 E(eD):

=0

Finally, replacingt by m (0 m t) in equation (7.6), multiplying by Y;, and taking expectations,
using equation (7.7) we obtain

xn xn 5
E(YtYm) = m Im E(Ytel) = m Im t It E(el ): (0 m t):
1=0 1=0

Taking n =t m and omitting the middle member, this gives

Xn
(7.11) EC(Y:Y; n)= tn okt on ot o1t E(€): 0 n t):
1=0

Assuming the mixed moments E(Y;Y,) are known for all t;n 0, equations (7.7), [(7.10),
and (7.11) can be used to evaluate the coecients | for 0 | t recursively. Equation (7.11)
(with some help from equation {7.7)) is used to calculate ., and equation (7.11) is used to cal-
culate E(e?). To be more speci ¢, assume that 040 have been calculated for all pairs §%t% such
that0 t°<t and0 n® tPort®=tandn<n® t;also assume that E€:) has been calculated
for all t°with 0 t°<t. Then we can calculate . from the values calculated earlier, and in case
n =0 we can go on to calculate E€?).

That is, we do the calculations in the following order: .0, E(€3), 1.1, o1, E(€2), 22, 1.2,

02, E(63), 33, 23, 13, 03, E(€3), 44, :::. See Problenm 7.1 for details.
There is a cautionary note about the above formulas for calculating the coe cients ¢ . They should be

taken only as a theoretical description as to how to calculat e these coe cients, and the formulas should not

73 The algorithm that follows is essentially an adaptation of the Gr  am{Schmidt orthogonalization, discussed in
Subsubsection[17.2.1. The additional complication here is that we d 0 not normalize e here, i.e., we do not make the
norm 1 in this case; that is, at present we usually do not have E( etz) = 1. As for the requirement that E( etz) > 0,
it helps us to write the formulas in a simple way, but it is not essenti al. Gram{Schmidt orthogonalization has no
di culty with coping with occasional zero vectors { it simple skips them; see Subsection 17.2.1.
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be used as a basis for writing numerical algorithms to calculate these coe cients. The problem is that the
Gram{Schmidt orthogonalization, on which the above approac h to calculate the coe cients , is based, is
numerically unstable. That is, small numerical errors comm itted initially (by rounding in nite decimals to a
value representable on a computer) cause large errors laterin the calculation. There are numerical methods
avoiding these problem, and so there is no real impediment to calculate the coe cients ; accurately. This
should be taken as a general comment for programming theoreical algorithms on computers: numerical
analysis is a separate art, and theoretically correct algorithms may have to be modi ed when writing a
computer implementation.

The recursive equations describing the innovations algothm are discussed in [5, Proposition
5.2.2 on p. 165].

7.2 Zero means

In the discussion above, we did not assume that EX;) = 0, since there was no mathematical need
to do so. When discussing time series, if it is possible to eishate the means ofY;, it is natural
to replace Y with Y; E(Y;) as the rst step in analyzing the time series. We will now make the
assumption that

E(Y;)=0 forall t2Zz:

Then an immediate consequence of equation (7.5) is that
E(e)=0 forall t2Z:

In this case, one usually calls the innovatione; at time as the error (committed by the mechanism
producing the time series) at timet. One often also assumes that the variableg; are independent
normal variables for all t. Often there may be no rational reason to make this assumptin other
than the resulting ease of mathematical handling of the protem.

7.3 The partial autocorrelation function

Let fY;g be a time series and letX; = Y; E(Y;). Foragivent andk 0, let X+« be the best
linear estimate of X+« in terms of X; with t<i<t + k and let X; be the best linear estimate of
Xt in terms of the sameX; with t<i<t + k.

The de nition of Xi.« is easy to understand in view of Lemma [7.1, and the innovations algorithm
described in Subsection 7.1, and one can think ofX . « as the value of X+ x predicted in terms of X; with
t<i<t + k. The de nition of X, is somewhat less natural, since sinceX; is known before one nds out
the values of X; with t <i <t + k. Nevertheless, the mathematics for this postdiction, i.e., \backward
prediction," is the same, one merely needs to replacet by N t in the equations (for an arbitrarily chosen
integer N { which can be 0 if one does not mind the fact that t may be a negative integer)E

The partial autocorrelation function of the time series f Y;g is de ned as
gt +k = Corr( %t %t;xﬁk %H k)

If Y; is a stationary time series, ;+x depends only onk, and not on t, and one may write (k)
instead of ;.. Intuitively, i +k indicates the degree of relatedness betweevk and Y. with
the intervening values ofY; with t i t+ k removed.

74Replacing t by t (orby N t)is called time reversal, discussed also below in Section[10.
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7.4 Moving average models
Given a stationary processf Y;g we write
(n) =Cov(Y; Y n);

the de nition of stationarity given in Subsection 5.1 impli es that the right-hand side here does not
depend ont. It is also easy to see that (n) = ( n). One also usually writes that

(n) =Corr( Yy; Yt n);

Note that (n) is de ned unless (0) =0, and the case (0) =0 is of no interest.”
For t 2 Z let e be uncorrelated random variables with zero meané$ Let g be a positive integer.
A moving average procesd Y;g is a process of ordenq is a process satisfying the equations

xa
(7.12) Yi = & n€ n

n=1
with some coecients , fornwith1l n g Hereg is called the error in the process at timet.
If fY;gis a stationary process such that Ef;) = 0, then the innovation algorithm can be used to
determine the coe cients . Writing

xa
(x)=1 nX";
n=1
we can write
Yt = (B)et:
Corollary 4.2 requires that for all zeros of (x) we havej j 1. Indeed, the random nature of

the errors e will ensure that all basic of the solutions of the homogeneosi equation (B)e; will be
represented in the solutions of the inhomogeneous equationB)e; = Y; (considering this to be an
equation of e for g initial values of Y;, where g is the degree of (x). The solution corresponding to
j j < 1would imply that lim¢; € = 1 . This would also imply that lim¢; Yy = 1 , and this
would contradict that stationarity of ;.

7.5 Problem
Problem 7.1. Explain how equations (7.7), (7.9), (7.10), and [(7.11) can le used to evaluate the
moments E(€?) and the coe cients  for 0 | t. assuming that the mixed momentsE (Y;Yy)

are known for allt;n 0.

8 Autoregressive processes and the Yule{Walker equations

Assume E(Y;) = 0 for all t. The processf Y;g is said to be autoregressive of ordep if the following
conditions are satis ed. The

(8.1) Y = kYr K+ & (t22)
k=1

75 (0)=0,i.e., Var( Yt)=0 means that Y; is almost surely constant (see Problem 5.1. Since E( Y;) does not depend
on t for stationary series, this means that the whole series f Y;g almost surely assumes the same value.

76 One often assumes that the variables e; are independent normal variables; their variances do not have to be th e
same.
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holds, whereeg; is the error at time t; it is assumed that the random variablese; are uncorrelated,
and E(e) =0 and (&)< 1 for all t; the variable e is unobservable. Further, we assume that for
all t°< t, the variable Y;o is uncorrelated with e.

Writing
xP
(8.2) (x)=1 XK
k=1
and using the backshift operator, we have
(B)Yt = 6.

Assuming f Y;g is a stationary process, given an arbitrary integer (positve, negative, or zero), the

covariance ¢ k = Cov(Y:;Y: k) does not depend onk, so we can write (k) def tt+k. This
assumption allows us to derive a system of equations for theoe cients ¢ in equation (8.1). Hence,
for k > 0 we have

xP
(k) = Cov( Yy;Y; ) =Cov iYo ite;Yr k
i=1
P x .
= iCov(Y; i:Y: k) +Cov(e:Y )= i (ki)
k=1 i=1

the last equation holds since Cové;Y; ) = 0 for k > 0 (the assumptionk > 0 is essential here,
since the errore at time t certainly in uences the value of Y;). That is

X
(8.3) (=i D

i=1

for any integer k > 0. Noting that with ; « def Corr( Yi; Yy k), (k)= ¢t « does not depend on
t, and (k) = (k)= (0), and can the above equation with (0). Taking these equations only fork
with 1 k p, we obtain.

X
(8.4) =ik B @ k p);

i=1

These equations are the equivalent equations (8.3) are calll the Yule{Walker equations.

While the derivation shows that these equations should alsde satis ed for k > p, but then we
may have more equations than unknowns, and the equations malge contradictory. For the optimal
choice ofp, taking a p°> p, in the analogous equations

(0]

X
(k)= PkoDoo@ kP

i=1

9should not be signi cantly di erentfrom ; fork with1 k pand ?should not be signi cantly
di erent from 0.
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8.1 Best linear prediction for stationary processes

Given a stationary time seriesfY;g, we want to predict Y; in terms of the previous p observa-
tions fy; nQ1 n p, and write

>4) N
QI 1(1) = nYt ns;

n=1

the symbol on the left-hand side denotes the one-step aheaddiction of Y; made at time t 181
That is, writing
)@ N
Y 1(1) = nYt n;

n=1

Y. 1(t) is the value obtained for the random variableY; 1(1) by substituting the observed values of
fY: n01 n p in this equation. The prediction error is the random variable Y; \2 1(1). Because
of the assumption that E(Y;) = 0 for all t made above, we can see that the mean square prediction

error is
!
xX° N 2
(85) Var YI Yt 1(1) = E Yt HYI n

n=1

This will be minimum when equations (7.4) are satis ed with *; , replacing . andt p replacing
k. Noting that fY;g is stationary with mean 0, we have E(Y; iY; n) =CovE(Y: iYt n)= (n i),
and similarly, E(Y;Y; ;)= (i), this gives the equations

(8.6) n (iom= (@) @ i p;:

These equations are identical to the Yule{Walker equations(8.3) given above.

8.2 Solvability of the Yule{Walker equations
We have the following

Theorem 8.1. Let fY;g be a stationary process such that (0) 6 0 and limy; (n) =0. Then,

d

. . f . .
for every p 1, the covariance matrix = (k is nonsingular.

i) 1 ik p

The covariance matrix , is the matrix of the form of the Yule{Walker equations given in (8.3));
the nonsingularity of this matrix means that those equations or equations [(8.3) have a unique
solution. For the proof, we need the following

Lemma 8.1. Letm 1,andX; fori with1l i m be random variables such that the covariance
matrix C = Cov(Xi;Xj) , iom is sin%llar. Then there is anr with 0 r < m and there are
numbersay, az, :::, & such thatX . = [_; aX; with probability 1.

Further, if X?for i with 1 i m ispanother collection of random variables with the same
covariance matrix C, then we haveX r°+1 = ir:1 aiXi0 with the samer and the same coe cients ga;

ford i r.

819, 1(1) is more or less standard notation for the one-step ahead prediction made at time t 1. In equation (7.1)
used a di erent notation, since the present notation would have been too cu mbersome in those considerations.
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The lemma can be found in/[5, Proposition 5.1.1 on p. 160].

Proof. As C is singular, there is anr with 0 r <m such that the (r + 1)st row of C is a linear
combination of its earlier columns; that is

X
Cov(X;+1;Xj) = a Cov(Xi; Xj) forall j withl | m
i=1
Hence
X X
0=Cov(Xr+1;Xj) a Cov(Xi; Xj)=Cov X4 aXi; Xj @ j m):

i=1 i=1

Any linear combination of the right-hand sides of these equtions also gives 0. Thus

X X
Cov Xi41 aXi; X1 aX; =0:
i=1 i=1

Therefore, the existence of arr as claimed follows. As for the last sentence of the lemma, itollows

since the covariance matrixC by itself allowed us to nd r and the coe cients a;. O
For the proof, we need some background about matrices. An ohtogonalr r matrix is such
that Q"Q = I, wherel isther r identity matrix. This means that QT is the left inverse of Q. If
a square matrix has a left inverse, then it also has the right mverse, and it is the same as the left
inverse. Hence we also hav@QT = | for an orthogonal matrix. The 12 norm of an r-dimensional
column vector x = (X1;X2;:::; X )" is de ned as
M
X
kxk = t X2

i=1

This norm is sometimes also denoted akxk, to indicate that we are talking about 12 norms, but
we will refrain from this, since the only vector norm we will use is thel? norm. An r r matrix A
has a norm induced by the given vector norm:

kAk = maxfk Axk : kxk=1g:
We have kxk? = xTx. If Q is an orthogonal matrix, we have
(8.7) kQxk? = (Qx)T(Qx) = x"QTOx = x"T(QTQ)x = x"Ix = x"x = kxk?:

This shows that an orthogonal matrix preserves vector normsfor this reason, it is also an isometry
(i.e., it preserves distances, i.e., the metric). For more bout orthogonal matrices, see see [23%38,

p. 175-17682

Proof of Theorem 8.1. Assume there is ap 1 such that , is singular, and let p be the smallest
such integer. Thenp > 1 since ; isthe 1 1 matrix with (0) as its only entry, and (0) 6 O by

82 The quoted pages are interesting for statistics also in other respects, since x38 discusses the numerical handling
of the least squares approximation.
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our assumption. Letk p be an integer. Applying the lemmam = p for the random variables
Ye p+i With1l i k,we ndanr withl r<p andnumbersa forl i r such that

X
Y prr+1 = &Yk prr:
i=1

Note that r does not depend ork in view of the last sentence of the lemma. The only important mint

here is that Yx ,.,+1 can be expressed as a linear combination of; for j with1 j Kk p+r.

Applying this result for each term on the right-hand side, we obtain that Yy p+r+1 iS expressible as

a linear combination of Y; forl j k 1 p+raslongask 1 p. Repeating this argument

k ptimes, we obtain that Y¢ p+r+1 iS expressible as as a linear combination of; with 1 j .
Taking n=k p+ r+1, we obtain

X 1
(8.8) Y, = a"y
i=1

(n
i

for every n > r , where the coe cients a ) may depend onn. Multiplying this equation by Y, and

taking expectations, we obtain that

Xl
©@= a" (n j):
i=1

Making n!1 ,wehave (n j)! O by our assumptions, and so, writinga(™ = (al™;@";:::;
a™)T, we must have

(8.9) lim kaMk=+1
n!l
for the last equation to hold.
Writing Y i for the column vector (Ye+1 ; Yis2 ;220 Yo+ )" €quation (8.8) can be written in matrix
form as
Y, = YTam:

Multiplying by the column vector Y] on the left and taking expectations, we obtain that
(8.10) n1n o2t on ) = Al

The matrix  is a symmetric positive semi-de nite, and since it is nonsimgular by the minimality
assumption of p (p was assumed to be the smallest integer such that, is singular, andr < p),
it follows that | is positive de nite. All eigenvalues of a positive de nite symmetric matrix are
positive real numbers. By the Principal Axis Theorem of linear algebra, there is an orthogonalr r
matrix Q such that

r = QT DQ;
where D is a diagonal matrix with the eigenvalues 1, »,:::,  of , being its diagonal entries;
we may assume that the entries occur in increasing order; thais, D = ( )1 ij r With0 < ;<

2<:::< ,;seee.g.[30, Theorem 7.4.4' on p. 333].
Hence, for the norm of the right-hand side of [(8.10) we have

k -aMk = kQ"DQaWk = kbQamk  1kQa™k= ka"k:
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The second and third equalities here hold sinceQ” and Q are both orthogonal matrices, and so
they preserve norms (cf. (AR: preserve norms), and the inecality holds since for a column vector

X = (Xg;X2;:::%)T we haveDx = ( 1X1; 2X2;:::; X/)T. Since the left-hand side of [(8.10)
tends to zero asn ! 1, we must have limy; ka™k = 0. This contradicts (8.9), completing the
proof. O

8.3 Solving the Yule{Walker equations

The matrix |, has a special form, and so in solving equations (8.3) there armethods faster than
Gaussian elimination. The matrix , is a Toeplitz matrix, that is, a square matrix in which all
elements is a diagonal parallel to the main diagonal are theane. That, is a square matrix (; ) is
a Toeplitz matrix if tj = tioqo wheneveri j =i% jO Systems of linear equations whose matrix is
a Toeplitz matrix can be solved by variants of the Levinson aforithm { see [41]

8.4 Location of zeros of the autoregressive model polynomia Is

AssumefY;g is a stationary process of ordermp as described at the beginning of Sectioh 8. Then,
using the backshift operatorB for the covariances to meanB (k) = (k 1), equation (8.3) can be
described with the aid of the polynomial (x) given in (8.2) as

(B) (k)=0;

this equation is true for all k > 0, even though in stating the Yule-Walker equations, we resticted k
totherangel k p. Considering this as a homogeneous recurrence equation fo¢k), its solutions
are linear combinations of the basic solutions given in Corltary 4.2. In an example occurring in
practice, the solution is represented by a linear combinathn in which the coe cient of any basic
solution is nonzero, since there need to be very special indl conditions to ensure that such a
coe cient is zero. If (x) has a zero with j j 1, then this ensures that limy; « 80. This is
an undesirable behavior in a stationary time series, therafre, in autoregressive models one usually
requires thatj j> 1 for all zeros of (x).

9 Mixed autoregressive moving average processes
9.1 ARMA models

Let fY;g be a stationary time series such that E{f;) =0 for all t 2 Z. The processf Y;g is called a
mixed autoregressive moving average process of ordegp;() if

P xd
(9.1) Y = kYe kt+ & ke ki
k=1 k=1

where g is the error at time t; it is assumed that the random variablese; are uncorrelated, and
E(e)=0and (&)< 1 forall t. The error g is also uncorrelated with Y;o with t®<t. Note that
the variable e is unobservable. Such a process is also called an ARMB(Q) process. Writing

X xd
(9.2) (x)=1 XX oand  (x)=1 KxK;
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we have
(9.3) (B)Yt = (B)e:

This model is reducible if the greatest common divisor (x) of (x) and (x) is not constant (i.e.,
if it has degree greater than or equal to 1), since in that caseve can divide both sides by (x). In
any case, the model can also be written as

_ (B) .
(94) Yt = met,
or (B)

(B)Yt = €.

Replacing the fractions by their Taylor series at 0, these rpresent a pure moving average process
and a pure autoregressive process of in nite order, respeisely. For the convergence of these series
certain assumptions are needed. We do not quite need to assuathat the processf Y; g is stationary.
Assuming that the expectations of the squares off; and e are bounded, i.e., that there is a number
M such that E(Y,?) <M and E(e?) <M ,*! and the power series

f(x)= ax;

has radius of convergence greater than one, the serié¢B)Y; and f (B)e; converge in the mean (i.e.,
in expectation); for example, for Y; this means that there is a random variableY; such that

X
lim E Yt akYt k =0:
n'l
k=0
This follows from known results of integration theory, somevhat beyond the scope of this course.

Instead of convergence in the mean, one often prefers congance in the square mean for technical
reasons:
X 2
im E Y; ax Yy k =0;
n'l
k=0
the absolute value is unnecessary for real-valued random viables.
If one requires that the polynomials (x) and (x) have no zeros in the closed unit diskz 2 C:
jzj  1g of the complex placeC, the radius of convergence of the Taylor series of both (x)= (x)
and (x)= (x) will be greater than 1; see Section 3.

9.2 Coecients in the pure MA representation
Writing  (x) = (x)= (x), equation (9.4) can be written as

(9.5) Yi= (B)e;
where (x) can be represented as an in nite series
hs
(9.6) (x) = nx":
n=0

9.1t follows from simple inequalities involving expectations that i t is enough for this that the both the mean and
the variance of Y; and e are bounded.
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Assuming the zeros of (x) are outside the unit circle, this series has radius of conugence> 1.
The coe cient , can easily be determined from the coe cients in equations [(92). Indeed, writing
0= o= 2land ,=0for n< 0, the equation (x) (x)= (x) can be written as

X X . xd
n k k X' = nX":
n=0 k=0 n=0

Equating the coe cients of x" gives equations for the coe cients . Thatis, noting that o= 1,
we have

9.7) n= nt n k k (n 0);
where we take , =0 for n>q 92

9.3 Calculating the MA coe cients in ARMA models

Given a stationary time seriesf Y;g with zero means and positive integersp, g, we would like to
build an ARMA( p; @ model described in equation [(9.1). Assume the coe cients ¢ for k with
1 k phave already been determined. The question is how to determe the coe cients ; for k
with1 k @. To do this, we rst need to build a pure MA model, using the innovation algorithm
described in Subsections 7/1 to calculate the coe cients ina pure MA model (9.5), with the in nite
series in equation[(9.6) truncated to a nite sum:

xXn
Yy = n€ n
1=0

for some integerm, where o = 1; cf. equation (7.6); at present, the coe cients | do not depend
on t, since the time seriesf Y;g is stationary. Choosing larger values ofm will give more accurate

results; in any case, we need to make sure thaln  max(p;g). Then, using equations (9.7), the
coecients , fornwithO n qcanbe determined®3

9.4 The primacy of autoregressive models

Moving average models are a kind of mathematical artifact, ad they do not re ect natural forces
producing the time series. An error committed at an earlier ime does not directly govern the present
behavior of the time seriesf Y;g. Any e ect on the present value of Y; is brought about by the earlier
errors is mediated through the values ofY;o for t°<t . This means that autoregresssive models give
a natural description of the time series via an equation of tlke form

(9.8) 1 (B)Yi= o
where the ; is the error committed at the present time, while the subscrpt of indicates that

1 (X)=1 KX
k=1

92 These equations just express in equations what happens when we perform th e usual long division (x)= (x) with
the modi cation that the powers of x are arranged in reverse order, i.e., in the order 1, x, x2, :::, and the process
goes on inde nitely.

93We have ¢ = 1 according to these equations, since o =0; ¢ does not occur directly in equation (9/1).
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is usually an in nite series.>* If the time seriesf Y, g is stationary, it is natural to think about B as
an operator of norm 195 and so, for the convergence of the series on the left of (9.8pne wants to
make sure that the radius of convergence of the series; (x) is greater than 1.

In numerical calculations, one truncates ; (x) to a polynomial

xn
m(x)=1 kxk;
k=1

and considers the truncated model
(9.9) m(B)Yt = &;

Truncation causes the errorse; on the right-hand side to be di erent from ¢, but if we choosem to
be large, e will be a good approximation to ;. AssumingY; has zero means, we have

Var(e)=E  m(B)Y, ° ;

where, for stationary fY;g, the right-hand side does not depend ont. So the variance ofe; is
independent oft. Dividing equation (9.9) by ,,(B), we obtain

1
m(B)

Here 1= (x) can be written as a power series. In view of Subsection 8.4f seems reasonable to
assume that o, (x) has no zeros with j j 1, so the Taylor series for £ ., (x) has radius of
convergence> 1. Hence the series for 2 , (B) is convergent when applied toe;.°€

When building an ARMA model, 1= ,(x) in equation (9.10) is not calculated from an AR
model; and an approximation to 1= ., (x) is obtained by the innovation algorithm directly from the
autocovariances (k) of the stationary time series f Y;g via the innovations algorithm of Section[7.
In any case, E (X) has no zeros anywhere, it being a reciprocal. Further, oneakes an AR model

(9.10) Y = €&

(B)Y: = &;

where (x) is a further truncation of |, (x). Then one replaces the model (9.10) with the equivalent
model
(B)

m(B)

Finally, one takes a polynomial approximation (x) of the in nite series (x)= m(X), and the sought-
after ARMA model will be

(B)Y: = &:

(B)Yi = (B)e:
In fact, we can take (x) to be a truncation to a polynomial of the in nite power series (X)= m (X).

94We mentioned above in Subsection 5.2]that such equations are natural ly satis ed by time series produced by
simple state-space models described in Section 23]
95Norms are systematically discussed only in Subsection 17.1 below, since init ially we want to avoid too much

abstract discussion, but at present, by the norm of a random variable X we mean kX k ! E(jX j? 1=2

norm 1 means that kB (Y:)k = kYtk in view of stationarity.
96 As we pointed out above, E( €?) does not depend on t, so kB (e;)k = ketk.

, and B having
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9.4.1 Why the MA polynomial in an ARMA model is expected to have no zeros in
the closed unit disk

As (x) is usually assumed to have no zeros with j j 1 in view of Subsection 8.4, neither will
have (x)= m(X) have such zeros (also recall that £ ,,(x) is represented by a power series with
radius of convergence greater than 1). If (x) is a good enough approximation of £ , (x), then (x)
will have no zeros in the closed unit disk either.

9.5 Prediction with ARMA models

Assume we have observationy; of Y; for 0 t < n, and that these observations satisfy equation
(9.1), or equation (9.3), which is just a short form of the former equation, with the appropriate

changes (such as replacingr; by y;). We want to predict Y, at time n 1; we will denote the
prediction with ¥, (1). To this end we write & for the estimated error at time t with 1 <t<n .

These error estimates are obtained by solving the equation

(B)& = (Bt p t<n ;

with initial conditions e, = 0 for 1 <t < p . Note that this is an inhomogeneous recurrence
equation for &, since the right-hand side is know. If we change the initial onditions to the actual
values of the errore for t < p then the change in the solution for e, will be a solution of the
homogeneous equation (i.e., the above equation with 0 righhand side). If we require that all zeros
of (x) are outside the unit circle, then every solution of the homa@eneous equation will tend to 0 as
t!1 , according to Corollary 4.2, so, assumingn is large, taking O as initial condition will ensure
that the estimates & will be close to the actual value ofe; forn q t<n. We put

xP xd
P 1(2) = kYn k k€ !

k=1 k=1

This is is just equation (9.1), with n replacing t, ¥, 1(1) replacing Y; on the left-hand side, ¥ «
replacingV; ¢ fork withl k p, &, « replacinge; ¢ fork with1l k @, and O replacinge; on
the right-hand side.

9.6 The importance of ARMA models

As we saw in Subsection 9.1, and ARMA model can also be writtems a pure autoregressive model,
or a pure moving average model, each with possibly in nitelymany coe cients. The importance of
ARMA models lies in that they allow to model the time series with fewer parameters.

9.7 Integrated ARMA models

Let fY;g be a time series, and assume that using the di erence operatar = | B d times, where
d 0is an integer, we arrive at the time seried (I  B)9Y,g that is a stationary time series with 0
means. Then we can model the latter time series by an ARMAY; g model, that is we can write

(9.11) (B)I B)Y:= (B)a

according to equation {9.3), where (x) and (x) are are as in equation [(9.2). Ifp and q are the
degrees of (x) and (x), respectively, such an equation is called an integrated awregressive moving
average model of order |¢; d; g), or, shortly, and ARIMA( p; d; g model.
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10 Time reversal

When studying a time series
fYig= hY; :t 2 Zi;

is it sometime useful to also look at the time series obtainedby time reversal, i.e., the time series in
which t is replaced by t:
fy tg = hy; :t2 Zi:

There may be various mathematical justi cation for studyin g the time reversed series. For example,
if the time series f Y;g is stationary, the time reversed seriesfY (g is also stationary, with the
same covariance coe cients. Hence, when constructing an aoregressive model for the time series
fYig, the same autoregressive model also works for the time reveed seriesfY (g in view of the
Yule{Walker equations (equations (8.3) or (8.4)). Since ARMA models can naturally related to
autoregressive models (cf. equation (9/4), this observatin also extends to ARMA models.

Time reversal is also important in physics when studying time-reversal symmetric equations.
Yet, in a sense one feels uneasy about time reversal, sinceeohas never seen a broken co ee cup
spontaneously reassemble its pieces into a whole co ee cupuch ink has been spilled on physico-
philosophical explanations why this does not happen in spi of the time-reversal symmetry of the
equations of physics, but none of these explanations seemully convincing.

Similarly, one may feel uneasy about time reversal in time sdes, since it is natural to attribute
a random component to future events; it is much less natural b attribute randomness to past
events. In any case, if the mathematical theory works, why no make use of it. The doubt however
persists whether a given time series, especially one obtad by di erencing, can really be described
as stationary.

10.1 Estimating the residuals of an ARMA model
Assuming that the time seriesf Y;g has the ARMA model

(10.1) B)Yt = (B)&

(cf. (9.3), the same ARMA model
(B)Y += (B)e ¢

for the reversed time series can also be written as
(10.2) (E)YY: = (B)e;

whereE is the forward shift operator (see Subsection 4/1). Assume avhave observationsy; of Y; for
0 t n, and that these observations satisfy equation[(10.]1) for aPARMA( p; g model. We have
described in Subsection 9.5, given initial values of the eors e, usually called residuals in the time
series literature, fort with 0 t<p, we can calculate the residuals fot with p t n. Similarly,
if the values of g for t with n  p<t n are given, using equation (10.2) we can calculate, for
twithO t n p. As we also pointed out in Subsection 9.5, if the zeros of(x) are outside the
unit circle (as required for ARMA models), then errors commited in the initial values for e die out
ast increases.

This motivates the following procedure to determine the reguals (see [4, Section 7.1.5, pp. 233{
235]). For a start, take ., = 0 for t with 0 t < p and, using equation (10.1), calculateep; for
t with p t n. Next use the initial values é., = 4.1 for t with n p <t n with equation
equation (10.2) to determinee&., for t with O t n p. To go forward, use the initial values
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8.3 =&, for t with 0 t<p with equation equation (10.1), to calculate &.5 for t with p t n.
Assuming that (x) has all its zeros outside the unit cirle, this procedure comerges, and we can take

& = 4'&“ ik O t n
for the values of the residuals of the observed time seriefsy; g.

10.2 Conditional and unconditional sum of squares

Given the above observed time serieky; : 0 t ni, the conditional sum of squares of the residuals
is the sum
&1
t=0
That is, this sum is conditional on the assumption that the initial values of the residuals are taken
to be 0 in the above calculation®! The unconditional sum of squares is the sum

X
(10.3) &

t=0

whereeg, can be calculated as described above. The coe cients of the wdel are usually described by
requiring that the conditional sum of squares or else the unonditional sum of squares be the least
possible. The method relying on the conditional sum of squaes is numerically more stable, but,
especially since a short time series there is not enough timfer the errors in the initial conditions to
die out,'%? a more accurate model may be constructed by using the uncontibnal sum of squares.
It also seems that using the unconditional sum of squares mébd strongly relies on the correctness
of the assumption that the time series is stationary, while tis is not the case for the conditional
sum of squares method.

10.3 The likelihood function of an ARMA model

The goal is to nd the parameter vector best describing the random variable vector X. Assume we
have a single observationx; for the random variable X; for 1 i n. When one considers these

vector P. The Maximum Likelihood Estimate takes the place of maximumP = P© of the function
f (P;x) as the estimate of the parametersP of the model1°3

Given an ARMA model as in equation (10.1), the residualse; are usually assumed to be identically
random variables with an N (0; 2) distribution, i.e., with a normal distribution of mean 0 an d

101 The initial condition 0 seems reasonable in that nothing is known ab  out the residuals except that their expectation

is 0.

102 This is especially so if in the obtained model (x) has a zero that is close to the unit circle (while being outside
the unit circle).

103 The nature of most statistical models is such that the function  f (P; x) has a single place of maximum for xed x.
One would be tempted to describe such a model as unimodal , but one needs to be somewhat cautious here, since the
term \unimodal" is usually used for density functions having a single place of maximum, and we are talking about
likelihood functions, not density functions; that is, we are not look ing for the place of maximum in x given P, we are
looking for the place of maximum in P given x.
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standard distribution ¢, so the joint density of the residuals is

1 X
(10.4) ————— —cexp 2"t AN g
(2 )(n+1) =2 2 120

Often, one likes to consider the logarithm of this, called tte log likelihood function:

n+1
2

X
(10.5) 2" b A g
t=0

log(2 ) (n+1)log e:

The the residuals & are functions of the parameters, i.e., of the polynomials (x) asnd (x) (or,
rather, or their coe cients). That is, the maximum likeliho od method for an ARMA model consists
in nding the coe cients of these polynomials for which the u nconditional sum of sgares in equa-
tion (10.3) is the least possible. That is, the maximum likeihood method in this case is a form of
least squares approximation.
It is important to note that the likelihood function should n ot be considered a function of the

residualseé! and ; properly, it is a function of the model parameters, i.e., the coe cients ¢ and
| in equation (9.1) and of the available observations of the tine seriesf Y;g; the residuals & in
formulas (10.4) and (10.5) should be determined from these odel parameters. The variance .
occurring in these formulas can also be estimated from the dervations of the time seried Y; g, but
this is unimportant for the application of the maximum likel ihood method.

11 The extended autocorrelation function

An ARMA( p; g) process is described by the equation

(11.1) B)Y: = (B)e;
where
xXP xa
(x)=1 € and  (x)=1 XK
k=1 k=1
That is,
xP xa
(11.2) Y = kYt kT & K€ k;
k=1 k=1

Assuming that f ;g are independent normal variables of zero mean, and noting tht

def x X
(11.3) We = Y kYt k= & k€ Kk,
k=1 k=1
we have
(11.4) (P) = Corr( Wy; Wi+ 1) =0 whenever |>g;

since on the right-hand side ofW,.| of (11.3) with t + | replacing t, e occurs only fort®>t, and

So o S0 e is independent of Yy for t%°  t. The quantity fp) is called the extended autocorrelation
function. A similar argument using the right-hand side of (11.3) gives

(11.5) (P = Corr( Y;;W+1) =0 whenever |>g;
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11.1 The generalized Yule{Walker equations

Assuming that fY;g is stationary, using the middle member of equation (11.3), quation (11.5) can
be also written as

xP
(11.6) N = k (I k) whenever |>q;

k=1
where recall that ,, = Corr( Yio; Y04 ) for any t%m 2 Z (that is, the correlation on the right-hand
side does not depend ort%. One usually considers these equations fdrwith q+1 | g+ p. The

equations are called the generalized Yule{Walker equatios. See equation (8.4) for the Yule-Walker
equation for an autoregressive process.

11.2 Determining the order of an ARMA model

In order to build an ARMA model of the correct order, one tentatively build an ARMA( p; @) model,
and then tests if equation (11.4) is satis ed. In building the model, given a series of observations
fyig of the processf Y;g, one determines the coe cients in the ARMA( p; @ model

X xd

Y = Yokt e e«
k=1 k=1
and calculatesw; as
xP
def
(11.7) we =y T
k=1

Then one calculates the sample autocorrelation as follows.
If y; is available fort with 0 t n, then w; is available fort with p t n t. One estimates
the sample mean as
1 X
w = Wi
n+l . _ !

and then estimates the sample autocorrelation as
P
- NP Wi W) (Wi W)
n p | LW w)? ’

more commonly, the rst factor on the right-hand side is omitted, and one takes
P
AP - et W(Wis W)

! (Wi w)2

instead. The dierence is small, sincen is usually much larger than p or I. Then one tests if

fp) =0 for | > g (cf. equation (11.4). For the test, one may note that the distribution of ",(p) is
(p)

asymptotically N 0;1=(n p ) . So the hypothesis that |"* = 0 is rejected with con dence of
95% if 1:96
j/\I(D)j> pn:pl for I>q:

If the validity of equation (11.4) is not rejected by this test, then the given ARMA( p; g) is accepted
as having the correct order; otherwise, and improved model @eds to be built. See [12, Exhibit 6.4
on p. 117 and Exhibit 6.17 on p. 124] about how to plot the extewled autocorrelation function.
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12 Exponential smoothing

Various forms of exponential smoothing go back to Poisson. & time series forecasting, the two
parameter exponential smoothing discussed below is usuglattributed to C. C. Holt, and the three
parameter version to cope with seasonality, to P. R. Winters Assume we are given an observed time
seriesfxig (t 0). We want to lter out the noise to get at the core of the data. We construct a
smoothed series:

So = Xo
Ss= x¢+(1 )St 1 (t> 0);

where 0< < 1 is the smoothing factor. We will discuss how to chose .

12.1 One-step ahead forecast

The value s; can be used to forecast the time seriebx;g one step ahead
kt (1) = St

The forecasting error is
& =Xt R 1(1):

Now, if observations fort with 1t n are available, can be chosen by taking the sum of the

squared past forecasting errors

X
2

&

k=1
to be a minimum.

12.2 Trend: double exponential smoothing

Simple exponential smoothing does not well handle forecastg a time series with a trend. To deal
with this, a trend term fT;g is included:

S = X1

Ty =X1 Xo

St= Xi+(1 Y(Xe 1+ Tp 1) (t> 2);
Te= (st st )+@Q  )Te 1 (t> 2);

where 0< ; < 1 are smoothing parameters. Theh step ahead forecast will now be

kt(h) =S + hTt:

12.3 Seasonality: triple exponential smoothing

To cope with seasonality, a seasonal term; and a third smoothing parameter with 0 < < 1
is also introduced. The seasonal e ect may be additive or mulplicative. Assume a multiplicative
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seasonal e ect, and consider a seasonal perics

S1 = Xz
St= X¢+(1 (Xt 1+ Ty 1); (t 1)
Te= (st st 1)+ )Te 1 (t s
o= 4@ s (t>s)
St
At least 2s steps are needed to initializeT; and |;. One can take
1 e 1
Tk = ~ (Xi+s si)) (0 k<s):

i=k
For the initialization of | one rst calculates the quantities Ay ; with N being the number of complete
cycles present in the dataf x;g, we put

1% :
A= Xsg e (L0 N);
i=1
X Xs(j 1)+ ,
== ZSLhrl g :
=g A L J s

j=1
The h step ahead forecast at timet can be written as

Re(h)=(st+ hTe)lt sen 1 h s
For more details on exponential smoothing, see [6xx%5.2.2{5.2.8, pp. 76{80] and [19].

13 Fourier series: a brief introduction

13.1 Trigonometric series

Let f be a function on the real line. We are trying to representf with a trigonometric series

p 3
(13.1) f(x)= }ao + (ax coskx + by sinkx);
2 k=1
the coe cient 1 =2 in front of ag is used to make sure that the rst equation in (13.2) below is true
also in casek = | = 0. The series on the right-hand side is called the Fourier sees of the function
f. Since the trigonometric functions on the right-hand side ae periodic with a period that is a
multiple of 2 , for this to be possible,f must also be periodic with a period (that is a multiple)
of 2 . Assuming periodicity, it is indeed possible to represent darge class of functions as a series
described in formula (13.1); see Subsection 13.2 below.
The trigonometric functions satisfy the following relations, called orthogonality relations:

z . _
1 coskxcosixax= K T O 6 o)
2« if 1 =0;
2
(13.2) = sinkxsinlxdx = (k> 0; 1> 0);
,Z
- sinkx coslxdx =0 (k>0;1 0):

42



These equations can easily be proved from the trigonometriéormulas®?

2cosxcosy = cos(x y)+cos(x + y);
2sinxsiny =cos(x y) cosik+ y);
2sinxcosy =sin(x + y)+sin(x y);
2cosxsiny =sin(x +y) sin(x y):

(13.3)

Ignoring issues of convergence, we multiply equation (13)lby coskx or by sinkx and integrate; we
obtain
Z Z

(13.4) an = 1 f(x)cosnxdx (n 0) and b, = 1 f(x)sinnxdx (n> 0):

13.2 Dirichlet's theorem and the Dirichlet kernel

In 1829, L. Dirichlet proved that if f is 2 -periodic and bounded, and, considered only on the inter-
val[ ; ), it has nitely many discontinuities and it is put together from nitely many monotonic
pieces, then the series on the right-hand side of equation 8l1), where the coe cients are given by
equations (13.4), converges td at every point of continuity, and at a point x of discontinuity it
converges to

1 . .

2 dmfO+in O

Dirichlet's theorem is based on the eponymous formul-? writing

X
(13.5) Sn(X) = %ao + (ax coskx + by sinkx);
k=1

for the partial sum with the coe cients given by equations (1 3.4), we have

z
(13.6) sn(x)=2i f(x t)Dn(t)dt;

where D, (1), called the Dirichlet kernel, is de ned as

X sinn+ 3t
(13.7) Dn(t) 142" coskt= — 2
Sin ft

k=1

for the second equation, see Problem 13.1. beloW:3 Formula (13.6) can be proved by substituting

131t is convenient to list also the fourth among these equation, even thoug h it is an easy consequence of the third
one and the equation sin( t)=  sint.

132 That is, on the formula called Dirichlet's formula.

133 There are also some slightly di erent de nitions of the Dirichlet kern el in the literature, in that some authors
divide the expression in our de nition by 2 or perhaps 2
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the coe cients a, and b, from equations (13.4) into equation (13.5):

1 ? 1 %
Sn(X) = > f(y)dy+ = f (y)(cosky coskx + sin ky sinkx) dy
k=1
1 2 X 1 Z
=5 f 1+2 coskly x) dy=-  f(y)Dnly x)dy
(13.8) k=1
1 Z X Z X+
= — f(x t)Dn( t)dt= — f(x t)Dn(t)dt
2 x4 2 &
1 4
=5 f(x 1t)Dn(t)dt;

here, the fourth equation was obtained by the substitutiont = x vy, the fth equation uses the
relation D,( t) = Dy(t), and the sixth equation uses the fact that the integrand hasperiod 2 .

Dirichlet's formula (13.8) is the key in proving most converg ence results about Fourier series, including
Dirichlet's own. While such proofs involve technical di cul ties of various levels that puts them beyond the
scope of these notes, in the proof, rst one notes that

z
(13.9) Zi Dn(t)dt=1;

an easy consequence of the rst equation in (13.7) de ning the D irichlet kernel. The key idea is that in view
of formula (13.8) we have

z
f) sh(0)= 5~ (0 f(x 1) Da(at
A z
= + + f(x) f(x t) Dn(t)dt

the rst equation here holds in view of equation (13.9). The last two integralstendto 0O as n!1 by the
Riemann-Lebesgue lemma, which says that the limits
z b z b
I]ilm g(x)sin xdx and Ililm g(x) cos xdx
° a ) a

are zero for any function g that is integrable in the interval [ a; b]; this lemma is applied to the integral
z z z z fx 1
+ f(x t)Dna(t)dt= +
(x D (1) sn Tt

. 1
+ =
sin n 5 tdt
asn!l . The estimation of the integral
VA
f(x) f(x t) Dn(t)dt

is more technical.

13.3 Problems

Problem 13.1. Prove the second equation in formula (13.7).Hint: expand
1
D (t)sin ét

with the aid of the rst equation in (13.7), and use the fourth equation in (13.3).
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Problem 13.2. Find the Fourier series of the 2 -periodic function f (x) such that f( )=0 and
f(xX)= xwhen <x<

13.4 Complex Fourier series

Using Euler's equation (3.1) and the equation obtained fromit by replacing x by x and the relations

cos( x) =cosx and sin( x)= sinx, we obtain the equations
X 4 ix ] eix ix
(13.10) COX = ere” and sinx = 7_6:
2 2
Substituting these equations into equation (13.1), we obtén the complex form of a Fourier series
X .
(13.11) f(x)= ceeh
k=1

where

1 ib +ib
(13.12) Co= 53; G = B 2' K- and ¢ = Lzlk (k> 0):

If ax and b, are real, we havec ¢ = ¢, where the asterisk indicates complex conjugaté®* These
equations can also be written as

(13.13) a=2C; a=Cc+cCyg, b=(x c ki (k> 0):
The orthogonality relations analogous to (13.2) can be writen as
1 ikx iIX — 1 ikx ilx
> e ¢é dx = > e ™ dx
(13.14) 1 z

=5 el Dxgx = (1 <kl< 1):

Multiplying equation Ignoring the issues of convergence, nltiplying equation (13.11) by e ™ and
integrating, the orthogonality relations allow us to express the coe cients as

(13.15) Cn = Zi f(x)e ™dx (1 <n< 1):
Again, ignoring issues of convergence, and de ning th&? norm kf k of f on the interval [ ; )
by the rst equation next, we obtain from equation (13.11) that
z
1 2 + ; 2
5 kf k* = 5 jif (x)j“ dx
Z Z
1 1 R ikx ilx
=2— f(x) f(x) dx=2— Ck € ce dx
(13.16) k=1 I= 1
1 R R Z % %
"2 g €l Ddx= GGy = jod?;
k=1 I=1 k=1 k=1

134 In mathematics, the complex conjugate of the number  z is usually denoted by z, but this notation con icts with
the notation X for the (sample) mean of the random variable X in statistics. On the other hand, it is common in
mathematics to use A for the Hermitian conjugate of the matrix A, and in a way this is an analog of the complex
conjugate for matrices.
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the penultimate!®® equation on above holds because the orthogonality relation The square root
of sum on the right is called thel? norm of the sequence cgi_ ; . The equation of the left- and
right-hand sides in this formula is called Parseval's idenity, named after Marc-Antoine Parseval.
He claimed this identity without proof as self-evident in a paper dated 1799. A similar calculation
involving equation (13.1) gives Parseval's formula for thecoe cients ax and b

z

. .2 )(,
(13.17) L=t %dx= %+

k=1

ja? + jj®

One usually considers this equation only for reala, and by, in which case the absolute values can
be omitted.

In undergraduate courses, when integration is de ned preaely, usually the integral concept
introduced by Bernhard Riemann in 1854 is discussed in his Hailitationsschrift. 36 For a deeper
understanding of the L? norm a newer integral concept, introduced by Henri Lebesguén 1904 is
needed. We will not go into these issues.

13.5 Problem

Problem 13.3. Use the solution of Problem 13.2 and Parseval's formula (13.7) to prove
X 1 2

13. == -

(13.18) 5= =
n=1

a formula rst proved by Euler in 1741.137

13.6 The complex form of the Dirichlet kernel

The Dirichlet kernel de ned in equation (13.7) can also be witten as

ei(2n+l) X 1 ei(n+1) X e inx

X ikx inx
Dnt)= €7 =e o 1 o 1
(13.19) k=n

ei(n+l:2)x e i(n+1 =2)x B Sln n+ % t

=2 g k=2 ~ sinit

the second equation is obtained by using the sum formula forhte geometric progression, and the
last one follows from the second one among Euler's equatior(¢3.10). The symmetric partial sum

x
(13.20) sn(X) = e (n 0)

k= n

where the coe cients are given by equations (13.15), is giva by equation (13.8).

135 The one before the last.

13.6 Habilitation is a post-doctoral quali cation at universities in v arious countries; there is a Wikipedia article about

this. Habilitationsschrift is the name of the dissertation used for h  abilitation in German speaking universities. There

is a German Wikipedia article about this, but it is written in German

137 The problem of nding the sum of the series on the left is called the Basel pr oblem, posed by Pietro Mengoli in
1644, and solved by Euler in 1734, though he was not able to justify his arguments rigorously until 1741.

46



14 Trigonometric interpolation with equidistant nodes

14.1 Lagrange interpolation

Let N be a positive integer, letz;, z,, :::,zy be distinct complex numbers, and letwy, wy, :::,wy
also be complex numbers, these latter not necessarily disict. The task of polynomial interpolation
is to nd a polynomial P(z) of degree less thanN such that P(z) = wy for k with 1k N;
the points zx are called interpolation points or nodes It is not hard to prove that if there is such
a polynomial, then it is unique; see Problem 14.1 below. We wuli show that there is indeed a
polynomial P(z) of degree less tharN satisfying these requirements. The polynomial interpolaton
problem was rst solved by Newton. A di erent, elegant solution was later found by Lagrange. Here
we consider the latter solution.
Lagrange considers the polynomials

¥ V4 Zj

Zx Z '

lk(2) =
j=1
i6k

It is clear that Ix(z) is a polynomial of degreeN 1, since the numbers in the denominator do not

depend onz. Further, for any integer j with1 j N we have
(
1 ifj=k;
| ) =
@)= g i ek

Indeed, if z = z then each of the fractions in the product expressindk(z) is 1, and if z = z; for
j & k then one of the fractions in this product has a zero numerator For this reason, the polynomial
P(z) de ned as

X
P(2) = wilk (2)
k=1
satis es the requirements; that is P(zx) = wy for k with 1k N.
Both Lagrange's and Newton's solution of the polynomial inte rpolation problem has uses. Only Newton's

solution is suitable for numerical calculations; both solu tions have theoretical applications. It is easy to see
that Lagrange's solution is works for any eld replacing the  eld of complex numbers.

14.2 Problem
Problem 14.1. Show that the solution of the interpolation problem is unique. That is, given
points z;, zp, :::,zy be distinct complex numbers, andwi, wy, :::;,wy complex numbers, these

latter not necessarily distinct. Let P;(z) and P,(z) be polynomials of degree less thatN such that
Pi(zk) = P2(zk) = wi for all k with 1k  N. Show that then P1(z) and P,(z) are the same
polynomial.

14.3 Complex exponential interpolation with equidistant n odes

Let f be a 2 -periodic function on the real line, and let xo be an arbitrary xed real. We want to
representf at the nodes

(14.1) Xn = Xp+2n =N (0O n<N)
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by a complex exponential polynomial as

1
(14.2) f(xn) = o n O n<N):
k=0
It is immediate from the main result of Subsection 14.1 that this problem has a solution. Namely,
the question can be reformulated as the polynomial interpaition problem of nding a polynomial

U( 1
P(z) = CkZ
k=0

such that P(e¥") = f(x,) for nwith0 n<N . ! To nd the coe cients ¢ in (14.2), observe
that for k with 0 <k <N we have

eZkN i=N 1 e2k i 1

K 1
KisN  _ -
e T gZki=N 1~ eki=N 1

n=0

the rst equation holds by the sum formula of geometric series, and the second equation holds since
e?<i = 1; this calculation is not applicable in casen = 0 since the denominator is 0 then4? For
n =0, all terms in the sum are 1, and hence the sum iN. Thus

1 1
:I-”( exnki = lill"’( ek(Xo+2n:N )I
(14.3) n=0 " ::O
=£eikx0 e2kisN = 1 ifk=0;
_ 0 ifk60 ( N<k<N):
n=0

Hence, the orthogonality relations are

1"(1'k il 1”(l‘kl
(14.4) = e'Xne'Xn:W gl D = (0 ki l<N):
n=0 n=0

Multiplying equation (14.2) by e ™ and summing for n, by using these orthogonality relations we
obtain

1 X1 :
(14.5) 6=y f(xn)e ™n (0 I<N):
n=0

Observe that the right-hand side here can be considered as aumerical integration formula approx-
imating the integral in (13.15) (with | here replacingn in that formula). Parseval's identity can be
written as

1 Xt L Xt
(14.6) N JTenIT= e
n=0 n=0
141 Actually, this equation holds for all n, not justfor nwith 0 n<N , but this is a consequence of the equations
f(ixn+n)= f(ixn)and P(eXn+N)= P(eXn),
14.2 More generally, the calculation is not applicable for any  k that is divisible by N, since for such k the denominator
is 0; it is applicable for any other k 2 Z. That is, the above formula is true for any integer  k that is not divisible by N.
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14.4 More on complex exponential interpolation with equidi stant
nodes

Instead of the range 0 k <N of exponent range in equation (14.2) we can take a exponent rege
K k<K + N for an arbitrary K 2 Z. Finding a complex exponential polynomial

Ko 1
(14.7) Qk (x) = c e
k=K
such that
(14.8) Qk (Xn) = f(Xn)

fornwith O n <N is equivalent to the type of problem given in equation (14.2) namely, we need
to nd a complex exponential polynomial

X 1 ,
QX)=  Cuk €
k=0

such that Q(xn) = f(xn)e ®* n for for n with 0 n < N . As for the coe cients ¢, multiplying
equation (14.8) with x = x, by e ®» and summing for n, the orthogonality relations (14.4) give the
equation
1 X1 .
(14.9) 6= f(x,)e ™n (K 1<K +N):
n=0

This is of course the same as equation (14.5), except that a dirent range of the coe cients ¢ is
considered. Parseval's identity to replace equation (14.6can now be written as

K 1 KN 1

1 . . .
(14.10) N JFea)i®= jei?:
n=0 n=K
14.5 Real trigonometric interpolation with an odd number of equidistant
nodes
Translating these formulas to the real line is easier in casé& is odd. Assuming this and writing
N =2M +1, consider equation (14.7) with K = M. Assumingf (x) is real for all x 2 R, equation
(14.9) impliesthat c | = ¢ forl with M | M. Hence, Euler's equations (13.10), we obtain
b _ ao b

(14.11) Q m(x)= c e’ = >+ (ay coskxn + b sinkxp)

k="M k=1
with

(14.12) A =2C); a=C+C =2<¢; bh=(c cy)i= 2=« (O<k M);

the second equations fora, and b hold sincec = ¢,. These equations identical to equations
(13.13). These equations together with the Euler equationg13.10) and equation (14.9) give the
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equations for the coe cients:

f (Xn) coskxp O k M);

a
(14.13)

be f(xn)sinkxn  (O<k M):

That is, according to equation (14.8) we have

N4
(14.14) f(Xn) = %+ (ac coskxy + besinkxy) (0 n<N; N =2M +1):

k=1

with these coe cients. As it can be seen, the number of coecients here is M +1 = N. The
coe cient equations can also be obtained directly from the athogonality relations

2 X! if 1> 0,
— coskx,, coslx,= K I ' O kI M)
N n=0 2« if 1 =0;
5 X 1
(14.15) N sinkxy sinlx, = a kI M)
n=0
2 X1
N sinkxp coslx,, =0 @ k M;0 I M)
n=0
To prove these equations, we need rst observe that
X 1 X 1
(14.16) sin(kx, + )= coskx, + )=0 (2 jki<N and 2R):
n=0 n=0

These equations are valid for both even and oddN. They follow by multiplying (14.3) by € and
taking real parts and imaginary parts, respectively. Then auations (14.15) can be easily proved
using the trigonometric formulas (13.3). Parseval's equaibn can be written in this case as

2 X 1 L jag? X
(14.17) N o= %+ janj? + jnj®
n=0 n=1
14.6 Real trigonometric interpolation with an even number o f equidistant

nodes

The case of everN > 0 is somewhat more complicated. Given a real-valued 2periodic function f
on R, with x, as in equation (14.1), writing N =2M, we put

o (e am
(14.18) f(xn)= > + (ax coskx, + by sinkx,) + - cosM (Xn  Xo) (0O n<N):
k=1

The number of coe cients here is alsoN. This equation can be justi ed as follows. Representf
with the interpolation formula in (14.7) with K = M +1; that is, also using equation (14.7), we
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have

pd _
(14.19) f(Xn) = e exn:
k= M+1

According to equation (14.1), we haveM (X,  Xo) = n , and so equation (14.9) implies

| 1% | 1% no_ 1X?
Cm eIMX 0= — f (Xn)e iM (Xn Xo) = — f(Xn)e n - - f (Xn)( ]_)n
(14.20) N = N =0 N nso
- = f(x,)cosn = — f(Xn)cos M (X, Xg) :
N n=0 N n=0

Equations (14.12) are now replaced with

=2co; ay =2cy Mo,
(14.21) B =<G, am M _
a=C+Cy=2<c; bi=(ck cCy)i= 2=¢ (O<k<M):

all these equations except for the second one can be justi ethe same way as in formula (14.12).
The reason for the second equation will be clear soon.
It is easy to see that with this choice of of the coe cients ax and b, we have

1

F(x) &' % + (ax coskx + by sinkx) + a% cosM(x  Xo)
k=1
(14.22) w1 |
= c e + <(cm eMx );
k= M+1

the second equation here needs some explanation. By virtuef the second equation in (14.21) we
have ‘ an a
<(cy €M)= < 7;' gM (x xo) = 7;" cosM (X Xo);

the last equation holds sinceay = 2cy €M* © is real according to formula (14.20). The second
equation in (14.22) follows from this equation. This also jsti es the adoption of the second equation
in (14.21). Further, the observation just made that ay = 2 cy €M © is real also implies thatcy €M »
is real for every integern. Indeed, we have

cm eiMx "= gy eiXo eiM (Xn  Xo) = Cu eiXo ein = ¢y eiXo ( 1)n;

the third equation here holds in view of the de nition of x, given in formula (14.1). Thus, forx = X,
the right-hand side of (14.22) equals

w1 _ _ W 1 _ _

fTXn) - Ckelkx N4 <(CM eIMX n) - Ckelkx "+ Gy elMx n
k= M +1 k= M+1
X _
= € = f(xp);
k= M+1

the real part <() was dropped from the second member of these equation, sindbe term it was
applied to is real. The last equality holds according to equ#on (14.19). The equality of the sides
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show that the trigonometric polynomial f{x) indeed interpolatesf (x) at the given notes, justifying
the de nition of the interpolation polynomial in equation ( 14.18).
The orthogonality relations corresponding to the above eqations are

(
IX 1 . .
2 coskxp coslX = M !f I> 0, O k;l<M);
N n=0 24 ifl=0;
1
— coskx, cosM (X, Xg) =0 O k<M);
N n=0
2 X1
= COEM (Xn  Xo) =2
n=0
(14.23) e
— sinkxp sinlxp = W @ kI M)
N n=0
2 1
— sinkx, coslxp =0 a kl<Mm);
N n=0
2 1
N sinkx, cos M (x, Xp) =0 1 k<M);
n=0

The third of these equations holds since coM (x, Xg) =cosn =( 1)", as we saw in equation
(14.20), the rest follows the same way as (14.15) from the e@tions in (14.16) and the trigonometric
formulas (13.3). Using the orthogonality relations, equaton (14.18) implies that

2 X1
a = N f (Xn) coskxy (0O k<M);
n=0
2 X1
(14.24) ay = N f (Xn)cosM (Xn  Xo);
n=0
2 X1
b = N f (xn) sinkxn O<k<M):
n=0
Parseval's equation becomes
X1 i9ni2 1 o 12
(14.25) O T L
N n=0 2 n=1 2

15 The Stieltjes integral

There is a clear analogy between the formulas describing Foier series and trigonometric inter-
polation with equidistant nodes. This analogy can be brough out more clearly by rewriting the
interpolation formulas with the aid of Stieltjes integrals. The next three de nitions describe the
Riemann{Stieltjes integral. 5!

151 There is also a Lebesgue{Stieltjes integral that extends the concept of of Ri emann{Stieltjes integrability. See
footnote 13.6 on p. 46. The x; in the de nition that follows has nothing to do with the nodes of the interpolation also
denoted by x; in a di erent context.
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De nition 15.1  (Partition) . A partition of the interval [a; 1] is a nite sequencehxg; X1;:::;Xni Of
points such that
P:a=Xpg<X1<X2<:::<Xp=h:

The width or norm of a partition is
kP k d:Efmaxfxi Xji 1:1 i ng:
De nition 15.2  (Riemann{Stielties sum). Given a partition
P:a=Xp<X1<X2<:::<Xp=h:

of the interval [a; b, a tag for the interval [x; 1;x;]with 1 i nis anumber ; 2 [x; 1;X] for
eachi. A partition with a tag for each interval [ x; 1;x;] is called ataggedpartition. Given a tagged
partition as described, and given the functionsf and g on [a; b, the corresponding Riemann{Stieltjes
sum is

X
S= f(i) gtxi) 9xi 1) :
i=1

The Riemann{Stieltjes integral Z
b

f (x) dg(x)

is de ned as the limit of the Riemann{Stieltjes sums S associated with the partition P askPk! 0,
independently of the choice of the tags. While not importantfor our purposes, we will give a rigorous
de nition:

De nition 15.3  (Riemann{Stieltjes integral) . If there is a real numberA such that for every > 0
thereisa > O such that for any Riemann{Stieltjes sum S for f associated with a partition of width
< of [a;h we havejA Sj <R , then we call A the Riemann{Stieltjes integral of f with respect to

g on [a; b, and we write A = abf . In this case we callf Riemann{Stieltjes integrable with respect
togon [a;h.

Let N > 0, and let the interpolation points x, be chosen as formula (14.1). except now we want
to considerx, for any n 2 Z. That is, given some realxg

(15.1) Xn = Xp+2n =N (n22):
Assumef is a continuous 2 -periodic function, and de ne the function ! y on R as
2n

(15.2) In(x) = N if Xn X<Xnp+1 (n22):
Then we can write equation (14.5) as
Z
o= fge™dnx) O I<N);

emphasizing the analogy with equation (13.15) { cf. Problem15.1. Since we assumed thaf is
2 -periodic, we could integrate on any interval of length 2 instead of [ ; ].1%2 Other equations

152 |f we integrate on the interval [ Xm ;Xm +2 ], then the value of the integrand at Xn+n = Xm +2  will contribute
to the integral, and its value an xm will not. This is because in equation (15.2) we dened !y (x) to be constant on
the interval [ Xn;Xn+1 ).

53



involving interpolations can also be rewritten as Stieltjes integrals. In caseN = 2M + 1 is odd,
writing, in analogy with formula (13.8),

4
(153) 0= 5 fODu(x Ydiny)
then we have
(15.4) Xn) = f(Xn) for 0 n<N:

The easiest way to see this is use real form of interpolation s given in equation (14.11), and
repeating the calculations in equation (13.8) withM replacing n; see Problem 15.2 below. For even
N, equation (13.8) needs a minor modi cation1%3

15.1 More on Stieltjes integrals

The only reason we mentioned Stieltjes integrals is to more closely highlight the analogy between Fourier
series and trigonometric interpolation. We will include he re some simple results to put Stieltjes integrals
in the proper context, even though they are not needed for the discussion below. The rst one converts
Stieltjes integrals into Riemann integrals in certain case s (but not in the case of interest to us above, when
the function playing the role of g is not continuous).

R
Theorem 15.1. Assumeg is di erentiable on [a;b]. Assume further that the Riemann integral ;f (x)g%x) dx
and the Riemann{Stieltjes integral abf (x) dg(x) exist. Then

zZ, Z,
f()dgx) = f(x)g%x)dx:
a a
Proof. Let
P:a=Xo<X1<X2<:1i<X = b
a partition of the interval [ a;b]. By the mean-value theorem of di erentiation, for each i with 1 i n

thereisa i 2 [x; 1;xi]suchthat g% i)(xi Xi 1)= g(xi) g(xi 1).*** Hence we have

x
fCi) o) axi 1) = F(DPCDX Xi 1)

i=1 i=1

R R
Making kPk ! 0, the left-hand side tends to . f (x) dg(x) and the right-hand side tends to . f (x)g%(x) dx,
completing the proof. ]

R
heorem 15.2 (Integration by Parts) . Assume the integral ;’f (x) dg(x) is de ned. Then the integral
b .
2 9(X) & (x) is also de ned and we have
Zy Zy
f(x)dg(x) = f(g(b) f(a)g(a) g(x) df (x):
a a
153 |n formula (15.3) we used the fourth member of formula (13.8), since the rest of the transformations in that
formula are not valid in the present situation.
154 1n order to apply the mean-value theorem, we need to assume that g is real valued, since the mean-value theorem

is not valid for complex-valued functions. The result can nevertheless be p roved in case g is complex valued by
establishing it separately for the real and the imaginary parts of g.
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Proof. For the proof, we rede ne the concept of partition by allowin g P = hx; : 1 i ni to be a
nondecreasing sequence. This is a harmless change, since therms f ( ;) g(xi) g(xi 1) forwhich x; 1 = X;
do not contribute to the Riemann{Stielties sum. Let P be such an arbitrary partition; that is

P:a=Xo X1 X2 i Xn=Db

and let ; 2 [Xi 1;Xi] be arbitrary tags. We have the identity

X X 1
fCi) axi) gixi 1) =f(xn)g(n) fFC)axo)+  gxi) F(i) f(in):
i=1 i=1
This is easy to verify; namely, the same terms are added on both sides, in di erent order. Indeed, for i
with 1 i n, both sides adds the term +f ( ;)g(xi), except that on the right-hand time for i = n this
term is written out separately. Further, both sides adds the terms f( i)g(x; 1) for i with 1 i n,
even though on the right-hand side this term is written as  f ( i+1 )g(x;) for i with 1 i n 1, and

the term corresponding to i =0, i.e., the term  f ( 1)g(Xo), is written out separately. This rearrangement
of a sum is called partial summation or Abel rearrangement, named after the Norwegian mathematician
Niels Henrik Abel.

Making the assumption a= xo= 1= X3 and X, 1= n = Xn = b, the above identity becomes

X 1
fCi) alxi) a(xi 1) = f(bg(b) f(a)g(a) g(xi) F(isa) FCi):
i=1 i=1
Considering
P°:a= 1 o, 3 i .=
with the tags x; 2 [R i+1 ] for i with 1 i n 1, the right-hand side contains a Riemann{Stieltjes

um for the integral b 2 9() & (x), and the left-hand side contains a Riemann{Stieltjes sum f or the integral
f(x) dg(x); the fact that we allow Xx; 1 = X; makes no di erence here, since the terms with x; 1 = X;
make no contribution to the sum. > Since i1 X i Xi+1 ivg foralliwithl i n 1,
Xo = X1,and Xp 1= anwe havekPk 2kP%. Hence, making kP% ! 0, we also havekPk! 0; hence the
left-hand side tends to f (xhdg(x) since this integral was assumed to exist. So, the right-hand side also
has a limit; thus, the integral g(x) o (x) also exists, it being the limit of the sum on the right-hand si de.
This completes the proof of the theorem. ]

We also have a change of variables (i.e., substitution) formula for Riemann{Stieltjes integrals; it is even
simpler than the one for regular Riemann integrals. For this , we need to put
z a z b
Cf0dg) o Fe0dgk)  (a<h);

a

R
as is usual in case of Riemann integrals. At this point, we might as well put abf (x)dg(x) =0in case a= h.

Theorem 15.3. Assume the integral Rabf (x) dg(x) (B(ists, and leth : [A;B]! [a;b] be a nondecreasing or
nonincreasing function onto [a; b]. Then the integral AB f h(t) dg h(t) , exists and we have
Zg Z ne)
f h(t) dg h(t) = f (x) dg(x):
h(A)

Note that h(A) = a and h(B) = bin caseh is nondecreasing, andh(A) = band h(B) = ain caseh is
nonincreasing. As for the proof, it is fairly direct and stra ightforward except that it involves simple results
about uniform continuity, and so we omit the proof. '>® Readers familiar with uniform continuity can easily
construct a proof.

155 The equality ; = j+1 is possible, whether or not we allow the possibility that  x; 1 = x;. This causes no trouble,
just as allowing Xx; 1 = X; causes ho trouble.

156 A function h satisfying the requirements of Theorem 15.3 is necessarily continuous, and so also uniformly contin-
uous.
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15.2 Problems

Problem 15.1. Let f be a function on [ 1;1] that is continuous at 0, and let g be the function
that is

(x) = if 1 x<0
90 = 1 if0 x 1L

Show that Z,
lf (x)dg(x) = f (0):

Problem 15.2. Re-write formula (15.3) with a sum instead as a Stieltjes inegral.
Problem 15.3. Prove equation (15.4).

Problem 15.4. Write the equation corresponding the equations (15.3) and 15.4) with an even
number of points. Hint: the formula you obtain is essentially identical, but with a slightly modi ed
version of the Dirichlet kernel.

16 Spectrum of a time series

Given the observationsy; of a time series for 0 t<N we want to represent it in the form

D SR
(16.1) Yi = o e?kt=N (0 t<N):
k=0

This is just the interpolation formula (14.2) with y; = f(Xx¢) and x; = 2t =N ; other forms of the
interpolation formula could also have been used instead. Té term ¢, e?<'™N s said to represent
the frequencyk=N in the above sum. That is, y; is decomposed as a sum of frequencies.

Given a complex numberz, it can be written in what is called a trigonometric form z = jzjé ;
here is called the argument ofz, and it is determined only up to an additive multiple of 2 (since

e’ =1). We write = arg z; we usually take 0 argz < 2 , though occasionally other values of
argz may be taken. According to (14.5), we have
X
(16.2) G= i e 2kt =N (0 k<N):
t=0

Here jcgj is called the amplitude of the frequencyk=N and argc, its phase in the time seriesy,
0 t<N.

16.1 The periodogram

In equation (16.1), the frequency ranges from 0 to ' 1)=N, so roughly 0 to 1. We will assume
that y; is real. Hence we havey = ¢,; this is clear from equation (16.2), since

e 2i(N k)t=N _ 2iNt =N e2|kt:N :eZ|kt:N — 2ikt =N

e e

For this reason, jccj for k > N=2, is of no interest. That is, the amplitude is only if interest in the
range [Q 1=2].161

16.1|n the real interpolation formula (14.15 the frequencies clearly ran ge from 0 to 1=2, but much of the discussion is
simpler with the complex interpolation formula (14.2) is simpler.
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In electromagnetic radiation, the squares of the amplitude of the electric and magnetic elds
are proportional to the energy density of the the radiation. Analogously, for 1k  N=2, the term
o e? =N contributes an energy ofjccj?. This energy is restricted to the frequency range

2k 1 2k+1
2N 2N

Given that the length of this interval is 1 =N, this gives an energy density ofN jc.j2. Given that t is
an integer, we have
oy (AN KN — o o 2ike=N

hence this term represents the same frequencéy;? and it contributes an additional energy of jcy  «j?
to the same frequency range. Since we havey, « = G, ; we havejoy «j2 = joj?. This makes the
energy density at the frequencyk=n to be 2N jcj2 for1 k <N=2. If N is even andk = N=2, then
N k= k, so only one term contributes to the energy density. Thus we d ne the periodogram as

| N5 LOoNja? (1 k<N=2);
(16.3) )
3 " Njoyeoj?  if N is even

With this notation, equation (14.6) becomes

K 1 K 1 D%ZC K
y¢ Njcj?= N jeaj? = I
t=0 n=1 n=1

The term jcj? does not represent a wave, and so it carries no \energy."

16.2 Sampling rate and the Nyquist frequency

We saw that the time series above can be described in terms ofefquencies in the range [(1-2].
In electric engineering, one has a continuous time series (ltage, for example), and one takes
measurements of this time series, to represent the continugs time series as a discreté? time series,
perhaps for digital transmission or recording. Often, one wants to reconstruct the continuous time
series. This is the situation, for example, with the transmision or digital recording of sound. Sound
is really an oscillation at various frequencies, and an acaate reconstruction of these frequencies
is important. The considerations above show that only freqencies in the range [01=2] can be
reconstructed, where the unit time is the time between sampds. That is, to reconstruct sound
waves in the range of 0 two 6000 H#“ one needs to sample the signal representing the sound 12000
times a second. That is, the sampling rate must be twice the maimum frequency that can be
reconstructed from the signal. This maximum frequency is clled the Nyquist frequency after the
Swedish-born American electronic engineer Harry Nyquist.

162 ynless but one wants to consider negative frequencies; however, in the real f orm (14.14) there are no negative
frequencies.

16.3 |t js important to learn the di erence between  discrete and discreet.

164 cycles per second. Named after the German physicist Heinrich Rudolf Hertz, wh o experimentally demonstrated
the existence of electromagnetic waves, after the theory of electromagnetism d eveloped by James Clerk Maxwell
predicted their existence.
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16.3 Variance of a complex-valued random variable

Below, we are going to calculate the variance of a complex-Vaed random variable. If X is a
complex-valued random variable, we de ne its variance as

Var(X)=E jX E(X)j?:
We have
Var(X)=E jX E(X)j? =E X EX) X E(X)
=E XX XEX) X EX)+E(X)E(X )
=E(XX ) EX)E(X ) EMX )E(X)+E(X)E(X)
=E(jXj?) E(X) E(X) E(X) X E(X)+E(X) E(X) =E(jX]5) EX)*
in complete analogy with the situation when X is real valued.

16.4 The spectrum of a stationary process

AssumefY;g is a real-valued stationary process, and write = E(Y;). Writing

X 1 _
Y, = Ce?N (0 t<N):
k=0
the analog of formula (16.2) becomes
1 X1 i
(16.4) Ce= Ve 21kt =N (0 k<N):
t=0

Taking expectations, we obtain

1 X1
(16.5) E(C) = o

if k=0;

EYeZikt:N —
(Y) 0 ifl k N 1

t=0
according to (14.3). So we also have

1 X 2ikt =N 1 X 2ikt =N
Ck= — Y:e = — (Yt )e (1 k<N ),
N N
t=0 t=0
the second equation here holds according to (14.3). Henceprfk with 1 k<N we have
!
L. 2 1 X 1 et =
Var(Ci) =E(jCii?)  E(CW) “=E(CH= (B (% )e M
t=0
_ 1 XAX 1 2ik (t t% =N
= N2 E M )Mo e
t=0 t0=0
1 XX 2ik (t t% =N
= N2 e EM )Mo )
t=0 t0=0
1 XX 2ik (t t% =N .
= Nz e (t t9:
t=0 t0=0
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That is, putting t = t°+ m, we have

1 o . min( N X;N 1+ m)
W (m)e 2imk =N 1

m=1 t=max(0 ;m)

N Var(Cy) =

Of course, the outside sum here is not a truly in nite sum, sirce the inside sum is empty (and
therefore zero) forjmj > N . Writing f = k=N, we obtain

l’( 1 . . .
N Var(Cey ) = (m)e 2fm w:
m= N+1
Making N I'1 | it follows that
R _
(16.6) Jim N Var(Cy ) = (m)e 2m .
) m=1

P
assuming that this series 1m: 1 J (m)j is convergent. The limit on the left-hand side is called the

power spectral densityS(f ). Given that (m) is real, by (13.10) we have

b3
(16.7) S(f)y= (0)+2 (m)cos(ZXm ):

m=1

The result showing the existence of the spectrum is called t Wiener{Khinchin theorem.®> The
frequency function here de ned is an even function with a peiod of 1; this means that its values
in the interval [0; 1=2) determine its values on the whole real line. Comparing thee equations to
equation (16.3), we expect that periodogram approximates wice the spectrum®® The problem of
estimating the spectrum is, however, somewhat more complated, as we will discuss below.

16.5 The periodogram is an inconsistent estimator of the spe ctrum

The question arises how good is the periodogram, described iequation (16.3), for estimating the
spectrum. We will consider the special case of a white noiserpcess. That is, letY; (0 t<N)
be independent normalN (0; 2) variables. Let N > 3 be an integer (we expectN to be fairly
large), and 1 k < N=2. For the sake of simplicity, assumeN is odd.1®’ Then C, de ned by
equation (16.4) is a complex-valued random variable.

Writing

K 1 K 1
2 Y: cos& and By = 2 Yi sin&

N N N 5 N

in analogy with equations (14.13). with x; = 2 t=N and f (x;) = Y;, these equations imply that
the joint distribution of ( Ag;Bg) is a multivariate normal distribution according to the de nition

Ak:

165 What we stated is only the discrete case. The Wiener{Khinchin theoremisab  out a more general class of stochastic
processes.

16.6 We have E(jCkj2) = Var Cy, since E(Cy) = 0 according to equation (16.5).

16.7 All the arguments that follow will also work in the case of even  N. The only reason that we assume N is odd is
that we will refer to real interpolation formulas with N nodes, and the case of an odd number of nodes is somewhat
simpler than the case of even number of nodes. In any case, when referring to for mulas involving interpolation, we
would have to refer to di erent formulas when the number of nodes is od d or even.
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given in equation (2.4). These equations are connected witlc, with the equations Ay = 2<Cy and
Bk = 2=Cy according to equations (14.12).
It is not hard to calculate the variances of Ay and By:
4 X1 2kt 2
Var(Ay) =E (A¢)? = —E Y; cos——
N2 . N
X AX 1 2kt 2kt©
Y; cOS—— Y;o0COS
N
t=0 t0=0
K AX 1 2kt 2kt©
E(Y; Yt0) cos—— cos
N N
t=0 10=0
1

m

S

S

ES

2kt 4 X1
E(YtZ)COSZT: Nz 2co NN

t=0 t=0
the fourth equation holds becauseY; and Y;o are independent fort 6 t° and the last equation holds
in view of the rst equation in (14.15), and because Var(Y;) = 2. Similarly, we have

et _ 2,

2

P

4 Xt okt 2
N2 . t SIN N
KX 2k 2kt0
Y: sinTt Y;o sin t
t=0 t%=0
XX 1 okt . 2ktO
E(Y; Yio) Sin ~ sin N
t=0 t0=0

Var(Bx) =E (Bk)* =

m

S

[~ =
>
=

2kt 4 X1 2kt
2\ cin2 - ° 2 qin?
] E(Y?)sin N NZ sin N N

t=0 t=0
the fourth equation holds becauseY; and Y;o are independent fort 6 t° and the last equation holds
in view of the second equation in (14.15).

We next show that Cov(Ag;Byk) = 0. We have

-2 2

pd
N

KX 1 2kt 2kt©
Cov(Ak;Bx) =E(ABk) = mE Y; cos N Yio Sin
t=0 t0%=0
4 XX 1 2kt . 2kt°
NES E(Ytho)cos—N sin—
t=0 t0=0
g4 Xt okt 2kt 4 Xt okt okt
= NZ E(Y; )COST smT = NZ cosT sin N =0;

t=0 t=0
the fourth equation holds becauseY; and Y;o are independent fort 6 t° and the last equation holds
in view of the third equation in (14.15). Thus Ay and By, being uncorrelated random variables with
a joint multivariate normal distribution, are independent in view of Theorem 2.1.
Thus, the the covariance matrix of (Ax;By) is
2 2=N 0
0 2 2=N
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As we haveCy = (Ax iBk)=2 according to equation (14.12), we have BY{jCyj?) = E N(AZ +
B2)=4 = 2:Thus NjCyj? = N(AZ+ B2)=4 has a 2(2) distribution ¢ with expectation 2. Thus
N jCkj? has the distribution of 2=2 times a standard 2 variable of degree of freedom 2. Hence its
variance is NjCj? is ( 2=2)> 4 = 4, since the variance of the standard ? variable of degree of
freedom 2 is 4 (see footnote 16.8 on p. 61). So, using the saraplalue ¢x of Cyx to estimate the
spectrum gives poor results (cf. equations (16.3), (16.6)and (16.7)). In statistical language, the
periodogram is an inconsistent estimator of the spectrunt$®

16.6 Estimating the spectrum

As we we have seemN jccj? is an inconsistent estimator of the spectrumS(f) with f = k=N. To
develop a better estimator, we simply average neighboringalues. That is, let N be a sequence
of nonnegative of nonnegative numbers such that

Bere, usually only a nite number of the . is nonzero; often, the best choice is to make about
N of them to be nonzero. Then, instead ofic.j?, we use
3
; 2
k;N JCk n)

n=1

to estimate the spectrum®10 The sequencd .y g, is called a spectral window. Usually, the value
of nn is the largest for n close to zero. Most often, the window is symmetric, that is wehave
n;N = N . There are a great variety of spectral windows in use.

17 Orthogonal systems of functions

17.1 Inner product spaces

Let V be a vector space ovelr, where F is either the set of real numbersR or the set of complex
numbers C.

De nition 17.1.  An inner product is a mapping h; i :V V! F such that
(@ Forall x2V, h;xi 0,andhx;xi =0 onlyif x =0,
(b) hx;yi = hy;xi forall x;y 2V,
(c) hyi=hgyiforall 2F andx;y2V,
(d) hyi + hx;zi = hx;y + zi forall x;y;z2 V.

168 | e., a 2 distribution with degree of freedom 2. The standard 2 distribution of degree of freedom k is de ned
as the sum the squares of k independent standard normal random variables. Its mean is k and its variance is 2k. A
constant multiple of such a variable is called a 2 variable of degree of freedom k.

169 Given a parameter and an estimator " calculated from a sample, " is said to be a consistent estimator if "
converges to in probability when the sample size goes to in nity. calculating the periodogram in formula (16.3), a

sample size of N is used to calculate cy.

16.10 Note that this sum is the convolution of the sequences f n.n g and fj cnj?g.
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A vector space with an inner product is called aninner product space

In Clause (a), hx;xi 0 means that the complex numberhx; xi is actually a nonnegative real.
According to Clauses (b) and (c), we have hx;yi = h x;yi. If F = R, the complex conjugation
has no e ect. In Section 8, we already dealt with several inne product spaces. When discussing
Fourier series, the vectorgspace was the set of complex-vad or real-valued functionsf on the
interval [ ; ) for which jf j? exists, and the inner product was

z

gi= o (1) o) dx

For complex Fourier series, we used= = C, for the real version we usedF = R. The factor
1=(2 ) in front of the integral is not essential, but it makes the discussion more elegant in terms
of inner products. For the real case, it is best to use the faar 1= instead.!’! When discussing
trigonometric interpolation, the inner product was vector space was the set of complex-valued or
real-valued functions on the setfxyx : 0 k <N g, and the inner product was

o1 X!
figi= o (X)) g0xn):
n=0

Another example for an inner-product space is the set of compx-valued random variables on
a given probability space. For random variablesX and Y, we take hX;Y i = E(X Y). In order
to make sure that Clause (a) is satis ed, the random variables X and Y must be considered equal
if P(X = Y)=1.12 Similarly, the real-valued random variables give rise to aninner product space
over the reals if we takehX;Y i = E( XY ).

Schwarz's inequality says that we have

(17.1) G yii? hxxi hy;yi;
see Problem 17.1 below. On a vector spacé over F (with F = C or R) one often de nes a norm:
De nition 17.2. A norm is a mappingk k:V ! R such that

(@) kxk Oforall x 2V, and kxk =0 only if x =0,

(b) kx k=j jkxkforall 2 F andforall x2V,

(c) kx + yk k xk+ kyk for all x;y 2 V.

A vector space with a norm is called anormed vector spaceor, more shortly, a normed space

Clause (c) is caIIedp Minkowski's inequality. With an inner product h; i one can de ne the
induced norm askxk = = hx; xi. If the norm is induced by an inner product, Minkowski's inequality
can be proved by Schwarz's inequality; see Problem 17.2 belo In an inner product space, by the
norm we will always mean the induced norm unless otherwise nmtioned.

171 For a proper discussion of these function spaces (i.e., the vector spaces just descri bed), Riemann integration is
not really an adequate tool, and one needs to use the newer integral concep t invented by Henri Lebesgue in 1904.
However, we will not get into subtle issues of convergence where the advant ages of Lebesgue integration are felt.
172 That is, the inner-product space is formed by the equivalence classes of ran dom variables under the equivalence
relation X Y if P(X = Y)=1. Note that this ensures that Clause (a) is satis ed; cf. Problem 5.1 above.
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Two vectors x and y are calledorthogonal if hx;yi = 0. Let x1, X2, :::, X5 be a system of vectors
such that x; and x; are orthogonal whenever 1 i<]j n. Then

X
(17.2) Xk = kxk?:
k=1 k=1
Indeed, we have
X 2 D¢ x E xx X
Xk = Xk, X = b x)i = kxy k?;
k=1 k=1 I=1 k=1 I1=1 k=1
the last equation holds sincehxy;x ;i = 0 unless k = |. The equation we just established can be

considered an analog of the Pythagorean theorem.

17.2 Orthonormal systems

De nition 17.3. A system of vectorsS = ffq;f,;f3;:::9is called orthonormal if

(17.3) M fii = e

It is called completeif every vector f 2 V can be expressed as
X

(17.4) f = kfk:

k

If the orthonormality condition (17.3) is weakened to say that hfy;fxi > 0 and H;f|i = 0 if
k 6 | then the system is called orthogonal rather than orthonormd. The system S in this de nition
may be nite or in nite. In case of Fourier series, we had an in nite orthonormal system (the factor
1=(2 ) in front of the integral above in the complex case and £ in the real case was needed to make
the system orthonormal rather than only orthogonal), and in case of trigonometric interpolation we
had a nite orthonormal system. If S is in nite, we need a concept of convergence to interpret the
sum (17.3). In an inner product space there are several notits of convergence; the simplest we can
use in this case is convergence in horm:

De nition 17.4.  AssumeV is a vector space with normk k. Let f 2 V and let ff,gl_, be a
sequence, wheré, 2 V. Then we say that f,, converges tof in norm if

lim kf, fk=0:
nil

We say
b3
fon="f
n=1
if the partial sums
X
i
k=1

converge tof in norm.
A sequencef 2 V and let ff,gl_, , wheref, 2 V, called aCauchy sequencf

lim kf, fhok=0:
mil
n'i

A normed vector space is calleccompleteif every Cauchy sequence is convergent.
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The trigonometric system (in the complex and real cases, andn the cases of Fourier series
and trigonometric interpolation, the respective systems ae all complete). The inner product spaces
considered in these examples are all complete with respead the norm induced by the inner product
in question.t’3 In equation (17.4), the orthonormality relations imply tha t

(17.5) k= Hyfi:

This equation is the general statement of equations (13.4)(13.15), (14.6), and (14.13). We have the
following

Lemma 17.1. Let V be an inner product space,S = ff;f,;f3;:::g be an orthonormal system of
vectors inV and letf 2 V be an arbitrary vector, and let = Hy;fi. Then

X
(17.6) i ki? k fK2:
k

We have equality here if and only if
(17.7) f = kfi:

Inequality (17.6) is called Bessel's inequality. When we hae equality in Bessel's inequality, we
obtain Parseval's identity (more on this below):

X
(17.8) kfk?> = j%
k

This is the general statement of the Parseval identities (13L6), (13.17), (14.6), and (14.17).

Proof. Write S = ffy : k<m g, wherem is an integer orm = 1 . For any integern m we write

X
On = kf:
k=1
Then we havehfy;g,i =  forany k n, and so

Hi;f oni = M fi h fisoni = « k=0

for every k n. Hence any two of the vectorsf g, and «fx (k n) are orthogonal. Therefore
according to equation (17.2) we have

X X
(17.9) kfk? = kf  gok®+  k (F k2= kf g2+ ] «j%
k=1 k=1
This establishes inequality (17.6).
According to formula (17.9), equality in (17.6) means thatkf g,k =0 for n = m if mis nite,

or that
nIlllm kf  gnk=0

if m is in nite. In either case, this is equivalent to saying that (17.7) holds. O

17.3 For the space associated with Fourier series, see the discussion below, on p. 65, especially footnote 17.4 on the
same page.
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Corollary 17.1. Let V be an inner product space,S = ffq;f,;f3;:::9 be an orthonormal system
of vectors in V. Assume there is no nonzero vectog 2 V such thathfy;gi =0 forall fx in S. If S
is nite, or if S is innite and V is complete space, ther§ is complete orthonormal system.

Note that in this corollary we have the extra assumption about the completeness ofV. This was done
in order to guarantee the convergence of the series

X .
Kk (k= Hyfi);
K

in case S is in nite. In (17.7), the convergence of the series on the right-hand side was guaranteed, since
we assumed that equality holds there. Without the assumption o f equality, the conververgence of this series
is not guaranteed. However, if we assume thatV is complete,F;he the convergence of this series follows.

Indeed, assume that S is in nite. Inequality (17.6) implies that Ll i «j? is convergent. Writing
X
On = kfk
k=1

P
for the partial sums of the series Ll kfk, given integers and with 1 < , we have

X X X
kg gk®= Wfe <= k «fejk? = i k% kfjk? = i k%
k= +1 k= +1 k= +1 k= +1

P
the second equality here holds according to (17.2). This shows that ,Ll kf« is a Cauchy sequence; hence

it is convergent, since we assumed thatV is complete.

Proof. AssumesS is not complete. Then, according to the assumptions, theres anf 2 V such that
equation (17.7) does not hold for thisf, i.e., that

X
(17.10) g% Hy:fif 60:

Now, for any f| in S we have

X X
I’f|,g|=H|,f| f|,Hk,f|fk =H|,f| Hk,flhf|,fk|

Xk k

:H|;fi |’f|;fi |k:|’f|;fi hf|;fi:0;
k
to rigorously establish the second equation here, some coekgence issues need to be dealt with,

but these are easily handled with Schwarz's inequality (171) { see Problem 17.3 below. This is a
contradiction, since we assumed that no vectorg exists for which if,;gi =0 for all f, in S. O

The space of functions that are square integrable on the inteval (a; b), called L?(a; b), space is an
important example of a complete spacé’# Fourier series were considered on the spade?( ; ).

174 The name L2(a;b) does not specify whether the functions are real valued or complex valued.  When it is not clear
from the context, one can make the distinction by calling it a real L2 space or a complex L2 space. The completeness
of these spaces (for any interval ( a;b), nite or in nite) is the Riesz-Fischer theorem. It was proved independ ently by
Frigyes (Frederick) Riesz and Ernst Sigismund Fischer. The integral con cept used in this theorem is that of Lebesgue
{ the result is not true with Riemann integration.

In actual fact, the elements of LZ2(a;b) are not functions; they are equivalence classes for functions under the
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17.2.1 Gram{Schmidt orthogonalization

Let V be a vector space, lem be a positive integer and letS = ffy : 1  k <m g be an orthonormal
system of vectors inV. AssumeS is not complete. Then, as we saw in the proof of Corollary 17.1
there is a vectorf 2 V such that the inequality in formula (17.10) holds. Taking f,, = (1 =kgk)g with
the g de ned in this formula, the system S°= S[f f., g is orthonormal. If V is nite dimensional,
then starting with S = ;, we can obtain a complete orthonormal system in nitely many steps.

If V is in nite dimensional, then, in order to obtain a complete orthonormal system one needs to
proceed more delicately, because even after repeating thigep in nitely many times, the resulting
in nite system may not be complete. While this issue is only d marginal interest for our purposes,
we will outline one possible way we may proceed in this case.oF this, we need the following

De nition 17.5. Let V be an inner product space and letM V. We say that M is dense inV
if for every > 0 and for everyf 2 V there is ag2 M such that kf gk <

We recall that given a vector spaceV and a subsetD, the span of D is the smallest subspace
of V including D. It is well known that the elements of the span of D are exactly the nite linear
combinations of the elements ofD .17

Lemma 17.2. Let V be an inner product space,S = ff;f,;f3;:::9 be an orthonormal system of
vectors inV and letf 2 V. Let M be a set such that the span dfl is dense inV, and assume that
equation (17.4) holds for everyf 2 M. Then S is complete.

Proof. By linearity, equation (17.4) holds for all f in the span of M, and then, by taking limits, we
can conclude that this equation holds for everyf 2 V. HenceS is complete. O

If M =fhy:1 k< 1g is a subset ofV such that the span of M is dense inV, then one
can modify the above method to obtain an orthonormal system in V as follows. Letm > 0 be an
integer and assume the orthonormal systenB,, = ffy : 0 k <m g has already been constructed.
Pick the least positive integer| such that S, [f hyg is linearly independent’-® If such an| can be
found, then writing,

) 1
(1711) Om = h| I’fk;h|ifk602
k=1

put Sm+1 = Sy [f fmgwith fry = (1=KgmK)gn. If no such| can be found, putSy.+1 = Sy. Then
the system :

S= Sm
m=1

is a complete orthonormal system. The reason is that the conauction ensures that equation (17.4)
holds for everyf 2 M ; hence the completeness df follows from Lemma 17.2.

equivalence relation 7
b
f g if gi?2=0:

a
It is necessary to take equivalence classes in order to make sure that Clause (a ) of De nition 17.1 is satis ed. It
is common parlance, however, to talk about elements for LZ2(a;b) as functions rather than equivalence classes of
functions. Functions that belong to the same equivalence class are said t o be equal a.e. (almost everywhere).
175 Linear combination always means nite linear combinations, unless o  therwise indicated. We included the word
\ nite" for emphasis, since we have considered in nite sums above.
176 It is easy to see that any orthonormal system is linearly independent, and  so S, itself is linearly independent.
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There are several well-known countable dense subsets bf(a;b). The simplest one is formed
by the nite linear combinations with rational coe cients o f the characteristic functions of all nite
open intervals with rational endpoints.”-

17.3 Problems

Problem 17.1. Given two vectors in an inner product spaceV over R or C, show that
hx; yi Z h x; xihy; yi

for any x;y 2 V. (This inequality is called Schwarz inequality).

Problem 17.2. Let V be an inner product space oveR or C, and for x 2 V de ne its norm as
kxk =" h;xi. Show that for any x;y 2 V we have

kx + yk k xk+ kyk:
(This inequality is called Minkowski's inequality.)

Problem 17.3. Let V be an inner product space with inner producth; i and induced normk Kk,
and let f andf, for all n> 0 be elements ofV. Assume that

lim kf, fk=0:
n'l
Show that for all g 2 V we have
lim hg;f, fi=0:
n'l
Hint: Use Schwarz's inequality.

Problem 17.4. Let V be a vector space ovetC, and let h; ig be a real-valued inner product onV
considered as a vector space ové (that is, Clause (c) in De nition 17.1 is only assumed for red )
with the additional property that

(17.12) hf;ig ir = H;gir forall f;g 2 V:
Show that
(17.13) H;gi = i;gir + ihf;gir

is a complex inner product onV over C.

Problem 17.5. Let V be a normed vector space oveR or C. Show that
(17.14) kfk k gk kf gk forall f;g 2 V:

Problem 17.6. Let V be a normed vector space oveR or C, and letf 2 V and f, 2 V for all
positive integersn. If f, ! f in norm, show that

(17.15) lim kf,k = Kf k:
nll

177 The characteristic function of a set U is a function that is 1 in U and zero elsewhere. We need to take rational
endpoints to make sure that the set of functions we obtain is countab le.
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18 Building ARIMA models directly

Let fY;g be a time series, and assume observed valugs are available for times 1 n N, where
N > 0 is an integer; we assume thaty; is real, but it is easy to extend these considerations to
complex-valued time series. Letp, g, and d be integers such that 0 d<p andq 0. We would
like to build an ARIMA( p d;d; g model for Y;. We expect that d is large enough such thatfr Y,g
is stationary with zero means, but we do not wish to determined. Determine the AR coe cients in
equation

(18.1) Ye = kYt k+ & K€ k
k=1 k=1
by using least square approximation; i.e., let ¢ for k with 1  k p be such that

X 1 xP

2
(18.2) T2 Yn kYn k
n=p+l 1+ y% k=1
be the least possible®! Write
xP
(18.3) (x)=1 XK
k=1

With the notation introduced in equation (18.3), this suggests the approximate AR model
(18.4) (B)Y; O

We wrote instead of =, sincep is not large enough to build a good ARI model (where ag and q
together should be suitable to build an ARIMA model). What is meant by  here is unimportant,
since this equation will not be used, it will only be a guide asto how to build the ARIMA model.

To determine the MA coe cients,let m N p qbe alarge positive integer. We will comment
on the choice ofm later. Put

(18.5) Vi =(Yk me1iYk me2;iin¥k) (kom):

We determine the error vectorse; by orthogonalizing the vectorsy; for t with m t N with
respect to the real inner producthx;yi = xTy without normalizing. That is, we put e, = y, and
assuming that ex has been de ned fork with m  k<t,wherem<t N, we put

Xt 1 T )
(18.6) €t = Yt ﬁ(ek Yk)€k;
k=1 KK

ek 60
where we sum only for those values ok for which ex 6 0 (in which case e{ ex 6 0, so we do not

have a zero in the denominator)!®? As for the choice ofm, there is a danger in choosingN too
small as compared toN, since there are aboutN  m vectors y;, and this number needs to be

18.1 since we do not assume that the time series fY;g is stationary, we need to allow larger errors if the value of vy is
large. We divide by 1+ y?2 instead of y? to avoid dividing by zero in case yn is zero.

18.2 The parentheses on the right-hand side of equation (18.6) were only w ritten for clarity; they are not needed, since
matrix multiplication is associative.
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substantially smaller than the length m of the vectors so that the orthogonalized vectors retain a
random character. There arem linearly independent vectors of lengthm, so after orthogonalizing
m linearly independentﬁ/ejtors, the whole space ofn-dimensional vectors will be spanned. Perhaps
the choice o N N is the optimal. This makes the number of vectors to be orthogoalized
to be about ™ m.

Equation (18.6) should be compared to (17.11) of Gram{Schmidt orthogonalization; the di erence is that
in that equation we have kfyk = 1, whereas here we do not require that kexk = 1, where the norm is the
norm induced by the inner product. 33 This kind of orthogonalization without normalizing was desc ribed
earlier on account of the innovations algorithm; see Section 7.

Equation (18.6) is not to be used in numerical calculations. T his is because, we mentioned at the end
of Subsection 7.1, the Gram{Schmidt orthogonalization is nu merically unstable; that is, small numerical
errors committed initially give rise to large errors later i n the calculation. There are also nhumerical problems
with doing least square optimization in the common sense way, that is, by taking the partial derivatives
of the expression describing the least squares error, and lookig for its minimum by equating the partial
derivatives to zero. Interestingly, both of these two probl ems can be handled in a stable way by the QR
decomposition using Householder transformations. The QR decomposition starts with an m n matrix A,
wherem n> 0and nds an orthogonal matrix *¥# such that the equation

R

QA = R® where R°=
Om nn

holds, where R is an upper triangular matrix, and 0 m nn isthe (m n) n zero matrix. In [23, Section 38,
pp. 174{184] it is explained how the QR decomposition can be useal to solve the least squares optimization
problem. As for using it to solve the orthogonalization prob lem, the orthonormal vectors resulting from the
orthogonalization of the columns of the matrix A will be the rows of the matrix Q, i.e., the columns of the
matrix Q ' = Q'.®% The coe cients to express the kth column of A as a linear combination the rst k
columns of the matrix QT are contained in the kth column of R° (or R, since all the coe cients in R° outside
R are 0 { since R is upper triangular, only the rst k entries in the kth column are nonzero); this is because
we haveA = Q 'R%°= QTR In [23], the QR decomposition is described for real matrices, but it is easy to
adapt it for complex matrices.

The numerical method we described will produce a system of the orthonormal vectors e? = (1 =ke;k)et,
and then we can recover the vectorse; from these and the related coe cients.

The equations in (18.6) can be rearranged to expresg; as a linear combinatione; as follows to
obtain

txm m
(18.7) Yt = e 1= e + e 1!
1=0 I=1

by orthonogonality. The equation o = 1 easily follows from equation (18.6). As for the other
coe cients, writing kxk = (xTx)™2 = hx;xi for the norm induced by the inner product we are
using, givent andlwithm t NandO | t m,we have

it = e;r |yt:ketk

if e 6 0 (in which case casekek 6 0); e, = 0 then we can dene | arbitrarily, except that
we want to put ¢ = 1 also in this case; these equations follow easily from theansiderations in
Section 17; see e.g. equations (17.3), (17.4), and (17.5).

183 That is, kxk? = xTx = hx;xi.
184 Orthogonal matrices were de ned before equation (8.7).
185 The latter equation holds since Q is orthogonal.
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Writing

IXm
(18.8) ((x) = X'
1=0
the last equation can be written as
(18.9) yt= t(B)er:

Multiplying this equation by the polynomial (B), where (x) is given in equation (18.3), we obtain
(18.10) (B)yt= (B) «(B)ei:

It is important to point out that the operator B in (B) acts on everything to the right of it, even
on t in the subscript of the polynomial (B). That is, we have B ((B)e: =  1(B)e 1.

To explain the scope of B in (B), we need to write out how to obtain equation (18.10) in more de tail.

To simplify the notation, writing y: = e; =0 for t<m, in equation (18.7) we can extend the summation to
in nity:

b3

Yt = It € o

1=0
Note that this equation is identical to equation (18.9). Subst ituting this (with t ort k replacing t) into
the expression

xP
(B)= yt =yt kYt k
k=1
(cf. equation (18.4)), we obtain the equation
x b3 x p 3
Yt kYt k = it € 1 k it k€t k 1:
k=0 1=0 k=1 1=0

A shorter way to write this equation was given in equation (18.1 0) with the scope of B in (B) as described
after that equation.

Changing the from vectors to random variables, this suggest the equation
(18.11) (B)Y:= (B) «(B)e;

where g is the random variable describing the error committed by theprocess at timet. This would
give an ARIMA model except for the dependence of ; ont.

If the time series fY;g can be modeled by an ARIMA model, we expect that the time seris
f (B)VY:g is stationary, because in this case the polynomial (x) is expected to include a factor
(x  1)¢ for which already the time seriesf (B 1)9Y,g is stationary. Then, assuming that equation
(18.11) correctly models the time seried Y;g, the coe cients of (x) ((x) cannot depend ont; this
is because the innovations algorithm described in Section @llows us to determine these coe cients
from the moments ( (B)Y:)( (B)Y: k), where the score of the operator rst operator B stops at
the enclosing parenthesis (that is, it does not a ect theY; ), and these moments only depend on
k, and not on t. Hence, if we chooseN and m large enough, for appropriate values ofp and q,
the polynomials (B) (which depends onN) and (B) (B) approximate polynomials’®6 (B) and

YB) such that the equation

(18.12) (B)Y; = UB)e;

18.6 Note that we cannot write  (x) (x) instead of (B) (B), since, as we indicated above, B in (B) acts also on
the subscript of (B), so the coe cients of (x) t(x)and (B) t(B) are not the same.
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correctly models the time seriesf Y;g. If in the polynomial YB) we discard the terms of degree
higher than g to obtain the polynomial (B),'®7 then we obtain the ARIMA( p d;d;d model

(18.13) (B)Y, = (B)e:

Here d is the largest integer for which (x  1)? is a factor of (x).

The ARIMA model obtained this way will probably not be identi cal to the ARIMA model obtained
by di erentiation, and numerical experiments are needed to e valuate the quality of models obtained this
way as opposed to ARIMA models obtained by dierencing. The d ierence can be described as follows:
The present model makes no direct assumption about the size d the errors, since the errors are determined
according to the innovation algorithms, and not by tting an ARMA model. When tting an ARMA model,
the least squares method assumes that these errors will be abat equal size; a similar assumption is made
if the maximum likelihood method is used, since the maximum lik elihood method is also based on some
kind of least square optimization according to formula (10.5) . In an ARIMA model, the errors e do not
assume di erencing, since in equation ARMA: ARIMA eq the polyn omial (x) is expected to have all its
zeros outside the unit circle. That is, the expectation is tha t even in an ARIMA model the errors are of
about the same size, even when the size off; may increase rapidly. On the other hand, the norming factor
1=(1+ y?) used in the least squares optimization makes one to expect tha the errors are proportional to y,
(at least for large values of y,; this appears to be a much more reasonable expectation.

18.1 Adding a drift term and ensuring zero means of innovatio ns
An ARIMA model with a drift term has the form

xP xd
(18.14) Yy = + kYt kt & K€ k-

k=1 k=1

To determine the AR coe cients in such a model by using least gjuare approximation nd the values
of " and of the coe cients k for1 Kk psuch that
X 1 y N x y 2,
112 JIn kYn k
1 + yn k=1

(18.15)
n=p+l

see footnote 18.1 on p. 68 for an explanation of the reason toidde by 1 + y?. With the notation
introduced in equation (18.3), this suggests the approximée AR model

N

(18.16) (B)Y:

Similarly to equation (18.4), this equation will not play a direct role; it will only give an indication
as to how to build the ARIMA model. We wrote approximate equality since the value of p is not
large enough to build a correct ARI model.

To determine the MA coe cients,let m N p qbe a large positive integer as beforé®® and

with all its entries 1. We determine the error vectors e; by orthogonalizing the vectorsu and y;
fort with m t N (in this order, u being the rst one) with respect to the real inner product

18.7n fact, if an ARIMA( p d;d;q) model is appropriate, then the coe cients of the terms of degree highert han g
of 9B) should be near 0. b

18.8 The choice of m is similar to the choice before. That is, perhaps the the best choiceis m N N. See the
discussion after equation (18.6).
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hx;yi = xTy without normalizing. As before, with the aid of these vectors we can express the etor
Yyt as

xm xm
(18.17) Yt = t(u+ e 1= tut e+ it € -
1=0 1=1

With the notation introduced in equations (18.8), this can be written as
(18.18) Yi= t+ t(B)e;

of course, the polynomial {(x) now is dierent from what it was above, but we use the same
notation. Multiplying this equation by the polynomial (B), where has the same look as (x) given
in equation (18.3), but now it is the polynomial used in equaton (18.16), we obtain

(18.19) (B)yt= (B) tu+ (B) «(B)e::

Here, in the rst term on the right-hand side, the operator B in (B) acts on ¢, but not on u, since
the latter does not depend ont. Similarly as we explained after equation (18.10), in the seond term
the scope ofB in (B) to the right of it.

Similarly as above, changing the from vectors to random vambles, this suggests the equation

(18.20) (B)Yt= (B) ¢+ (B) «(B)e;

where g is the random variable describing the error committed by theprocess at timet. This would

give an ARIMA model with drift except for the dependence of ; ont. As we explained above
on account of the model without a drift term, if the time series f (B)Y;g is stationary, then the

polynomials in this equation should not depend ont. So, choosingN and m large enough, we will
approximate a model

(18.21) (B)Y.= (B) ¢+ B)a;

as in equation (18.12). Here ; may depend ont, but (B) ¢ should not, as we will explain below.
Writing  for for (B) {, and truncating 9B) by discarding the terms of degree higher thang,
we obtain the ARIMA( p d;d;g model

(18.22) (B)Y,= + (B)e:

Here d is the largest integer for which (x 1) is a factor of (x). The constant on the right-hand
side is called drift.

The di erence between an ARIMA model with and without a drift term can be explained as
follows. If we want to model the time seriesfY;g with an ARIMA model via rst building an
ARMA model, we need to perform di erencing on f Y;g until we obtain a stationary time series with
zero means, and then build an ARMA model. If we include a driftterm, then we do the di erencing
up to the point when we obtain a stationary time seriesf X g but without requiring that E( X) = 0.

Instead, we build an ARMA model for the time seriesf X 0, where is an estimate for E(X+).
If X, =(1 B)YY; and X; is modeled as
X d
Xt = WXt k+ (B)e;
k=1
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then the model in equation (18.13) can be written as

KX d KX d
(¢ B)YY,= 1 % + kB0 B)Y.+ (B)e:
k=1 k=1

The rst term on the right-hand side is the drift term.

18.2 Seasonal ARIMA models

We will consider a multiplicative ARIMA( p;d;q (P;D; Q) model with seasonal parameters, which
means that we haves equally timed observations per period. The form suggestedof such a model
in [4, Subsection 9.1,3, formula (9.1.7) on p. 332] is

(B)( B)(I B)'(I B%°Y.= (B)( B)e;

see also [12, Section 10.2, p. 231]. Here the time seritfd B)Y(I BS%)PY,g is assumed to be
stationary.

We will describe how to build such a model. As in building the nodel in equation (18.9), we do
not need to separate out the integration degreesl and D in advance. That is, givenp, g, P, and Q,
we will build an ARIMA( p d;d;9 (P D;D;Q) model for appropriate dand D withO 0 p
and 0 D Q. Assume that the observed valuesy; of Y; are available for the times1 n N,
where N > 0 is a large enough integer. For the sake of simplicity, assuethat s j N. We rst
discuss the seasonal part

(18.23) Y: = kYr skt ot kKt s)
k=1 k=1

of the model, where ; describes the error between timed s and t; what we mean by this error
will be explained below. We determine the AR coe cients in this equation by using the least square
approximation. That is, let  for k with 1 k P be such that

X 1 X 2
(18.24) 1+v2 Yn kYn sk
n=sP+1 Yn k=1

is the least possible; see footnote 18.1 on p. 68 for an explation of the reason to divide by 1 +y?.
We determine the seasonal error vectors, we proceed similgras we did around equation (18.5)
except that now we need to take the seasons into account. Len N sP sQ be a large positive
integer. Put

(18.25) Vi = (Y me1iYk me2;i0iyk)T (K m; sjk);

requiring s j k is important here, soy; and y;o occurs in the same component only it  t° mod s.
To determine the error vectors {, orthogonalize the vectorsy; fort with m t N andsjt. As
before, the vectorsyy can be expressed as a linear combination of the error vectoes

xm xm
(18.26) Yt = ittt sl = t7+ Kttt osl (m t N;sjt);
=0 1=1
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similarly to equation (18.7). Proceeding similarly as we dd after this equation, we arrive at an
equation analogous to equation (18.13):

(18.27) (BS)Y, = ( BY) :

We expect that here all zeros of (x) are outside the closed unit circle, while (x) may have zeros
on the unit circle, since we are creating an ARIMA model diretly, rather than an ARMA model.
Also note that the construction ensures that the constant taem of ( x) = 1, similarly as in equation
(18.1). Expressing 1 from equation (18.27, for a sequence of observationy; : 1 t Ni we can
then calculate the the approximate values £ of the seasonal errors, similarly as we did in Subsection
9.5; for this, we need initial values for ¢; the requirement that all zeros of ( x) are outside the unit
circle ensure that the choice of the initial values of £ do not signi cantly in uence the values of *;
for moderately larget.

Next, we build an ARIMA model

(18.28) (B) t= (B)a

using the sequence®psilon; : K t Ni as observed values; her& > 0 is used to discard
the values of £ for small t for which the e ect of the arbitrary choice of init ial values cannot be
considered small. Hence, we obtain

(B)(B?)Yi= (B)( B%)¢=( B%) (B):=( B®) (B)a:= (B)( B®a:

The rst equation is obtained by multiplying equation (18.2 7) by (B) on the left; the second
equation is uses the commutativity of polynomial multiplication, and the third equation follows
from equation (18.28; the fourth equation again uses the comutativity of polynomial multiplication.
That is, we have

(B)( B)Y:= (B)( BYe:

This is the multiplicative seasonal ARIMA model we wanted to construct.

19 Bootstrap methods

In the paper in the paper [15] published in 1979, Bradley Efrm described a number of statistical
methods made feasible by the revolution in computing in the niddle of the twenties century. Most
statistical methods then in use, many of them still in use today, were invented in the early twentieth
century were based on methods of computing that required reltively small amounts of calculation.
Among these methods wagootstrap Efron's own invention.

19.1 Bootstrap for independent identically distributed ra ndom variables

Bootstrap, as originally invented for independent, identically distributed random variables, can be
described as follows. Assume we have a sample, Xo, :::, X, of measurements from a large
population, so that these sample values can be regarded as luas of a sequence of independent
identically distributed random variables. Given the sample, we can estimate the population mean,
but the question is how good this estimate is? Since we do notrdow anything about the distribution

of the measurements, using normal distribution theory may kad to the wrong conclusion. In the
bootstrap method we resample these measurements with reptement, we calculate the mean of each
resample, and thereby we establish an empirical distributbn of the means of the sample.
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This can be described in a mathematical language as followd.et N be a large positive integer,
and for eachi with1 i N let

be a random function (this function is not assumed to be one-t-one or onto). For eachi, this will
give a resample

Xt (@) X6 @) s -+ X (n)
of the original data. With
1 X
i= = Xt (k)
L

we get a collection of the sample means;. One can now devise a con dence interval for the
population mean by choosing ana such that the about 5SN=200 = :025N among the ; is less than
a and choosing ab such that about 5N=200 = :025N among the ; is greater thanb. Then one can
say that a b with 95% con dence. The method can be used to set up estimatefor other

population parameters, such as the variance, median, etc.

19.2 Con dence intervals for multistep predictions in ARIM A models
Given an ARIMA model

(19.1) Y = kYt Kk + & k& k  (t22);
k=1 k=1

the errors g, also calledresiduals can be estimated from an observed run of the time series, as
described in Subsection 9.51 (as pointed out at the cited loaction, when using this method a
number of the beginning values of the residuals need to be diarded, because the choice of the
initial values does not correspond to their actual values) o in Subsection 10.1. Assuming thatY;
has observed valuey; fort with1 t N, and the estimated values for the residuals ig" Assume,
further that the residuals are considered reliable fort with K t N. Fort> N, an estimate
for e is not available. For one prediction run, fort >N one can de neé and a randomly selected
value from among the residualse, for t°with K t® N. In this way, replacing e with %, one
can use equation (19.1) repeatedly witht = N +1, N +2, :::, N + k to predict Yy+k. Making
repeated predictions of Yy +x with new random choices of the future residuals, one can cotrsict
an empirical distribution of Yy .k, and using this empirical distribution, one can nd a con de nce
interval for the predicted value of Yy +k .

The application of this method relies on the tacit assumptian that the residuals are independent
identically distributed random variables. This assumption goes beyond the assumption of stationar-
ity of the appropriately di erentiated time series used in t he construction of the ARIMA model, since
stationarity does only involves rst and second moments, am says nothing about distributions. The
assumption of strict stationarity would certainly imply th is (see Subsection 5.1), but even without
the assumption of strict stationarity one often makes this assumption about the residuals.

191 That discussion concerned only ARMA models rather than ARIMA models. Howev  er, and ARIMA model is also
an ARMA model for the appropriately di erentiated time series, with th e same residuals.
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19.3 Other applications of bootstrap for time series

Bootstrap methods have been extended from independent ideically distributed random variables
to other situations, and there are many other, more complicéed applications of bootstrap methods
for time series. See Kreiss and Lahiri [21], Politis [27], ah Kirch and Politis [20]; the last one
discusses bootstrap methods in the frequency domain.

20 The Fourier transform

20.1 The de nition of the Fourier transform

Let f be a function onR. Its Fourier transform is de ned as

YA 1
(20.1) 0= p=  f(y)e ™ dy;
1
assuming the integral exists. We then have
z 1
(20.2) 0= p= e dy
1

againf has to satisfy certain conditions for this integral to exist. The expression on the right-hand
side is called the inverse Fourier transform. We will outline how to prove formula (20.2) while
treating some convergence issues lightly.

Given a function f on R and a (large) integer N, we will representf by a Fourier series on the
interval ( N ;N ). To do this, we write y = x=N

a(y) = f(Ny) = f(x);

and representg(y) by a Fourier series on ( ; ) as?0?

X _ b3 .
(20.3) f(x)=g(y) = Che™ = cheX™N ( N <x<N )
n=1 n=1
where L z . Z
Ch = 7 g(y)e iny dy: W f(x)e ixn=N dx (l <n< 1 );
N

where the rst equation holds according to equation (13.15) and the second equation was obtained
by using the substitution x = Ny and noting that then g(y) = f (x). Writing

T
(20.4) hy (1) = = f(x)e ™ dx;

2 N
we havec, = (1=N)hy (n=N), and equation (20.3) becomes

1 R .
(20.5) f(x)= N hy (n=N)e&*™N ( N <x<N )
n=1

20.1 if f is continuous and put together from nitely many monotonic pieces on nite intervals, the next equation
will hold forall y2 ( ; ),ie.,foral x2 ( N;N ), according to Dirichlet's theorem quoted in Subsection 13.2.
Even then, it will not hold for x= N unlessf(N )= f( N ). If f is not real-valued, Dirichlet's theorem can be

applied separately to the real part and the imaginary part of  f, assuming that those are continuous and put together
from nitely many monotonic pieces on nite intervals.
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where, as above, we wrotex = y=N. Putting

121
(20.6) h(t) = 7, f(x)e X dx;

we have limyi;;  hy (t) = h(t) according to equation (20.4). MakingN !'1 in (20.5), the sum
approximates an integral, andhy approachesh, and so we obtain
z 1
(20.7) f(x)= h(t)e dt (1 <x< 1):
1

Equations (20.6) and (20.7) are identical to equations (20L) and (20.2) with f(x) = P 2 h (1).

20.2 The Fourier transform is an isometry

The formula corresponding to Parseval's identity (13.16) &
z 1 z 1
(20.8) kf k? = if (x)j2dx = if' (x)j? dx = kf'k?
1 1

assuming both integrals exist. This means that forf 2 L?(1 ;1 ), the norm of f and *is
the same; a transformation of normed vector spaces that presves norms is called an isometry°-2
The statement described by this equation is called Planchezl's theorem. The Fourier transform
as described in (20.1) does not exist for every 2 L2(1 ;1 ), but every such function can be
approximated by a sequencd , of functions such that f, converges tof in norm; in fact, we can
take f,, to be a continuous function that is 0 outside a nite subinterval of (1 ;1 ).2°3 Taking a
sequence of functiond, such thatf =Ilim,; f, (convergence in norm), we can put

= lim f):
n!l

The convergence here is assured, sin(laé}1 ’r'\mk =k(fn fmYk=kf, fpk
Plancherel's theorem §20.8) can be extended to inner products:
z 1 z 1
i gi = f(x) g0dx= " (F(x) o(x)dx = H; gi:
1 1

This is immediate from the identity

(20.9) 4 g=jf +g® jf g?+ijif +g® ijif g*

See Problem 20.1 for the proof of this identity.

202 More generally, an isometry is a transformation of metric spaces that p  reserves distances.

203 sych a function can be called a continuous function with  compact support. The support of a function is a set
that contains all the points where a function is nonzero. We do not n  eed the concept of compact sets at this point, it
su ces to say that every bounded closed interval is a compact set. So, a function is said to have compact support if
it is zero outside a bounded closed interval.
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20.3 The Fourier transform and convolution

Given two functions f and g on R, according to equation (20.1) and the second equation in (%),
we have

Z 1 YA 1
(f an(x)= p== f()ogly )d e™dy
1 Z, 1 _ )
= p— f()ay )e™ e™¥ Jd dy
2 _1 1
(20.10) = P> f()gly )e™ e™XV Jdy d
N z4 z4
= p— f()gue * e ™ du d
2 1 1
Z 1 Z 1
— 1 ixu ix — P- ]‘A — pif’\ .
= P . g(u)e ™ du . f(le” d =2 g0)f(x)= "2 F(x)0(x);
where the fourth equation was obtained by making the substiition u=y . That is, the Fourier

transform converts a convolution into a product.?®#4 Of course, there are conditionsf and g must
satisfy in order that the transformations performed in the equations above be permissible, but we
omit any discussion of them. Besides, such a discussion careldone much more fruitfully with
Lebesgue integration theory than with Riemann integration.

One can derive a similar relation between convolutions of sgiences and the Fourier series formed
by these sequences as coe cients. Indeed, if and g are functions onZ and

* , * .
F(x) = f (k)& and  G(x)= g(k)e**
k=1 k=1

then

*
(20.11) F(X)G(x) = (f g)(k)e**:
k=1

This is certainly true if the series representingF (x) and G(x) are absolutely convergent, and it simply
re ects the rule for multiplying two-way power series.?>> The above relation shows one aspect of
the importance of the Fourier transform for analysis of time series. Linear Iters or convolutions
(see Subsection 5.6) are important for analyzing or procegsy time series, and their e ects are
much easier to study in the frequency domain, since productare much easier to understand than
convolutions.

20.4 Frequency ltering

To screen out certain frequencies from an incoming signal l®abeen a concern for radio engineers
for a long time; for example, when you tune into a radio statim, you do not want to listen to
the neighboring station at the same time. This was accomplised by analog circuits, but today,

204 The factor v 2 on the right-hand side is somewhat of a nuisanclg. To avoid this, sometim es when discussion
convolutions and Fourier transforms together, one puts a factor of 1= 2 in front of the integral in the de nition of
convolution in equation (5.5).

205)f z = e then ek* = zK, so the series representing F and G are two-way in nite power series.
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a lot of Itering is done by mathematically processing the time series obtained by sampling the
analog signal. Practically, one would only be interested inthe discrete series resulting by sampling
rather than the continuous signal, that is, in the Fourier series rather than the Fourier transform,
but, for a theoretical understanding of the issues studyingthe Fourier transform is very important.
The isometry of the Fourier transform described in equation(20.8) is often easier the work with
than the analogous Parseval identities (13.16) or (14.6). Mthematically, ltering out frequencies
in the signal expressed by the functionf (t) amounts to taking the characteristic function (5 of
the interval, 2% and taking the function ( (a5 Y* One can use functions other than characteristic
functions or intervals for Itering. In fact, in analog proc essing the Itering function that can be
realized will only approximately be the characteristic function of an interval. This kind of Itering is
called Itering in the frequency domain. One can also use ltering in the time domain, or in spatial
domain (for image transmission), or in the time-space domai.

20.5 Spectral analysis: what for?

The book [11, x9.6, pp. 183{190] describes a number of applications of fregncy analysis. An
especially interesting one concerns fault detection on et¢ric motors. Electric motors vibrate, and the
vibration has typical frequencies, and faults such as a bro#n rotor bars?®’ changes these frequencies.
Monitoring these frequencies can be used to detect faults. gctral analysis can be used for stationary
time series; vibration of electric motors naturally generde stationary time series { in the electric
motor example, the signal was monitored 400 times a secondp she time series can safely be assumed
to be stationary. Monitoring frequency variations in nonstationary time series can be accomplished
with wavelets { see Section 22.

20.6 Problems

Problem 20.1. Prove equation (20.9).

Problem 20.2. Prove the analog of equation (20.9) for inner products and noms. That is, given
a complex inner producth; i and the induced normk Kk in a vector spaceV over C, show that

(20.12) 4f;gi = kf + gk? k T ok?+ ikif + gk® ikif  gk®:

Problem 20.3. Let V be a normed vector space oveR. Show that the norm k k is induced by an
inner product if and only if

(20.13) kf + gk®+ kf  gk® = 2kfk®+2kgk?  forall f;g 2 V:

This identity is called the parallelogram identity.?%® Note: This problem is dicult. The result is
due to Maurice Rere Fechet, John von Neumann, and PascualJordan.

Problem 20.4. Let V be a normed vector space ove€. Show that the norm k k is induced by an
inner product if and only if it satis es equation (20.13).

Problem 20.5. Find the Fourier transform of
f(x)=e
where > 0.

20.6 see footnote 17.7 on p. 67.

20.7 A certain part of an alternating current induction motor { see [35]. No  te that the example describes the alternating
current frequency as 50 Hz, common in Europe. In the USA, the alternatin g current frequency is 60 Hz.

208 |f the vectors f and g stand for two sides of a parallelogram, the identity expresses the statemen t that the sum
of squares of the diagonals of a parallelogram is equal to the sum of squares of the sides.
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21 The Haar orthonormal system

In 1909, Alfred Haar designed an interesting system of orthnormal functions that became the focus
of special interest in the light of later developments?'! The functions , are de ned on the interval
[0; 1] as follows. We put o(x) =1 for all x with O x 1. Further, we put

1 if0 x< 1=2;

X =
1(X) 1 if1=2<x 1

For eachn 1 divide the interval [0; 1] into 2" equal intervals, and let these subintervals be denoted
asl), (1 j 2"). We write

8
2200 D= inside 1 2% 1
U (x) = S 200 D=2 inside | 2; for1 k 2" %

"0 elsewhere in (01)
At the jumps in the interval (0 ;1), the value of Ek) will be the arithmetic mean of its values in the
neighboring intervals. Finally, we de ne ﬁk)(x) for 0 and 1 for it to be continuous at these points
(n 2and1 k 2" Y)inthe interval [0;1].

As we will see below, the Haar system is a complete orthonornhawith respect to the inner

product z,

Hgi= f(x) g(x);dx:
0

Nothing is really gained by considering complex-valued funtion, so, for the sake of simplicity, we
may assume thatf and g are real valued, and then the complex conjugation in this fomula may be
omitted.
We used Haar's original notation for these functions. To sinplify the notation, write f)O) =
and (11) = ;. The normality of the Haar system, i.e., that
z 1
i S0P dx =1;
0

is easy to see. Further, we clearly, we also see that
Z 1
W(x)dx=0 for n 1
0
From this, the orthogonality
Z 1
W) Kx)dx=0 if (n;k)6(n%k9

0
also follows. Indeed, ifn = n% then at least one of ﬁk)(x) and & )(x) is zero, with the exception
of at most a single value ofx. If n <n? then (%) is constant on the union the the two intervals

O
12 1 and 12" where (% & 0, except perhaps at the endpoints of the union.

We formulate the completeness as a separate theorem:

211 Haar's original paper appeared in 1910, but on the rst page it says that it is essentially an unchanged version
of his \Gattinger Inauguraldissertation,” that is, the dissertati on written to obtain habilitation at the University of
Gettingen, Germany. See footnote 13.6 on page 46 concerning habil itation.
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Theorem 21.1. The Haar system is a complete orthonormal system ir.2[0; 1].

We have already established orthonormality. For the proof & completeness, we will use Lemma
17.2 on p. 66. For this, note that the ( nite) linear combinat ions of the characteristic functions of
the intervals 1X (n 1,1 k 2") form a dense set inL?[0; 1].

One really needs to study Lebesgue integration to really understand this statement, if for no other reason
that the de nition of L2[0;2 ] relies on Lebesgue integration. For an intuitive understa nding for those only
familiar with Riemann integration, note that every Riemann integrable function can be approximated by a
step function with partition points coming from among the en dpoints of the intervals 1X; approximation is
meant here in the sense that the integral of the absolute value of the di erence is small. To appreciate the
di erence between the Riemann integral and the Lebesgue integral, consider the function f on [0;1] that
is 1 at rational points and 0 elsewhere. This function is not R iemann integrable; its Lebesgue integral is O.

In probability theory, this property of the Riemann integra | should be understood to be a de ciency.
Consider, for example, a random variable X with values uniformly distributed in the interval [0 ;1], and
ask the question: what is the probability of X assuming a rational value. As there are only countably
many rational numbers, and the probability of X = r for any specic r is zero, the probability of X being
rational is 0, because of the -additivity axiom of probability theory, saying that if A, are mutually exclusive
events (1 n< 1) and A is the event that at least one of the A, will occur, then

b3
P(A)= P(A):
n=1
This property of -additivity is built into the de nition of Lebesgue integral , whereas it is not in that of the
Riemann integral.

Proof of Theorem 21.1. Given m 2, let D, be the subspace ol ?[0;1] spanned by the (nite)
linear combinations of the characteristic functions ofl K for1 n mandand1 k 2".

The dimension of this space of ?; the reason for this is that forn <m and for1 k0 2"
the characteristic function of I,‘fo is a linear combination of the characteristic functions! X, 1k
2™ 212 This is exactly the number of Haar functions Ek) belonging to this space, i.e., ﬁk) for
n=k=0andforl n mandl k 2", since

0

x
1+ 20 t=2m:
n=1

, , S
Therefore these Haar functions sparD,. Therefore the Haar functions spanD = ~ 1 _; Dp. As D
is dense inL?[0; ], the Haar system is complete by Lemma 17.2. O

21.1 Frequency ltering of the Haar system

In time series with changing characteristic, one wants to lter out distant parts; that is, one wants
to lter in the time domain. In this sense, the Haar system (when adapted to discrete time series)
is excellent, since it perfectly Iters out far-away e ects. Its frequency performance, however, is

212 Opserve that the value of these functions at the end points of the int ervals iﬁ') make no dierence. The real
reason for this is that L?2[0;1] is a space of equivalence classes of functions, and not a space of functions, in spite of
one saying the opposite in loose parlance. See the second paragraph of footnote 17.4 on 65.
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another story. Indeed, for the Fourier transform of ) for x 6 0 we have

Z
1“1 ,
MW= pa= Pe0e ™ dy
1 I
1 Z ok =2 £ pk=2n _
= p— 2(n l):2e ixy dy
2 2k 2)=2n 2k 1)=2n
2n D=2 iRk 272" 4 9q ik 1)=2" 2ik= 2" o 1
= —Pp— e T +2e =+ e ¢ = -
ix 2 X

asx ! 1 ; the last equation ignores the dependence on.?3 The problem here is that 1=x does
not tend to zero fast enough whenx ! 1 . In engineering terms, as says that the functions of the
Haar system have poor performance in frequency ltering.

22 \Wavelets

22.1 Haar wavelet and multiresolution analysis
Let V = L?(R) (the real L? space), andl . be the interval (k 1)2";k2" for 1 <k< 1. Let

(22.1) Vh, = ff 2V :f is constant onl,x for eachk 2 Zg:
Let = 0,1 be the characteristic function of the interval [0; 1) = 1,0, that is,
( if 0 1
i X< 1
(x) = .
otherwise
and let 8

21 if0 x< 1=2
(x) = S 1 ifl1=2 x<1;
"0 otherwise

The function is called the Haar scaling function, and , the Haar mother wavelet?>! We put

ak(X)=2 ™22 "x k);
nk(X)=2 ™2 (2 "x k)
forn;k 2 Z. That is,
2 "2 f X 2 Iy

(X)) =
ik (X) 0 otherwise

213 The \big Oh" and \little oh" symbols were introduced by Edmund Lan dau. The symbols are very convenient,
but often their exact meaning must be ascertained from the context. Given af unction f (x), which is usually, but not
necessarily assumed to be positive, the symbol O f (x) denotes a function g(x) such that g(x)=f (x) remains bounded
whenx ! a,orx & a,orx % a(i.e., x tends to a from the right, or from the left), whereusually a=+ 1 ,ora= 1
ora= 1 ora=0,orelse ais any other value; the value of a and how it is approached should be understood
from the context. Similarly, o f(x) denotes a function g(x) such that lim x1 af (x)=g(x), (or lim yg af (x)=g(x), or
lim xo af (X)=0(x)), where, again a and how it is approached should be understood from the context.

22.1 The scaling function is occasionally called the father wavelet.
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and 8
22n=2 if X210 126 15

nk (X) = . 2 "2 jfx2 In 1:2k;
"0 otherwise
For xed n, The system of functions . is orthonormal in V,. The orthogonality is clear, since if

k 6 kOthen for all x 2 R, one of .k (x) and ,xo(x) is zero. The Haar system can be expressed in
terms of these functions a&2

W= 4k forn 2andl k 2" %

It is also clear that any function f, in V, can be expressed as a sum

b3
(22.2) fn(x) = Cok ik (X);
k=1

wherec is the constant value of 2=2f (x) for x 2 1y .23 This equation implies that the the system
of functions .« is also complete inV, (cf. Lemma 17.2 withM = V in that Lemma {i.e., M = V,
in the present case).

Observe that

1
(22-3) n+l:k = 93( n2k 1t n;2k)
and
1
(22-4) n+l:k = pE( n2k 1 n;2k):
Hence, the above equation becomes
p 3 X
fn = Chk nk = Cni2k 1 m2k 1+ Cnj2k ni2k
k=1 k=1
_ X Cn; 2k 1t Cn;2k Cn; 2k 1 Cn;2k
- f n; 2k 1t n; 2k + f n2k 1 n; 2k
k=1
_ x Cn; 2k + Cn: 2k Cnizk 1 Cniok
= = n+lk + = n+1k
ke 1 2 2

22.2 Note quite, since we equality at the end points of the intervals |, is not guaranteed. However, these functions
are still equal a.e., i.e., in the sense of L2. See footnote 21.2 on page 81.

22.3 ps a consequence of orthonormality, we must have
A

Chk = nik (x)f(x)dx = h n:k fie
Inik

We did not use complex conjugate in this equation, since f is assumed to be real valued. It is also easy to check this
equation directly.
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Writing
X

. + C.

(22.5) frna = Cnié# n+1 ;k
k= 1

and
% . .

(22.6) Oh+1 = Cnié# n+l ks
k= 1

we havef, = fri1 + gher . Further, fri 2 V. and W41 5 0n+1 i = 0. This latter equation holds
sinceh n+1:k; n+1 kol = 0.224 Write
( X . .2
Wh = A n+lk - Jaje<1
k=1 k=1
It is worth restating this discussion in a more formal framework. We need a de nition for this.

De nition 22.1. Let X and Y be subspaces of the inner product spacd such that for eachx 2 X
andy 2 Y we havehx;yi =0. We then call X and Y orthogonal and we write

X Y=fx+y:x2X and y2Yg

X Y is called the orthogonal sum of the spaceX and Y. If U= X Y, then we can also write
Y=U X.25fU=X Y andu 2 U, then the unique y for which u = x + y is called the

projection of u onto Y. The function P for which Pu = y is called the projection operator onto
Y.22'6

We have
(22.7) Vo = Vhaa Wha forall n2Zz:

Let P, be the projection operator fromV, to V.1 ; we haveP,f, = f,.1 . There are further notable
properties of the spaces involved that will be important for describing a more general setting of
multiresolution analysis. We have

(22.8) Vh+s1  Wh forall n2 Z:
Further,
v
(22.9) V, = f0g;
n=1

2241f k 6 kOthen for any x 2 R, one of n41 x (X) @nd 41 o iS zero.

225 One needs to be a little careful here. The symbol is also used to indicate the direct sum of two vector spaces.
When X and Y are subspaces of a vector spaceU (no inner product is assumed here), and X \ Y = fO0g, then the
direct sum of X and Y is de ned as

X Y=fx+y:x2X and y2Yg:

There is no real conict here, but there is one important di erence. If U is the orthogonal sum of X and Y, then
knowing U and X, we can nd Y. On the other hand, if U is only the direct sum of X and Y, then knowing X, we
can have several choices forY .

226 |t js customary to write P u instead of P (u). This is a general custom for operators. P is a linear operator (also
called a linear transformation in linear algebra).

84



This is because a function belonging to all the space¥,, has to be constant on the intervals [2")
and [ 2";0) for all n, and then it also needs to be square integrable. We also have
!

(22.10) cl ‘ Va = L%R);

n=1

here cl(U) denotes the closure of U. For this closure to make senselJ needs to be a subspace of
a given normed space, say %>’ (at present, this space isV). A subspaceZ is closed if given any
sequence of elements of that is convergent in norm then the limit of this sequence is &so in Z.
The closure ofU is the smallest closed subspace & that includes U.??® Finally, we have
M

(22.11) W, = L%(R);

n=1
the symbol 08 the left indicates the closure of the subspaceofmed by all nite linear combinations
of vectorsin ._, W,, and the direct sum sign also indicates that the subspace#/, are pairwise
orthogonal. The equation is the consequence of equations efjuations (22.8), (22.9), and (22.10).

Write

frne (X) = Cn+1 k n+1:k(X);
k=1

and
b3

On+1 (X) = On+1k n+1k(X):
k=1

Equations (22.2), (22.5), and (22.6) imply

. + Cn. . )
(22.12) G = TEBRT MK gy gy, = T2 iz,

2 2
Since we havef, = fh41 + g+ for all n, equation (22.11) implies that for any f, 2 V, we have
3 3
(22.13) fn = dm'k m;k
m=n+l k=1

Equations (22.12) will point to way to compute the coe cient s in the wavelet expansion of a function.
This will be further elaborated below in a discussion of the dscrete wavelet transform.

The above discussion is based mainly on [14, Chapter 5, pp. 88.22° This is an award-winning
book, but it has some prerequisites in functional analysis ad harmonic analysis to read it.

22.2 What are wavelets?

Given a function 2 L?(R), called the mother wavelet, and a functionf 2 L?(R), the continuous
wavelet transform 210

FW(a;b):pl—a f(x) XT dx  (a:b2 Randa> 0):
1

227 An inner product space is also a normed space with the norm induced by the i nner product, as we pointed out
above.

228 That is, cl( U) consists of the limits of all sequences convergent in norm whose elements come from U.

229 The mistakes are mine.

2210 There is a technical condition, called the admissibility condition, t  hat need to be imposed on in order that f
can be reconstructed from its wavelet transform. See [14, Section 1.3, p. 7 ].
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Often, one only considers discretely labeled wavelets, meag that F, (a;b) is only considered for
certain discrete values ofa and b.??!' An illustration for this were the Haar wavelets in Subsec-
tion 22.1. Orthonormality, as exempli ed by the Haar wavelets is a useful property in allowing
e cient computer algorithms. There are also non-orthonormal wavelets that retain most of the
computational advantages of orthonormal wavelets.

Wavelets are used for localized frequency analysis of datator time series occurring in practice
this is very important, since time series are usually non-sationary, and Fourier analysis is applicable
only to stationary time series. The short-time Fourier transform considers only a part of the time
series to keep track of frequency changes. It is used for analis of a xed frequencies at a xed band-
width (the di erence between the upper and lower frequencis in the analyzed range of frequencies).
Wavelets automatically adapt the analyzed frequency rangdo the size of the frequency.

Restricting time series both in time and frequency is mathenatically impossible, since one needs
in nitely long time to measure a frequency exactly. This is related to the Heisenberg's uncertainty
relations in physics concerning the determination of the l@ation and the momentum (velocity times
mass) of a particle??'2 Daubechies [14,x2.3, pp. 21{23] discusses the example of a phone con-
versation, which is of nite time, and also of limited bandwidth, since the phone line is capable of
transmitting frequencies only in a certain range. So, how wt can a function be represented under
such circumstances. The problem is not an easy mathematicgbroblem, and its solution involves
eigenvalues and eigenfunctions of integral and di erentih operators.

22.3 Smoothness and frequency ltering

As we discussed in Subsection 21.1, the frequency Itering grformance of the Haar wavelet is poor;
the main reason for this is the sharp discontinuity of the Haa wavelet. In order to get better

performance, one needs smooth wavelets. The reason smoo#ss help frequency Itering can be
seen by integration by parts. Indeed, assume (x) = 0 outside a bounded interval (such a function

is called compactly supported; see footnote 20.3 on p. 77.) $sume, further, that is continuously

di erentiable; this will allow integration by parts. We hav e

Z, Z,
(22.14) A(x) = pjéj (y)e ixy dy = T%Zj O(y)e ixy dy
1 1

for x 6 0;2213 note that there is no integrated-out term, since (y) = O for large y. The x in the

denominator of the factor on the right-hand side indicates he speed of convergence of(x) ! 0

asx ! 022 |f s continuously di erentiable more than once, then we can reeat integration

by parts to show even better frequency ltering. Given any pasitive integer n, in [13], Daubechies
developed a method to construct orthonormal wavelets that ae zero outside a bounded interval and
are continuously di erentiable n times.

2211 piscretely labeled wavelets are to be distinguished from the discrete wavelet transform, discussed below.

2212 This relation is certainly not perfect. For time series, the statement is a m  athematical result, for physics, it is a

basic principle that supports arguments even in cases when the exact equati ons governing a physical system are not
known.

2213 \We have i =1=( i), so we could simplify the right-hand side a little, but that is besid e the point.

2214 without the x in the denominator, one would expect a rate of convergence of O(1=x), as in the Haar wavelet {
see Subsection 21.1. This factor indicates that the rate of convergence is at least O(1=x?2).
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22.4 A short history of wavelets

22.5 Wavelets and image analysis

Given a complete orthonormal system of wavelets .k (x), one can construct a two-dimensional
complete orthonormal system of wavelets if two dimensions Y taking the system of functions

n;k;n O;kO(X; y) = nk (X) no;ko(y)Z

Such a system of two-dimensional wavelets can be called th&nsor product of one-dimensional
wavelets. A more interesting scheme of producing two-dimesional wavelets is using multiresolution
analysis in two-dimensions directly; that is, the method the basic features of which were described in
Subsection 22.1, can be generalized to two dimensions witbbrelying on one-dimensional wavelets;
see [14, Chapter 10, pp. 313{]. Smoothness of two-dimensiahwavelets is important for avoiding
edge e ects, caused by sharp jumps in the Haar wavelet. The ® [1] has nice pictures showing
the wavelet decomposition of images, and illustrates varios uses (such as e.g. edge detection) of
wavelets with pictures.

22.6 The discrete Haar wavelet transform
Let

h3
fo(x) = Cox ok (X);

k=1
Start with a nite sequence of the coe cients cp; these are perhaps the sampled value of a con-
tinuous time series (the coe cients outside the sampled rarge can taken to be zero). Using equa-
tions (22.12), and can calculate the coe cients c,x and d,« for n > 0. These equations show
the number of coe cients cy+1 « in the nonzero range is half of the number of coe cientsc,x in
the nonzero range. Similarly, the number of coe cients dn+1 .« in the nonzero range is half of the
number of coe cients ¢,k in the nonzero range. So, after a while, all coe cients will be zero. The
coecients dmx for m > 0 and z 2 Z will be the coe cients of the wavelet expansion of fq; cf.
equation (22.13).

22.7 Orthogonal wavelets

We will generalize the framework described in Subsection 22 on account of the Haar wavelets. The
starting point again will be the selection of two functions , called the scaling function, and , called
the mother wavelet. These two functions will determine the wavelets to be constructed, and how
to select these functions is a di cult problem. These two functions, and the subspaced/, and W,
constructed with the aid of them will satisfy properties analogous to those described in Subsection
22.1.

The closed subspacé$?!® V, and W, of L2(R) will satisfy equations (22.7){(22.11). Equation
(22.1) will be no longer in force { that equation applied only to the Haar wavelets. Instead, we will
require that

V, =fg:thereis anf 2 Vy and ak 2 Z such that

(22.15)
for all x 2 R we haveg(x)= f(2 "x k)g

2215 A subspace U is closed if cl(U) = U. See footnote 22.8 on p. 85.
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for all n 2 Z. Note that for n = 0 this means that if f 2 Vg and g(x) = f (x k) for some integerk
and for all reals x then we also haveg 2 V. Assume 2 Vyand 2 Wy, and for eachn;k 2 Z, put
e () B2 n72 2y k),

def

(22.16)
nk (X) =2 ™2 (2 "x k):

Assume thatf nx : k 2 Zgis an orthonormal basis ofV, and f ,x : k 2 Zg is an orthonormal
basis ofWp,.2216 We have?217

R _
(22.17) (x) = hkp 2 (2x k) for a.e. x
k=1
with some numbershy, because (x) 2 Vy V 1, and and the functions pi (2x k) = 1k (X)
form an orthonormal basis ofV ;1. Similarly,
b p_
(22.18) x) = & 2 (2x k) for a.e. x
k=1

with some numbersgg, because (x) 2 Wy V ;.
Assuming and are continuous, these equations hold everywhere. In this a2, the values of
at the integers determine the values of and at placesm=2 for all integers m. The values of
at these points then determine values of and at all points m=4 for integer m. Repeating this
argument, we can see that the values of at integers determine the values of and at all dyadic
rationals.?>1® Then, by continuity, (x) and (x) are determined for all x.

In many cases, all but nitely many of the coe cients are zero in equations (22.17) and (22.18).
This is certainly true if both and are zero outside a nite interval (i.e., when and have
compact support??1° The method to construct compactly supported smooth waveles was invented
by Daubechies, and it was described in [13] and also in [14]t Involves very sophisticated mathe-
matics using the Fourier transform, estimating products of certain trigonometric polynomials,?%2%
eigenvalues, and polynomial algebra. Compactly supportedgmooth wavelets are indispensable for
storing pictures on your cellphone. It is interesting to re ect on the abstract mathematical tools
needed to develop such ubiquitous applications. In a book st published in 1940, G. H. Hardy [18]
re ected on the practical usefulness of mathematics, and tied to draw the boundary between pure
and applied mathematics. The boundary has considerably sffted since then for many reasons; the
invention of computers played a major role, making vast segrants of pure mathematics useful in
applications. The book is an amusing light read.

22.16 Here basis is meant in the the sense of normed vector space. That is, every element o f the vector space can be
represented as an in nite linear combination of the basis vectors. Linear independence is still mean t in the sense of
nite linear combinations { though this is not an issue, since linear i  ndependence is a consequence of orthonormality.

We need to make these assumptions only in case n = 0, when they in e ect de ne the spaces Vp and Wy in terms

of the functions  and , respectively. For other values of n, they care consequences of equations (22.16), (22.15),
and (22.7), as one can see after some consideration.

2217 As indicated, these equations hold for almost every (a.e.) x. See the comment in the second paragraph of
footnote 17.4 on p. 65.

2218 A dyadic rational is a number m=2" for all integers n> 0 and m.
2219|f  has compact support, then the wavelet is called compactly supported. If has compact support, then it
follows that  also has compact support; the proof of this is, however, technical. See [ 14, Section 6.1, p. 167].

2220 called Riesz products, named after F. Riesz, who was mentioned in footnote  17.4 on 65.
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22.8 The discrete wavelet transform

Given any integer m, using equations (22.16), we can rewrite equations (22.17nd (22.18) can be
rewritten as

x p_ x
om(X)= (X m)= he 2 2(x m) k = he  1.2m+k(X) for a.e. x;

om(X)= (x m)= & 2 2(x m) k = % 12m+k(X)  forae.x:
k=1 k=1

Using equations (22.16) again, these equations imply thatdr any integersm and n we have
R

n+l;m = hy n:2m+Ks

22.19 .

(2219) "

n+l:m = Ok n;2m+k,
k=1

where the equation of functions is meant a.e.
We want to express the functions on the right-hand side in tems of the functions on the left-hand

side. Orthonormality makes this easy. Indeed, we have
* +

X X
h n+l;m; n;Ii = hy n2m+ks nl = hkh n;2m+ ks n;Ii
k=1 k=1
3 P
= he omekt = he kioom = Ny ot
k=1 k=1

The asterisk here indicates complex conjugation. Similas,
hnetms il =0 on:

Usually, both functions and are real, in which case the coe cients hy and g are real, and
the complex conjugation can be omitted?>?* Since the functions p+1.m and n+1:m form an

orthonormal basis of the spaceVh+1  Wha = V,, according to equations (17.4) and (17.5) this
means that

X X
(22.20) nl = h| om n+l:m t 9 om n+1im:

m=1 m=1
Given f 2 V,, we can writef as
ps X b3 b3 ps

f = Cul nil = Ct Ny om  n+rm * Cnl O 2m  n+l;m;

22211 A = (ay) is an m n matrix with complex entries, then its  Hermitian conjugate (also called conjugate
transpose) is the matrix A is the n m matrix with a,, being the entry in the Ith row and kth column. That is,
after taking the transpose of A, we take the complex conjugate of each entry. A square matrix U is a unitary matrix
if U U =1, where | is the identity matrix of the appropriate size. That is, U = U . The coe cient matrix in the
system (22.19) of equations can easily seen to be an orthonormal matrix.

A matrix is unitary if and only if its columns (or its rows) form a n orthonormal system of vectors. The real unitary
matrix is an orthogonal matrix. Orthogonal matrices were dened i  n Subsection 8.2.
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where the second equation was obtained by using (22.20). As2 V,, = Vh+1  Wp41, We can also

write
R R
f = Ch+l;m n+1;m T dnstm  netm:
m=1 m=1

Since this representation is unique, comparing the last twaisplayed equation, we obtain

b3
(22.21) Ch+lom = Coit Ny 2ms

=1

R
(22.22) On+1m = Cnil 9 2m-

I=1

Let

R
fo(x) = Cok ok (X):
k=1

As in Subsection 22.6, start with a nite sequence of the coe cients ¢y ; these are perhaps the
sampled value of a continuous time series (the coe cients otside the sampled range can taken to
be zero). Using (22.21) and (22.22) we can calculate the coeients for n > 0. Assuming only a
nite number of the coe cients hy and g are nonzero, at for eachn the number of coe cients gets
approximately halved. Hence we will nd an N 2 Z such that all coe cients c,x and dnx will be
zero forn > N . The coecients dnx for m > 0 and z 2 Z will be the coe cients of the wavelet
expansion off y:

x X
fo= Ank  mk -

m=1 k=1

In the language of electric engineering, equation (22.21)apresents a low-pass lter, i.e., Itering out
(discarding) high frequencies, that is, the ner features d the signal (those represented by elements
of the spaceW,.1 ), and equation (22.22) represents a high-pass lter, i.e.,Itering out (discarding)
low frequencies, that is, the cruder features of the signaltbose represented by elements of the space
Vn +1 )

The Haar wavelets t into this pattern as follows. Comparing equations (22.5), (22.6), and
(22.19), we can see that

h —h—pl—' g —pl—' Qo = 91—
1 0 éy 1 é, 0 z,
and hy = g« =0 for k2 Z with k& 1;0. Itis easy to check, that with this choice for hy and g,
equations (22.21) and (22.22) will become identical to equ#ons (22.12).

22.9 Non-orthogonal wavelets

Often, the condition of orthogonality of wavelets is is abardoned, but usually equations similar to
(22.21) (22.22) are still obtained to perform e cient calculation. Usually, non-orthogonal wavelets
are also linearly dependent. One of the advantages of this iledundant representation of the coe -
cients ¢y for error correction. For calculations, there is little need to get involved with theoretical
issues, and it is enough to know the high-pass and low-passtedrs used in calculations?>?? but one
may need a somewhat closer understanding in order to see howdse wavelets can be used.

2222 gome wavelet schemes may involve several high-pass and low-pass lters.
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22.10 Applications of wavelets in nance

Frequency analysis has long been established in engineggimnd the sciences, but it has major limi-
tations in that it imposes major restrictions on the dynamics on the time series such as stationarity,
and information in the time domain is lost. While stationary time series are common in engineering,
they are rare in nance.

Wavelets overcome these limitations, and they are capable focapturing information both in
the frequency domain and the time domain. The early developrant of wavelets took place in
image analysis. In the last two decades, their applicationsbecame wide-spread in the sciences,
but they were slow to emerge in nance. This situation is now danging; the paper [22] gives a
simple introductions to wavelets, and discusses their apjitations in nance. The paper argues
that the advantages of wavelet methods are that they combingime-domain and frequency-domain
information, and, further, that they are very exible, and d o not make strong assumptions about
the data generating the time series under consideration. Th paper [7] gives a tutorial of the
wavelet transform. The doctoral dissertation [28] uses waglets for nancial time series to discuss
the interaction between major equity markets, and discussge wavelet networks, a special class of
neural networks, in nancial forecasting. The master's thesis [32] analyzes various nancial model
experiments, and demonstrates that wavelet neural network combined with statistical methods is
feasible for achieving accurate forecasting. The paper [3luses wavelets to analyze the e ects of
high-frequency trading on the stock market.

23 State-space models

23.1 A simple state-space model

Given a eld F (in these notes mainly the eld R of real numbers orC of complex numbers), write
Fmn for the set (or algebray®! over F of m n matrices. A state-space model involves two vector
time series: f S;g, the state of the system, andf Y; g, the observed time series; here for given positive
integersm and n we haveS; 2 R,.; and Y; 2 Ry, 1 are column vectors?3? S, is not assumed to be
known. The updating equations are

(23.1) St = AS; 1+ &;
(232) Yy = HSt + ¢

Heree 2 R4 is the column vector of errors in the update equation (23.1), ; 2 Ry,.1 is the vector
of error in the observation equation (23.2). Further, A 2 R, , andH 2 R, are matrices.

Sometimes one also assumes that the, are identically distributed; similarly, one may assume
that the errors of ; are identically distributed. Further, one often also assunes that any collection
of the vectors e, and  for various values oft is independent. [17]

23.2 Representation of simple state-space models as ARMA mo dels

Let m, n, M, and N be positive integers, LetfY;g be vector time series,Y; 2 Rn. 1, let E; 2 Rp.1
be identically distributed error vectors such that any collection of them for di erent values of t is

231 An algebra over a eld F is a vector space over F also has a product operation with certain properties. In a
matrix algebra, the product operation is matrix multiplication

232 \What we did is somewhat of an abuse of notation. Namely, the entries 0  f the vector S; are random variables and
not numbers; so saying that S; 2 Ry, 1 is technically incorrect. Similarly for Y.
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independent. LetAx 2 Rmm (1 k M)andB; 2 Ryn (0 | N) be matrices. Assume

b4 X
(23.3) Yr = AcYt k+ BIE: |
k=1 1=0

for all t. This equation is called a vector ARMA(M; N ) model of the time seriesf Y;g. If the matrices
Ay are scalar multiples of the identity matrix, we call the model a vector ARMA( M; N ) model with
scalar AR coe cients. We have

Theorem 23.1. The vector Y; in equations (23.1) and (23.2) satis es an ARMA(N,N) model with
scalar AR coe cients for some N m, where m is the dimension of the state vectorS;.

If the errors e in (23.1) are identically distributed, and also so are the erors  in (23.2), then
the errors in the obtained ARMA model are also identically di¢ributed. Similarly, if the error vectors
( ;&) are independent?3 then so are the errors in the obtained ARMA model.

Proof. By repeated applications of equation (23.1), we can see thabr any integer k 0 we have
K1

(23.4) Stk = ASi+ Alen
j=0

This is easy to verify by induction. Indeed, for k = 0 this says that S; = S;. Assuming the equation
is true with a certain value of k, by equation (23.1) we have

K1
Stekst = ASpak + Beksr = A AKS + Aletk | + @k
j=0

— k+1 X< i .
= AT S+ Alerker
j=0

P
establishing equation (23.4). LetP(x) = l’:':o XK (n = 1) be the minimal polynomial of the
matrix A.Z*# Multiplying equation (23.4) by ¢ and adding the resulting equations for0 k N,
we obtain

X X ) oK
kSt+k = KA S + Kk Alewy
k=0 k=0 k=0 j=0
XX
= P(A)S + kA e
k=0 I=1
in the last equation we replaced the summation variablg with 1 = k j.2>5 Noting that P(A) =0,

233 The repeated application of the Hermitian transpose cancel out, since for any number or matrix x we have
(x ) = x. We wrote out the right-hand side to illustrate this. The purpose of this notation is to avoid the use of
writing column vectors, which take up more space to print.

234 A monic polynomial is a polynomial with leading coe cient 1. The minimal p olynomial P(x) of an n n matrix
A is the the monic polynomial of the smallest degree such that P (A) = 0. It is known that the degree of the minimal
polynomial of A is n. This is because we have Q(A) = 0 for the characteristic polynomial Q(x) of A by the
Cayley{Hamilton theorem. See [24, Subsections 3.1 and 8.8, and especial ly Theorem 6.1 on p. 14 in Section 6].

235 Even though AK for negative k occurs in the above equations, and A 1 may not be de ned, this is harmless, since
the coe cient of AX for negative k is 0.
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and interchanging the order of summation on the right, we obfin

X XX -
kSt+k = kA" el
k=0 I=1 k=1

Multiplying this equation by the matrix H on the left and using equation (23.2) witht + k replacing
t, we obtain that

X XX -
k(Viek  t+k) = kHA® ‘e
k=0 1=1 k=1
Since N =1, this equation can be written as
K 1 X P o
Yien = kYeek t+1 + kHA €+
k=0 1=0 I=1 k=1
X 1 K1 X e N
= kYiek + t+N ]t KkHA D T en s
k=0 j=0 j=0 k=N j
where, to obtain the last equation, we putj = N | in the summation. To make this equation t

the form described in equation (23.3), take

Et=( ;&) = et ;

where we used Hermitian transpose in the middle member to savspace. The matrix on the right is
an m + n dimensional column vectors (since ; is m-dimensional ande; is n-dimensional). Further,

X .
Bi = Im; KHAKH N for 0 j N 1
k=N j

wherel, isthe m m identity matrix and O ., isthe m n zero matrix; sinceH ism n and A
isn n matrix this makes Bj ann (m + n) matrix. As for the comment about the independence
and identical distribution of the errors, this is clear from the equations for the error E;. The proof
is complete. O

23.3 Representation of an ARMA model as a state-space model

Conversely, an ARMA(M; N ) model can also be represented as a state-space model delsed by
equations (23.1) and (23.2). We will only consider a scalar RMA model of form

b X
Yt = kYt Kkt IVt I,
k=1 1=0

where fY;g is a scalar time series, and the errors; are scalar. To represent this as a state-space
model, we take the space as the vector



where the repeated application of the Hermitian transpose ancels out { see footnote 23.3 on p. 92.
Take A = (a; ) beanM M matrix with a;; = (forl j M,a = ; ¢jfor2 i M and
1 j M,ande =0y 1. Further, let H be the N -dimensional row vector

H=(1,;00;:::;0);

and let ; be the scalar
X
t = IVt |-
1=0
With these choices, equations (23.1) and (23.2) are satis& As it is seen from these equations, the
independence of the errors; is not assured in this model.

23.4 Question whether the ARMA model of scalar time series wi th scalar
errors is appropriate

It seems that in a scalar ARMA model the presence of past errar is an artifact. It is reasonable to
assume that the past behavior of a system producing a time sés is communicated via the current
state of a system. That is, the correct model of a time series wuld apparently be a state-space model,
and the ARMA behavior is only a mathematical consequence oftie state-space model. However, as
we saw in Theorem 23.1, the errors in this ARMA model have matix coe cients, and an ARMA
model with scalar error coe cients could produce only a relaively poor approximation of the actual
errors. For this reason, the description showing how past eors in the ARMA model seems more of
a mathematical artifact than some philosophical re ection on the behavior a system.

The translation of an ARMA model into a state-space model is mly a mathematical trick in that
we describe the state space as a vector of past outputs, and i®t based on a deeper understanding
of the system producing the signals. The fact that independet errors in the time series are not
re ected in the independence of the state errors at di erent times of the state-space model points
even more to the arti cialness of this model.

24 The Kalman lter
24.1 What is the Kalman lter trying to do?

Imagine you are steering on ship through a narrow and dangenss straight. You can control the
steering and the engine power. However, the ship is slow to spond to any input. Furthermore, the
ship's response has a random element because of currents amithd. You have precise maps indicating
the route the ship is required to follow. You can monitor the hip's position and orientation (perhaps
by GPS and compass, or by features on land visible from the sh). The position of the ship, her
orientation, the position of the steering wheel, the enginecontrols, and the actual engine power is
monitored as the sampled values vector time series. It is atsknown how the ship is supposed to
respond to steering and engine controls. The problem to be $e&ed is how to change the steering
and engine controls to keep the ship safe. The ship's respoago these controls involves various
delays and random elements, so the exact state of the enginse not known; all information about
it comes from various sensors. A mathematical method to hankg this situation was invented by
Rudolf E. Kalman. The mathematical model encompassing his rathod will be described next.
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24.2 A state-space model with control input

A time series model of the described situation can in generdde described as follows; we will assume
in the rest of this section that all matrices are real. We are tying to estimate the state vector
Xk 2 Ry 1 (i.e., an n-dimensional column vector of reals) of a process at tim& with measurements
Z¢ 2 Ry 1, wherem and n are positive integers. HereZy is known but X is not. These quantities
are governed by the following equations

(24.1) Xk = FxXk 1+ ByUk + &;
(24.2) Zi = HeX + k:

Here ux 2 Ry;1 is the control input at time k, wherep is an integer, Fx 2 Ry, is the state transition
matrix applied to the previous state, Bx 2 Ry, is the control-input model that is applied to the
control input ux, Hx 2 Ry is the observation model,ex 2 Ry 1 is the control error, and ¢ 2 Ry 1
is the measurement error, all at timek. The errors ¢ and  are assumed to follow multivariate
normal distribution 0 mean with covariance matrices Qx 2 Ry, and Rk 2 Rpyp.241 We will assume
that the errors e, and ¢ are independent of each other and of any,, Z, g, and | for I <k . We
further assume that  is independent of Xi. It is not necessary to know the covariance matrices
Qx and Ry; they can be estimated from prior observations (called the tining of the process). In
equations (24.1) and (24.2), the matricesF, By, and H, are assumed to be knowrf#?2

24.3 The Kalman lIter: prediction

The Kalman Iter works in two steps: a prediction step, and an update step. %kik ;1 denotes the
predicted estimate of X before the measurementZy is taken into account, and >’(‘kjk denotes the
corrected estimate after the measuremenZy is known. We will assume that these estimates are
unbiased, that is, their mean isE (X).?*3 Note that X is not observable. We put

(24.3) Xk 1= FiXy gk 1+ BrUg:
We have
(24.4) Xk Xk 1= Fe™k 1 Ri gk 1)+ &

according to (24.1). SinceE (&) =0, it follows that if Xy 4 1 is an unbiased estimator ofXy 1,
then X\, 1 is an unbiased estimator ofX . We will consider the covariance matricesP of the errors
of these estimators. That is,

(24.5) Pujk = Cov( Xk Xijk) =E Xk X)Xk Xik)T

(24.6) Puk 1=Cov(Xk Xk 1)=E Xk Rix DXk Rie 1) 5

2411n symbols, one can write that e N (On.1;Qk) and x N (Op;1; Rk), where, given positive integers | and m,
O.m 2 R;m denotes anl m matrix with all zero entries. We will also write Qi = Cov( &) and Ry = Cov( ). This

notation for the covariance matrix was introduced in Subsection 2.3

24.2 The model we are describing is a linear model. The extended Kalman lteri s a nonlinear model, in which these

matrices are Jacobian matrices of the variables at places of the varia bles X and Z known or estimated at time k. See
[34, p. 8].

243 This will be asymptotically true if the Iter converges. When the lter is started, the value of Xg;o will be a

guess.
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The second equation on each line assumes that these estimasaare unbiased. Using equations (24.4)
and (2.5), and noting that E (&) = 0 and Cov(e) = Qk, we obtain
Pk 1=E FeXk 1 Xi 1k D+ & Xe 1 Xi 1 )TFF + 6

= FE Xk 1 X gk )Xk 1 Ri 1k 1)" Fd +E(exel)

= FPe 1k 1F¢ + Qs

the second equation here holds because the error vectex is independent of earlier variables. The
third equation uses (24.5) and the equationQy = Cov( &).
The measurement residual is given by

(24.7)

def
(24.8) Vi = Zk Hi Xk 1

According to equation (24.2), we would haveYy, = O if )@kjk 1 Were accurate. That is, Yy is a
measure of the accuracy of the prediction. Note that

E(Yi) =E(Zk) HkERyjk 1) = HKE(Xk) HkERyjk 1) =0;

where the second equation holds in view of (24.2); for the thid equation, see (24.4). Hence, using
equation (24.2) once more, for the covariance matrix offy we have

def
Sc T Cov(Yi) =E(YI)=E He(Xk Xk 1)+ « Xk Xk 1)THY + &
(24.9)

HoE Xk Xk DXk Xy )7 HY +E( « 1)
HiPyjx 1Hi + Rk

the second equation here holds becausg is independent ofX and %kjk 1, and the third equation
holds in view of (24.6) and sinceRyx = Cov( ).

Before continuing, some re ection can be helpful. While the qu antities Xy, Zx, and Yi, and the estimators
>@kjk 1, Xk, and )'(\kjk are random variables, these quantities are functions of the sample space. On the other
hand, the matrices Py, Pyjk 1. Sk, and others are not. They are not functions on the sample space,
they are functions only of the expectations of various expressions of the random variables involved. On the
other hand, in an implementation of the Kalman lter, these exp ectations may be approximated by random
variables.

24.4 The Kalman lIter: the correction

The residual Yk carries the information about the accuracy of the estimate)@kik 1. We de ne the
corrected estimate

(24.10) Xijk = Xijk 1+ Kk Vi
where the matrix K is so chosen that the mean square error
(24.11) ERX  Xyjkk?)

is the least possible. Noting that

EXXk  Xuk) =E(Xkx Xk 1) KkE(W)=0;
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we have
def
(24.12) Pk = Cov(Xk  Xik) =E Xk X)Xk Ru)T

this equation is in fact a restatement of equation (24.5), rst stated in anticipation of the de nition
of Xyjk. The trace?** of this matrix is E(kXx  Xk?). Thatis K is to be determined so as to
minimize the trace of Py;,. Using equations (24.10), (24.9), and (24.6), we have

Pik =E Xk Rijk 1) Ke¥e Xk Xk )7 WKy
=E Xk Xk )Xk Xk 1)7 + Kk (VK
E Xk Xik 1)V Ki KeE Yi(Xx Xk 1)7
= Puk 1+ KkSkKKp E (X Xk )V Ki KeE VX X )7

(24.13)

We need to simplify the last two terms. We rst deal with the la st term. Using equations (24.8)
and (24.2), we obtain

EVi(Xk Xk 1) =E Zk  HiXix DXk X )7
=E (HiXk+ k HiXie )Xk Xk )7
= Hk E (Xk >€kjk 1) (Xk >€\kjk )" = HePyjk 15

here, the penultimate?*®> equation follows since i is independent of X and %kjk 1, and the last
equation holds in view of (24.6). Observing that the second ¢rm on the right of (24.13) is just the
transpose of the third term, using this (24.13) becomes

(24.14) Piik = Pijk 1+ KikSKK{ P 1Hg K¢ KiHiPige 15

for the last term note that Py, 1, being a covariance matrix, is symmetric, soPijk 1= Pk 1-

24.5 Optimization of the Kalman gain

In equation (24.14) all the matrices are known at this point except for the matrix K. To determine
the optimal gain, we need to choose the matrix such that the tace ofPyi is the smallest possible.
This problem is always solvable, since the trace of this maix is a positive semi-de nite quadratic
form, with the entries of Ky being the variables. Indeed, this trace is the expression gén in (24.11).
This problem can be solved as a simple problem of optimizatio in multivariate calculus; however,
to avoid technical complications, we need the right matheméical symbolism. There are several
mathematical approaches that could be used: we could write ut the trace in question with sums of
products involving scalar variables and then take partial derivatives; to simplify the calculations, we
could use matrix di erential calculus (see [38]), or we coull use tensor calculus. We wish to avoid
these complications, since the same goal can be accomplish@aking an informal use of in nitesimal
matrices.

The term in nitesimal was introduced by Leibniz, and they formed the basis of Leibniz's development of
calculus. They denote numbers very close to zero; sometimesn a contradictory way a positive in nitesimal
is described as a positive number that is smaller than every \usual" positive real numbers. There are various

244 The trace of a square matrix is the sum of its diagonal elements.
245 The one before the last.
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orders of in nitesimals: if x and y are both in nitesimal and x=y is also an in nitesimal, then x is said to be
an in nitesimal of higher order than y. Leibniz's idea was very fruitful, and they led to a fast deve lopment
of calculus. In the 19th century, in nitesimals were exiled f rom mathematics, and replaced by \precise"
mathematical tools.

We put \precise" in quotes, since there are di erent levels of precision acknowledged by mathematical
logic. In fact, Kurt Gadel in the 20th century showed the limit ations of formal approaches to mathemat-
ics; meanwhile, Gadel's ideas via Alan Turing and John von Neum ann led the way to modern computer
architecture (see [26]) The ideas of Skolem and Gadel led to models satisfying the axioms of arithmetic that
di erent from the usual (standard) set of integers. Conside rations of such models inspired Abraham Robin-
son to invent nonstandard analysis, and which put in nitesim als on a rigorous mathematical foundation; his
book [29] is still the best source the learn the subject from. He and Allen R. Bernstein did nonstandard
analysis to good use, and in 1966 solved a problem involving invariant subspaces of Hilbert spaces. Per-
haps to the misfortune of nonstandard analysis,z“'6 but very much to the fortune of mathematics, in 1973,
V. I. Lomonosov of the Soviet Union, who later emigrated to the USA, gave a striking generalization of the
Bernstein{Robinson result { see [37]. The Wikipedia article [ 40] is a good overview of the subject. If you
happen to look also at the article Criticism of non-standard analysis also on Wikipedia [39], the criticism
is somewhat misguided. Its main role is not to establish a philosophical basis for in nitesimals; it is a
mathematical tool to simplify a number of argument, somewha t similar in the way general topology is such
a tool.

In nding the optimal choice of Ky in equation (24.14), we replaceK with Ky + hM, where
h is an in nitesimal scalar, and M is an arbitrary matrix, and we write the resulting matrix on
the left-hand side asPyjx + Pyj; thatis, Py represents the change in the matrixPy;, by this
replacement:

Prik + Pk
= Pk 1+ (K + hM)Si (K¢ + hMT) - Py HE (K¢ + hMT)  (hM + K )H Py 1
Pujk 1+ KkSkKy Py 1HE K KiHkPye 1
+ N(MSKK| + Kk SkMT - Py 1H{M T MHPyjk 1) + W2 MSM T
Pijk + N(MSKK{ + Kk SKIMT - Py (HEMT - MH Py 1) + h®°MSM T

where the last equation holds in view of (24.14). That is,
Pijk = N(MSKK{ + Kk SKMT - Py 1HUM T MH Py 1) + h®°MSM T

Denoting by P« what remains of Py after omitting the higher order in nitesimals, i.e., term
multiplied by h?, we have Pjx = hD,?*" where

D = MSkK{ + KkSK(MT Py tH{MT  MH Py 1

We are only interested in the trace of this matrix, since we wat to minimize the trace of Pyy.
Denote by Tr(A) of a matrix A, and note that Tr( A) = Tr( AT), since taking transpose does not
change the diagonal elements of a matrix. Observing that in he expression on the right-hand side
of the equation for D the second term is the transpose of the rst, and the third is the transpose of
the fourth, we can write that

Tr(D) =2Tr( MSKK{ MH Py 1)=2Tr M(SKK{ HPyjk 1) :

24.6 Not really. Nonstandard analysis is well and alive.
24.7 At the price of some minor additional circumlocution, the matrix D could be described as the directional derivative
of Pyji with respect to Ky in the direction of M.
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We want to make Tr(D) =0, for all M. To this end it is su cient to to make sure that
SkKy  HiPyjk 1=0:

In fact, this condition is also necessary, but we will not male use of this?*® Taking transpose, this
means that

(24.15) KkSk  Pyjk 1H{ =0;

note that Py, 1 = Pijk , and Sy = S, since they are covariance matrices (cf. (24.6) and (24.9))
and covariance matrices are symmetric. So, i is invertible, we take

(24.16) Kk = Pgjx 1He S -

If S is singular, then equation (24.15) has multiple solutions ér K, and there are e cient numerical
algorithms to produce such a solution, given that the matrix Sy is positive semide nite.

24.6 Summary of the Kalman Iter steps

We summarize here how these equations are used to operate tK@lman Filter. We start with initial
vaIues)fojO and Pgjo. Atthe k step, we do the updating in two stages. The prediction stage prforms
those calculations that can be performed before the measunmgent Zy comes in. The calculations in
the correction stage rely on the measuremengy.
The equations for the prediction stage rely on equations (248), (24.7), (24.9), (24.16), and (24.14)

in turn. They are

%kjk 1= FiXy 1jk 1t ByUg;

Peik 1= FkPx 1k 1Fe + Qk;

Sk = HiPyjk 1Hg + Ri;
Kk = Pgjx 1He S 5
Prjk = Pk 1+ KkSkK{ Py 1HE K KeHePyjx 1

The equations for the correction stage rely on equations (28) and (24.10), respectively. They are

Yo = Zk HiXik 1
%kjk = )ekjk 1+ K'Yk

The matrices Fy, Bk, Qk, and Ri in these equations are assumed to be known in advance, and are
not part of the update process.

24.8 The necessity of this condition can be seen as follows. If for a matrix M, the matrix MA has a nonzero element,
then pick one of the nonzero elements of MA , and change all elements of M to zero except those that are in the same
row as the element picked. This will make MA have a nonzero element only in the row with the element picked.
Then, for a permutation matrix P, i.e., a matrix that has exactly one 1 in each row and each column, and all other
entries are 0, the rows of PMA are a permutation of the rows of MA . By taking an appropriate permutation matrix,
a nonzero element of MA can be moved to the main diagonal. This matrix will have exactly on e nonzero element in
its main diagonal, so its trace will be nonzero.

Hence, if the trace of MA is zero for every matrix (of the appropriate size), then MA has to be the zero matrix. In
particular, 1A has to be the zero matrix, where | is the identity matrix, and so we have to have A =0.
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In a practical installation of the Iter, Qx and Ry can be estimated by the lter itself. Starting
with initial estimates Qg and Rg that may be little more than a guess, one estimatese; from
equation (24.1), replacingXy 1 and X, with X 1jk 1 and )?kjk. There is no better choice, since
the values of X ; and Xy cannot be known. Similarly,  is estimated from equation (24.2),
replacing X with Xy . The estimates for the covariance matrix Qx and Ry are then updated,
using the estimates for these error sequences. This proceisscalled the tuning (the parameters of)
the Kalman Iter. This tuning of the Kalman Iter may itself i nvolve sophisticated algorithms.

25 The extended Kalman Iter

25.1 Fechet derivative

De nition 25.1.  Let V be a normed vector space oveR. A subsetB of V is called anopen ball
if B=fx2V:kx ck< gforsomec?2 V and for some > O;cis called the center ofB and |,
its radius. Aset S V is called open if for everyx 2 S there is an open ballB with center x such
that B S.

De nition 25.2.  Let V and W be vector spaces oveR, and : V! W be a mapping. is called
a linear operator (or a linear transformation ) if ( x +y)= ( x)+ ( y) for every x;y 2 V and
every 2 R.

For a linear operator and a vector X, one often writes x instead of ( x).

De nition 25.3. Let V and W be vector spaces oveR, and and let : V ! W be a linear
operator. is called boundedif there is an 2 R such that k xky kxky for all x 2 V, where
k ky and k ky indicate the norms of the respective spaces. The least suchis called the norm of
, or, more precisely, its norm induced by the vector norms in V and W.

It is easy to see that if an is bounded then there exists a leas such , and, in fact,
k k=supftk xkw :x2V and kxky =1g:
Next, we will describe what is meant by the limit of a function.

De nition 25.4. Let V and W be normed vector spaces oveR, let S be a subset ofV, let
f :S! W be afunction. letx 2 V, let y run over elements ofV, and let w 2 W. We say that

y! 'x';”stf(y) W
if for every > O there is a > 0 such that we havekf (y) wkw < whenever 0O< ky xky <
andy 2 S; herek ky and k ky indicate the norms of the respective spaces.

In the de nition, saying that 0 < ky xk is just another way of saying thaty 6 x, but it is more
concise to the inequality 0< ky xky < instead of saying thatky xky < andy 6 x. In case
S is an open set andx 2 S, we usually write limy, , f (y) instead of limy, ,y2sf (y), since in this
caseky xky < impliesy 2 S for small enough . The above is the Cauchy de nition of limit.
which is well known to be equivalent to the Heine de nition, according to which

y! Ii;rgzsf(y): W
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if for any sequencef y, g of elements ofS such that
lim ky, xk=0
n'l

we have
nI|ilm kf (yn) wk=0:

De nition 25.5.  Let V and W be normed vector spaces oveR, let S be asubsetol/, letf : S! W
be a function. letx 2 S. We say that f is continuous at x in S iflimy, ,.y2sf(y)= f(x). If there
is an open ballB S with center x, then we simply say that f is continuous at x.

De nition 25.6.  Let V and W be normed vector spaces oveR, let SV be open, letf : S! W
be a function. letx 2 S,andlet : V! W be a bounded linear operator. is called the Fechet
derivative of f at x 2 V if, with y running over elements ofV, we have

im KO 100 (y Xk

yl x ky xKy =0:

25.2 The Jacobian matrix

Let V be ann-dimensional real euclidean space. That isY = R;.; is the space ofn 1 column

vectors with real entries, and forx = ( 1; 2;:::; o) 2 V, the norm of V is de ned as
p X 1=2
kxky = xTx = 2
k=1
If y=( 1; 2;::: n)7 is another element ofV, then the euclidean inner product is de ned as
K yiv = x'y= K k'
k=1

Since thek ky is the norm induced by the inner producth; iy, it follows that k ky is indeed a norm;
in particular, it satis es Minkowski's inequality; see Cla use (c) in De nition 17.2 and Problem 17.2.
Given an m-dimensional real euclidean spac&V, a function f : V ! W can be described bym

functions of n variables: if f (x) = wfor x =( 1; 2;:::; )T 2V, andw=(!1;! 20 )T 2 W,
writing 'y = f1( 1; 2;::0; n) for L with 1 | m, these functions describe the functionf. In a
shortened notation, we may write that ! | = f(x).

The matrix described in the next de nition is called the Jacobian matrix, named after the German
mathematician Carl Gustav Jacob Jacobi.

De nition 25.7. If V, W, f, f|, x, and w are as described, them n matrix

25.1 — = e

(25.1) @x  @x 1 25000 n) @« 10 m1kn

is called the Jacobian matrix of f at x = ( 1; 2;:::; n)', assuming that the partial derivatives
exist.
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There is a problem with the notation used for partial derivatives in describing the Jacobian in
equation (25.1). To introduce a better notation, we will write @ for the the partial derivative with
respect to the kth variable. With this notation, we will write

@é(kx):@f.(x) @ 1 m

The problem with the notation used on the left-hand side is that it is associated with the point

@f(t)=@: Along the same line, for the Jacobian we can write@f That is

) & O3,

Lemma 25.1. Let V, W, f, f|, x, and w be as described. Assume that the partial derivatives
@f(x)=@x are continuous atx. Then the JacobianJ = @{x)=@xinterpreted as the linear operator
J:V ! W with J(x) = Jx (the right-hand side indicating matrix multiplication) is the Fechet
derivative of f at x.

Proof. For the partial derivatives of f to be continuous atx there must be an open ball with centerx

be dierent from x. Let = Kk fork with1l k n, andlet 2 V be the vector all whose
components are 0 except that itskth component is . Let xx = x + jk:1 hj fork withO k n.

Then we havex = xg andy = x,. Furthermore, forany k andl with1 k nandl1l | m, we
have
(25.2) fi(xk) fi(xk 1)= «@fi(Xk 1+ whg)

for some ¢ with 0 < | < 1 by the Mean-Value Theorem of Di erentiation, as we will explain.
First note that, given that y 2 B, we havexx 1;Xx 2 B, and sof|(xx 1+ hy) as a function of is
di erentiable in the interval [0 ; 1]; indeed,

o (x + h
%2 k@i (xk 1+ hy):

so we can use the Mean-Value Theorerf! Noting that @f, is continuous at x, equation (25.2),
can be written as

filxk) filxk 1)= « @Hi(X)+ w(y)
with some  (y) such that

(25.3) ylgn]( k(y)=0;

where the dependence ofy (y) on x is not indicated, sincex is xed throughout this argument; note
that on the left-hand side of equation (25.2),xx 1 and xx are determined byy (and x). Hence, we

251 The Mean-Value Theorem says that if is continuous in the interval [ a;b] where a < b and is di erentiable in
(a; b), then there isa 2 (a;b) such that

(b (@@= A)b a):

The Mean-Value Theorem is used in case hy 6 0; the equation is obviously true also in case hy =0 (note that hg =0
is allowed, even though hy =0 cannot be true for every k, sincey 6 x).
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have

X X
fity) fi(x)= fi(xk) fi(xk 1) = k @ (X)+ w(y)

k=1 k=1

X X X
= k@f((x) + k)= Jly x),+ k k()
k=1 k=1 k=1

where J(y x) , denotes thelth component of the vectorJ(y x); the last equation follows from
the de nition of the Jacobian J and by notingthat y x =( 1; 2;::: »)7. Thatis, writing e 2 W
for the vector all whose components are 0 except that itdth component is 1, we have

XX
fly) f(x)=J3y x)+ kk(y)e:
I=1 k=1
Noting that
ky xky = 0
k=1

we havej «j k' y xky. Hence

XX . .
kf(y) f(x) Iy x)kw Ky xkvj w(y)jkekw
1=1 k=1

X1 - -
=m ky xkvjwi
k=1

the last equation follows sinceke ky = 1. Therefore, (25.3) implies that

ki(y) f(x) Iy xkw

ﬁnl ky XkV =0;
soJ is indeed the Fechet derivative of f at x. O

In casem = n =1, the Jacobian is just the ordinary derivative of f, and the linear approximation to f
implied by the Fechet derivative described by the Jacobian is just the tangent line to the graph of f. In case
m =1 and n = 2, the Jacobian describes the total di erential of f, and the linear approximation implied by
the Fechet derivative is the tangent plane to the surface g iven by f. The casesm =2 and n=2or m =3
and n = 3 are occasionally discussed in introductory college courses in the context of changing variables in
multiple integrals; such an application was discussed in Subsection 2.4 on account of determining the density
function of a nondegenerate multivariate normal distribut ion.

25.3 The extended Kalman lter

In the model for the extended Kalman lIter, the linear equati ons (24.1) and (24.2) are replaced by
nonlinear equations

(25.4) X
(25.5) Z

f (XK 1;Uk;e);
h(Xk; ky
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for given vector-valued functionsf and g. This can be handled by a modi cation of equations (24.1)
and (24.2) of the linear Kalman lIter:

Xk = FeXg 1+ Byug + Exe;
Zx = H Xk + Gg «:

In these equations, the coe cient matrices Ex and Gy are new as compared to equations (24.1) and
(24.2). The coe cient matrices Fy, By, Ex, Hy, and Gy are taken to be the Jacobian matrice$>?
with respect to the variables associated with these coe cient matrices of f and g, at the place
(X 1;ui;0) for f, and at (Xy;0) for g, where X 1 and X\ are the estimates forX, 1 and Xy,
and the actual value of the vectoruy. The best estimate fore, and i is 0, that is why 0 is taken
for the arguments representing these errors.

25.4 Applications of the Kalman- Iter

The paper [17] describes the example of a train moving on a stight track, illustrating were the

matrices Fi, Bk, and Hy can be obtained from equations of physics describing the stem. The
Kalman Iter was used in aiding landing and return of the lunar module of the Apollo 11 mission,
the rst human landing on the moon. Today, there are several Kalman lters running on a common
cell phone. There is a good description, listing several agigations, in the Wikipedia article [36].

The paper [8] lists many more applications; it also containsvery interesting details of of these
applications.

26 The GARCH model

In an ARMA or ARIMA model

(26.1) Yi = kYe k+ & ke K
k=1 1=1

one often assumes that the errors (or residuals, or innovatins) e; are identically distributed, in
particular, they have the same standard deviation. This is dten not appropriate for nancial time
series, which often go through periods of volatility. In these cases, one may prefer to model the
errors in the form

(26.2) &= tZti

where the random variablesZ; are identically distributed independent variables, usualy standard
normal variables, and the time seriesf (g one models in various ways, most frequently as an AR
or ARMA or ARIMA process; one assumes thatZ, is independent of {.261 Such models are
called autoregressive conditional heteroskedastior ARCH, models, or GARCH (generalizedARCH)
models?%2 Such models were introduced by Robert F. Engle in 1982 in the gper [16]; this paper

252 |n other words, we take linear linear approximations to the functi  onsf and g at the places indicated.

261 |f one wants to interpret these speci cations mathematically, t must also be a random variable. In the model,
will be a function of random variables that assumed numerical values b  efore time t, whereas Z is a random variable

that assumes a value only at time t.

262 The word skedastic or scedastic means \related to the variance of statistical errors." Hence homoskedastic means
having the same nite variance, and heteroskedastic means not having the same variance (of errors of a time series).
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earned him the Nobel Memorial Prize in Economic Sciences in@3. Since then, many such models
have beed described; a glossary to such models is given by TiBellerslev in the paper [3].

To build a GARCH model, on rst builds an ARMA or ARIMA model as in formula (26.1), then
one estimates the errorse; in the model; this can be done in the way described in Subseans 9.5
or 10.1. Then one models the variances; of these errors by a linear model:

(26.3) g=1+ K€y + N
k=1 1=1

Note that this is not an ARMA model for the time series of ¢, since the residualse; come from
the original time series modeled in equation (26.1) rather han from the sequence of variances?.
The coecients !, , and  can be estimated by least square methods or by maximum likdtiood
methods (the latter give better results according to Engle L6, p. 998]).

26.1 Maximum likelihood for estimate for the coe cients in a GARCH
model

We will outline how the maximum likelihood method can be usedto determine the model parameters
in equation (26.3). Given a time seriesf Y;g. write  for the information available at time t. This
includes all the values ofYo for t° t, and given the model described by formula (26.1), also the
values ofepo for t° t. At time t before observingY;, the information available is ; ;. We have

_ g X
E(Vij + 1) = kYt ok K& k;
k=1 k=1

since
E(ej + 1)=E( Ztj ¢+ 1)=E( ¢j ¢+ 1)E(Zij + 1)=E( tj + 1)E(Z)=0;

the second equation holds here sincg; is independent of , and the third equation holds sinceZ;
is also independent of ; ;.
In the GARCH model, ¢ = Z; is assumed to be a normal variable with mean 0 and variance
2; this variance depends on the information ;. The variance of Y, conditional on ; ; is the
same:
Var(Yij  1)=Var(ej « 1)= 2

Thus, the density function of e conditional on { ; is

1 x2
fetj t 1(X): pjexp 72
2 t 2 t
This is also the conditional likelihood function:
1
Li( ;&)= p=—exp iz ;
2 t 2 t

where we wrote the observed value oé”of the error in place of x. The likelihood function is the
product of all conditional likelihood functions for the series of observations ofY,,. The values ofé&)
are not directly observable; they are calculated from the véues of Y, and the model parameters
and | in equation (26.1); the values of , are expressed in terms of the model parametersy and |
in equation equation (26.3). The likelihood function is corsidered as a function of the parameters ,
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and ¢ and | occurring in equation (26.3); these are the parameters to beletermined. The model
parameters  and ;| in equation (26.1) are assumed to be known at these points. Asiming that
observationsY,, were made for timesn for1 n t, we have

Yt
L, 5 3 Y)= piliexp éﬁz
n=1 2 24
In this equation, = h 1; 27101 i, = ha; 25000 poi, and Y = hYq; Y0 i, the values
for |, should be expressed in terms of, , and and using equation (26.3), where, at this point,
the values of the parameters! , , and and are yet to be determined. After this, the values of

these parameters can be estimating by maximizing the likehood functions. In doing to, one rst
takes the logarithm of the likelihood function.

27 The generalized least squares method

def X .2
var(Y)SE Y EY) Y EY) = E Yo E(Y

k=1

This is a scalar; compare this with the de nition of the covariance matrix of Y, whichisann n
matrix: o

Cov(Y)ZE Y EI) Y EY)
In fact, the variance of Y is the trace of its covariance matrix, where the trace of a square matrix $
de ned as the sum of its diagonal elements.

27.1 Ordinary least squares

The ordinary least squares method was discussed above, oncaant of the innovations algorithm
in Section 7, especially in the proof of Lemma 7.1. In this subection we give a description from a
di erent point of view.

Let m and n be a positive integer, A and m n matrix with known entries entries and let

unknown entries of x by measuring the entries of the column vectorAx, but these measurements
have errors. A mathematical formulation of the problem is the following:

Let =( 1; 2;::0; m)T and Y = (Y1;Y2;:::;Ym)' be a column vectors of random variables.
Assume that E( \)=0and E(  |)= x 2forallkandlwithl k;I m for some nite > O.
Assume we have the the system of equations

(27.1) Ax+ =Y

Find the best estimate ® of the column vectorx. A linear estimator for x is a random column vector
R = (X1;%2;:::;%,)" = BY, whereB is ann m matrix of reals; the entries of the matrix may
depend on the entries of the known matrixA, but they must not depend on the components of the
unknown vector x or on the components of the random vectorY . Such an estimator isunbiased if
E(R) = x.
We have
E(R)=E(BY)=E B(Ax + ) = BAX;
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the last equation holds since since E() = 0. So, the condition for the estimate = BY to be
unbiased is that

(27.2) BAX = x:
Writing ~ =Y AR, the method of ordinary least squares seeks to minimize theugntity
(27.3) ATA= (AT M =(AR Y)T(AR Y):

If the matrix ATA is invertible, then the the choice 8 = (ATA) ATY minimizes this ex-
pression. First note that this is an unbiased linear estimae with B = (ATA) 'AT. Indeed
BAx = (ATA) 'ATAx = x, so (27.2) is satis ed.

The row rank of a matrix is the maximum number of its linearly independent r ows, and the column rank
of a matrix is the maximum number of its linearly independent ¢ olumns. By a standard theorem of linear
algebra, the row rank and the column rank of a matrix are equal, and it is called the rank of a matrix. The
row rank of an m n matrix is at most m, its column rank is at most n, so its rank is at most the smaller
of these two, i.e., min(m;n).

If A and B are matrices such that the number of columns of A is the same as the number of rows ofB,
so that the product AB can be formed, then the rows of AB are linear combinations of the rows of B, and
its columns are linear combinations of the columns of A. Hence the rank of AB is at most the column rank
of A and the row rank of B.

Note that ATA isann n matrix. For it to be invertible, it has to have rank n. On the other hand,
Alisanm n matrix, and so its rank is  min(m;n). Hence the rank of ATA is also min(m;n). Hence,
the matrix AT A can be nonsingula®’! only in casem  n, i.e., if the number of scalar equations given
by (27.1) is at least the number of unknown. 2’2

Next we show that it minimizes A" :

Proof of minimization. Writing D = (ATA) !, assume that® = (DAT + C)Y for somem n
matrix C. Then, with | being them m identity matrix, we have

ATA= (A MY =(AR Y)T(AR YY)

YT ADAT+C) 1" ADAT+C) 1 Y

YT (ADAT 1)+ AC ' (ADAT 1)+ AC Y

YT(ADAT 1)T(ADAT 1)Y

+YT(CTATADAT CTAT+ ADATAC AC+ CTATAC)Y;

in the last equation, we made use of the fact thatDT = D; this is becauseD = (ATA) ! and
soDT = (ATA)T '=(ATA) ! = D. Making use of the fact that D = (ATA) 1, there are
cancelations in the second term on the right-hand side, and & obtain that this right-hand side is
equal to

YT(ADAT 1T(ADAT 1)Y + YTCTATACY
= YT((ADAT 1)T(ADAT 1)Y +(ACY)TACY;

271 iNonsingular for a matrix means the same as invertible.

272 The exact condition for the matrix AT A is that the rank of A be n; this is clear from the discussion above. This
means that the system of scalar equations given by (27.1) should contain n independent equations (which equations
are then uniquely solvable for x without errors, i.e., such that = 0). The solution of these n equations may contradict
other equations present in the system, so, usually the whole system of equati ons are not solvable without errors.
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As (ACY)TACY 0 if follows that the right-hand side is the minimum when C = 0. It is not
guaranteed that this is the only minimum, since it is possibke that CY =0 even if Y 6 0 (on the
other hand, ACY =0 only if CY =0, since if ACY =0 then ATACY =0, and the matrix ATA
is nonsingular). O

The least squares method is attributed to Gauss; he used it taletermine the orbit of the dwarf
planet Ceres; the method he used is described at the websiteThe method was rst published by
Legendre.

X
Var(Z) wf Var(Zy):
k=1

It is easy to see that Var(Z) is the trace of the matrix Cov(Z) e 2 E(Z) (Z E(2) T

The linear estimator % is called the best linear unbiased estimatorif in addition to being unbiased,
% = BY is such that for any othern m matrix B%we have Var@Y) Var(B% ). According to the
Gauss{Markov theorem, if the matrix AT A is nonsingular, then the best linear unbiased estimator
for x is® = (ATA) ATY.

Proof of the Gauss{Markov theorem. Let B®be anyn m matrix. B®we have
E(B%)=E(B%x + )= BlAx:
Furthermore,

C Oy = 0 0T — 0 (\TRO"
@74 ov(B%Y)=E (B°)B?) E B°()'B
= B°E ( )T B = g0 2g 0 = ZBOBOT;

wherel is the m m identity matrix. Writing D = (ATA) ! as before, assum&°= DAT + C for

somem n matrix C. In order for the estimate B% to be unbiased, according to equation (27.2)
we need to haveCAx = 0, since we have seen thaDAx = x. Since the entriesC cannot depend on
X, this means that we must haveCAx = 0 for any x, that is CA = 0. Using equation (27.4), and

noting that DT = D as we pointed out before, we have

1 - or _ T T T - T T
— Cov(B%Y)=B®B? =(DAT + C)(DAT + C)T =(DAT + C)(AD + C")
= DATAD + DATCT + CAD + CC" = (DAT)YDA™)T + CCT;

the last equation holds sinceCA =0, and ATCT = (CA)" = 0. Incidentally, DATAD = D since
D =(ATA) 1, but we did not need to use this. The matrix CCT is positive semide nite, and so its
trace is nonnegative. Hence, writing Tr(G) for the trace of a square matrix G, we have

Var(B% )= 2Tr Cov(B%) = 2Tr DAT(DAT)" + cCT
= 2Tt DAT(DAT)T +Tr cC’ 2Tr DAT(DAT)T =Var(DATY);
showing that DATY is indeed a best linear unbiased estimate foxk. O

The form (AT A) AT x of the solution given ty the least squares method is of theortical interest,
and it is not useful for practical calculations. For practical calculations, a factorization of the matrix
A into the product of an orthogonal matrix and an upper triangu lar matrix is used; for details, see
[23], in the section on overdetermined systems of linear ea@tions (currently Section 38, pp. 174{184).
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27.2 The generalized least squares method

In the generalized least squares method, one wants to nd théest estimate® for x in equation (27.1),
where now one drops the assumption that the components of therror vector E( ¢ |) = « 2 are
uncorrelated and have the same variance; instead one assusihat the covariance matrix = Cov( )
is known and is positive de nite, i.e., that ¢ ¢ > 0 for any m 1 nonzero column vectorc. 273
It is still assumed that the m n matrix A has rankn. The generalized least squares method was
invented by Alexander Aitken.

The generalized least squares problem can be reduced to thedinary least squares problem.
To see how this can be done, rst note that the matrix Cov( ) = being positive de nite and
symmetric, there is a lower triangular matrix L such that LLT = . The factorization LLT is
called the Cholesky decompositionor Cholesky factorization of the matrix ; for a discussion of the
Cholesky decomposition, see [23], the section on positiveedhite matrices (p. 163 in Section 35).
Since is positive de nite, it is invertible, and so the matr icesL and LT are also invertible 2’4
Multiply equation (27.1) by L ! on the left to obtain

(27.5) L Ax+L t =1L tv:
Noting that (L )T =(LT) 1, we have
COV(L 1 )=E L 1 T(LT) 1 - L 1E( T)(LT) 1_ L l( LT) 1_ L lLLT(LT) 1_ |:

Thus, equation (27.5) represents an ordinary least squareproblem, showing how to reduce the
generalized least squares problem can be reduced to an ordity least squares problem.

27.3 Linear regression models and generalized least square s

A linear regression model of a time serie§Y;g is an equation of the form

hd
Yi= ot KUkt + Zt;
k=1

where ; for k withO k m are parameters of the modeluy.; are explanatory variables measured
at time t, and fZ;g is the residual time series that is not predicted by the model When tting a
linear regression model to a time series, the residuals wilisually be correlated. In this situation,
a better model can be obtained by using the generalized leastquares method to t the model
parameters instead of using ordinary least squares. This idiscussed in [11X5.4, p. 98] and in [4,
x9.4.2, p. 363].

28 Long memory processes

In order to discuss the convergence of a certain series belpwe need a convergence criterion not
routinely treated in calculus courses.

27.3\We assume that is real, so we do not need to use complex conjugation. We have seen above tha t the covariance
matrix is always positive semide nite, i.e., that ¢’ ¢ 0 (see Problem 2.1). The assumption that it is positive
de nite amounts to the same as assuming that it is also nonsingular.

274 Indeed, if for two n n matrices the matrix AB is invertible, then both A and B must also be invertible. This is
because rank(AB ) min(rank A;rank B), as we pointed out in the small letter passage in Subsection 27.1.
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28.1 The Dirichlet convergence criterion

Theorem 28.1 (Dirichlet convergence criterion). Let ax and b for k 1 be complex numbers such
that

(28.1) kI!ilrn bh,=0
and
X
(28.2) jbe baj< 1
k=1

Assume that there is a real numbeB such that

X
(28.3) ax <B
k=1
forall N 1. Then the series
X
(28.4) ay b
k=1

converges.

This result is the Generalized Dirichlet Convergence Test.In the original version of the Dirichlet
Test, instead of (28.2) one assumes thahy is real andb; b1 > O forall k 1. The Alternating
Series Test is a consequence of the original version of the riwhlet Test. Indeed, one obtains the
Alternating Series Test if one takesa, = ( 1)¥*!, and one obtains the result stated in the problem
if one takes theh, = 1=k. We will comment on the role of the Generalized Dirichlet Tes in number
theory below.

Proof. To show the above result, write
Ch= & (n O)

Thena, = ¢, ¢, 1, S0, given integersM and N with0 M <N we have

X X
anbn = (Cn Cnh 1)h’|
n=M +1 n=M +1
X
=cvbver ovmbwar F Ca(bh  bner);
n=M +1

the last equation can be easily checked by noting that each ten in the middle member is matched
by exactly one member on the right-hand side. An equation of his type is called partial summation,
or Abel rearrangement, named after the Norwegian mathematiian Niels Henrik Abel 28

28.1 Apel rearrangement was also discussed above in Theorem 15.2, on account of in tegration by parts for Stieltjes
integrals.
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Therefore

X\I . . - - X\l - .. .
anby jonbysrjtjombvarjt jCniibn  bns]
285 n=M +1 n=M +1
( ) . . . . w . .

B jon+rj+ jlom+rj+ i bhaj O M<N),

n=M +1

the second inequality follows in view of (28.3). MakingM !'1 , the limit of the right-hand side is
0 in view of (28.1) and (28.2). This shows that the series in (8.4) indeed converges. O

A Dirichlet series is a sum

%
(28.6) amn °;

n=1

where the coe cients a, for n 1 are given complex numbers. Johann Peter Gustav Lejeune Dirichlet used
these eponymoug®? series to establish his famous result that if an arithmetic p rogression with integer terms
contains two relatively prime integers then it contains in  nitely many prime numbers. Dirichlet considered
these series only for reals; somewhat later, Georg Friedrich Bernhard Riemann used them with complex s
in his study of prime numbers. The basic convergence result for Dirichlet series is the following:

Theorem 28.2 (Region of convergence of Dirichlet series) If (28.6) converges for s = s with some complex
So, then it also converges for all complexs with <s > <sp.

This is a direct convergence of the Generalized Dirichlet Test. Indeed, assume that

X
ann °°
n=1
converges. Then
b3 X
an = a,n %on (& %)
n=1 n=1
Assuming <(s Sp) > 0, we have
z n+1
in (s so) (n+1) (s So)j = (s so)t (s so) 14t

n

(s so)n & %0 1 =5 gojn< (5 so) 1

Since the series
b3

n< (s sp) 1

n=1
is convergent (e.g., by the Integral Test), the Generalized D irichlet Test implies that the series in (28.6) is
also convergent. If we assume thats and sp are real, the same conclusion follows also from the original
Dirichlet Test.

282 ., series named after him (later, by others), that is, Dirichlet series.
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28.2 The spectrum revisited

Let y; be observations of the atime for 0 t<N , and, as in equation (16.1), we describe the series
of observations with a trigonometric polynomial:

X1
(28.7) Vi = g2t =N (0O t<N):
k=0

To simplify the considerations, we will de ne y; for all integerst by putting yi+xnv = Y; forall k 2 Z;
then equation (28.7) will be valid for all integerst. As in equation (16.2), we have

2ikt =N

1 X1t

N t=0

(28.8) & = yie

This equation is needed only for 0 k <N, but we will take it to be valid for all integers k, since
instead of the range of summation 0 k <N , we can take any range ofN consecutive integers in
equation (28.7); cf. equations (14.7) and (14.9).

The spectrum of this time series will be de ned analogously ¢ the periodogram de ned in
equation (16.3) except that we take frequencies in the rangé1l ;1 ), and do notidentify frequencies
fand1l f:

(28.9) S N = Njoj?:

28.3 Dierencing and the spectrum

If we write zz = y; vy; 1 for the di erentiated series, we have

1 l’( 1
Z=Y Y 1= Ck(eZikt =N e2ik (t 1) =N ):
k=0 k=0

Ck(l e 2ik =N )e2ikt:N

note that the rst equation for k = 0 makes use of our stipulation above according to which
Y 1 = Yn 1; Without this stipulation, y ; would make no sense. Writingcc(z) = c(r y) for

the interpolation coe cients in this equation, and also wri ting ¢ (y) & Ck, this equation shows that
a(ry)=(@ e 2N Hady):
Noting that
jl e 2kN j2=(1 g 2kaN yq @kN y=7 g 2k=N g2k =N |1
2k
=2 1 cosW ;
we obtain for the spectrums with frequency = k=N that that

(28.10) S(; fr yig9)=2(1 cos2 )S(; fy:0)
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Note that for — approaching zero, 1 cos2 has order of magnitude 2;%2 On the other hand,
on the basis of equation (16.7), one does not even expect th&8( ) ! 0 when ! 024 The
expectation is that S( ) ! cwithsomec6 0, If S( )!1 , then equation (28.10) suggests that
one would need to di erence the time series to remedy this sitation.

In trying to estimate the amount di erencing needed in a time series, one can try to estimate
the order of magnitude of S( ) as ! O0; call this order 2d, meaning that the size ofS( ) is some
bounded multiple of 29, In this case the time series needs to be dierenced times. The case
0<d< 1 is especially interesting, and it leads to fractional di erencing.?8°

28.4 Fractional di erencing

d

The binomial coe cient |

is de ned for any real d and for every integern 0 by the equation

d aer™'d k

n n k
k=0

Here, forn = 0 we have the empty product, which is interpreted as 1. Ifd is a positive integer and

n d, then this is the usual binomial coe cient; if dis a positive integer andn > 0, then | =0,
since then the factord k for n = k is 0. For any reald and for any complexz with jzj < 1, we have

(n O):

d
(1+2)%= "
n=0
The radius of convergence of this series is 1. Di erencingd times for nonintegerd can be interpreted
as replacing the observed time serieby; g with

d R d npn R d n
(I B)'wt = ( 1)"B"wt = ( D' n;
n n
n=0 n=0
of course, in practice, one cannot take an in nite series her, so one needs to truncate this series at
some point, perhaps atn = 40.

28.5 Slow decay of autocorrelation

In most stationary processes the autocorrelation decays gronentially; that is one expects that that
j ki= O e X for some positive .86 A slower decay, suchas, c¢cn for with0< < 1
and ¢ > 0 implies that the spectrum is singular (i.e., tends to in nity at frequency 0). In fact,
taking ¢ = 1 for the sake of simplicity, the spectrum of a stationary time series with autocorrelation
coecients (n)=n foralln Oand with0< < 1 can be written as

p3
(28.11) S()=1+2 n cos(h )
n=1
28.3 Indeed,
.1 cosx 1
lim = =
x! 0 x2 2
284 For an observed time series, the frequency = k=N can assume only discrete values, so, strictly speaking, ! 0

does not make sense. In a practical sense, however, saying that S( ) approaches 0 when approaches 0 make sense,
since N is expected to be a large integer.

285 Calculating the spectrum of an observed time series is fairly inexpensive w ith the fast Fourier transform discussed

in Section 29.

28.6 5ee footnote 21.3 on p. 82 for the de nition of the  O( ) notation.
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according to equation (16.7), First note that the series on he right-hand side is convergent unless
is an integer. Indeed, given any positive integeK , we have
X sin(2K +1)

cos(h )= <in

1
Dk(2 ) 1=3

NI =

n=1

according to (13.7), showing that the absolute values of thee sums stay under a bound independent
of K. Hence the Dirichlet convergence criterion (Theorem 28.1)implies that the series on the
right-hand side of equation (28.11) converges unless is an integer.
We will see that
Z,
(28.12) ILLn?) 1 g()=2 X cos(2x )dx:
0
Indeed, let A be a large positive integer, and consider this integral on te interval [0; A]. It is
important to recall the de nition of the Riemann integral fo r this. The Riemann integral
Zy
f (x) dx

a

is de ned exactly as the Stieltjes integral
Zy
f (x) dg(x)
a
for g(x) = x. This de nition was given in detail in Section 15, so we will not restate the de nition

here.
Note that the integral

Z

(28.13) X cos(2x ) dx
0

is a convergent improper integral with a singularity at x = 0, so it not Riemann integrable. It is
Riemann integrable on the interval [; A] for any > 0. Yet it will be convenient to approximate it
with Riemann sums. Noting that the integrand is decreasing o [0; 1], the Riemann sums will still
converge to the integral if for with 0 < < 1 we take the tags ,, at the right endpoints of the
partition intervals that intersect [0 ; 1.8 This can be justi ed as follows.

On the interval [0; ], the Riemann sum with tags at the right end points of the partition intervals
will be less than the integral. The part of the Riemann sum on te interval [ ; A] will approximate
the integral on this part, since the Riemann integral existsthere. Making & 0 we can see that
the part of the Riemann sum on [Q ] will tend to zero, and so Riemann sum on the whole interval
[0; A] will approximate the integral.

Let be a positive real. Writing N = bA= c+ 1, divide the interval [0 ;A] into intervals N
intervals of length , except that the last interval may be shorter, so that x, = n for n with
0 n<N,andxy = A. Pickthetags , 2 [Xn 1;Xn]fornwith1 n N suchthat , = x,.
The norm of the partition

P:0=Xp<Xx1<Xp<:i:Xn=A

28.7 All but the last of these partition intervals will entirely be includ ed in [0; ].
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is . The Riemann sum

X
n COS(2 1) (Xn Xn 1)
n=1
l’( 1
(28.14) = N(n) cos(2n ) +A cos(2A)(A XN 1)
n=1
l’( 1
=1 n cos(2n )+ A cos(A )(A Xy 1)
n=1

converges to the integral in (28.13) as & 0 Sincethe0 A xn 1< |, the term after the sum on
the right-hand side tends to 0. Making A !'1 , one is tempted to conclude that equation (28.12)
follows.

This argument is, however, not correct. Heuristically, onemight be tempted to make this con-
clusion, but a rigorous proof is somewhat delicate. Cauchy mght have been forgiven for accepting
such an argument as correc£®® We will present a rigorous proof next.

28.6 A rigorous proof of convergence

The conclusion that can be reached by the argument at the end fothe last subsection is that

b% C Z 1
lim lim ! n cos(2n )=2 X cos(2x )dx;
Al &0 - 0

whereas what we need to show in order to establish (28.12)

bhe ¢ 4 1

(28.15) lim lim 1! n cos(2n )=2 X cos(2x ) dx:

&0All el 0
In order to establish the second version, some kind of unifan convergence is needed,; it is certainly
not true that the convergence in (28.11) is uniform in . What is in fact true is that the inside
limit in (28.15) is uniform. This can be shown by following through the proof of the Dirichlet
convergence criterion (Theorem 28.1), so as to obtain a urégfm bound in inequality (28.5). The
fact that we already know by the Dirichlet test that the serie s (28.11) converges somewhat simpli es
the argument. Using the Dirichlet kernel de ned in formula (13.7), we have

_sinn+1)

X
(28.16) Dh(2 )=1+2 cos X sn ;

k=1
where the second equation holds if is not an integer (so that the denominator is not zero). Hence
forany M 1 we obtain
X
n cos(h )=
n=M n=M
M 1R
TDM 12 )+ > n (n+1) Dn(2 ):
n=M

n Dn(2 ) Dn 1(2 )

28.8 Cauchy struggled with understanding the limits of continuous fun  ctions. While he played a key role in putting
analysis on solid foundations, he published three articles \proving " that the limit of continuous functions is continuous
{ a statement that turns out to be incorrect. See the posting for a discussio n.
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Noting that jD,(2 )j j 1=sin jforany (with not an integer), it follows that

p3 1 p3
n cos(h ) >en + n (n+1)
n=M n=M
M
= — 0< < 1
sin ( )
Hence
1 X , DbA=c+1
n cos(h ) —_—
sin
n=bA= c+1
82D A 0< < 122
sin
the third inequality uses the fact that sin x=x 2= forx with0O x =2 (the minimum is reached
forx = =2, and so = sin 1=2 for with O < 1=2. This is su cient to establish (28.12).

Indeed, to nish the proof of this, let > 0 be arbitrary, and let Ag be such that forA  Ag and
for with 0 < < 1=2 we have

R
! n cos( ) 3
n=DbA= c+1
Let A; Ag be such that
z 1 z A1
X cos(2x ) dx X cos(2x )dx =
0 0 3

where A; may of course depend on ; and, given Ay, let ¢ > 0 be such that for with0 < < o,
for the Riemann sums in (28.14) (note thatN = bA= c+ 1 in these sums) we have

Z Al b%: C
x cos(2x )dx 1! n cos(2n ) < =:
0 B 3
n=1
Putting all these together, for  with 0 < o we have
Z 4 Y
X cos(2x)dx 1! n cos(2n ) <
n=1
Z, Z p,
X cos(2x )dx X cos(2x )dx
0 0
Z A1 b%: C
+ x cos(2x )dx ! n cos(2n )
0 n=1
b= ¢ *
+ 1 n cos(h 1 n cos(h < -+ -+ ==
- @) . @ ) <3*3*3

Since > 0 was arbitrary, equation (28.12) follows.
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28.7 Positivity of the limiting integral
Finally, we will show that the integral on the right-hand sid e of equation (28.12) is positive. We
have

Z, X Zhn
X cos(2x )dx = X cos(2x ) dx:
0 n=o N
% 21
= (x+n) cos(2x )dx:
n=0 O

We will show that each of the integrals after the sum is positive; hence the sum is positive. Writing
f(x)=(x+ n) ,the function f(x) f(x+1=2)is decreasing, since its derivative

x ' (x+1=2) !
is negative. Hence
f(x) f(1=2+x) f(1=2 x) f(@ x) >0 (O<x< 1=4):
Noting that for any x we have

cos2x = c0s2(1=2+x)= cos2(1=2 x)=cos2 (1 Xx);

z 1 z 1
(x+ n) cos(2x )dx = f (x)cos(2x ) dx
0
Z -y

= f(x) f(1=2+x) f(1=2 x) f(1 x) cos(2x)dx> 0;
0

0

since both factors in the integrand on the right-hand side ae positive, except for being zero at
nitely many points. This shows that the integral in (28.12) is indeed positive.

To conclude, the above considerations show that the time sés described at the beginning of
Section 28.5 needs to be di erenced fractionally at (1 )=2 times.

28.8 Absolute integrability

When approximating the integral on the right-hand side of equation (28.12) we had to deal with
the singularities at 0 and +1 , but we dealt with them in very di erent ways. When using Riem ann
sums to approximate the integrals, we could almost totally gnore the singularity at O in that the
only thing we needed to do is to take the tag at the minimum of the function in the partition
interval. On the other hand, we had to exclude the singularity at + 1 by cutting o a neighborhood
of in nity from the interval of integration. The reason for t his is the very di erent nature of the
singularities. At zero, the absolute value of the integrandis integrable (in fact, the integrand near
0 is positive, so it is its own absolute value), while near innity, the absolute value of the integrand
is not integrable. This makes a big di erence in how the integal can be handled; the situation is
similar to the di erence between absolutely and conditiondly convergent series: it is much easier to
work with an absolutely convergent series than with a conditonally convergent series. For example,
an absolutely convergent series can be rearranged and sthiave the same sum, while a conditionally
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convergent series of reals can be made to diverge tol+ and to 1 , or given any real numberc, it
can be rearranged so as to converge to (this is a theorem of Dirichlet).

As we discussed above, the Riemann integral have certain dislvantages, and these disadvantages
have been remedied by the Lebesgue integral, discussed aleawn p. 46 in Subsection 13.4. Lebesgue
integrable functions are such that their absolute values ag also integrable in the Lebesgue sense.
Lebesgue integration extends Riemann integration in a way hat simpli es the way one works with
integrals, but such a simpli cation does not seem possibledr conditionally convergent integrals such
as the one on the right hand side of equation (28.12).

29 The fast Fourier transform

29.1 The discrete Fourier transform

Given a positive integer N, and a sequencdy, : 0 n < N i of complex nhumber, we de ne its
discrete Fourier transform as the sequencd¥, : 0 | <N i, where

X1
(29.1) = ype
n=0

According to the discussion in Subsection 14.3, we then have

K 1
(29.2) Vo= e
1=0

see formulas (14.2) and (14.5) especially. The latter formla is also called theinverse discrete
Fourier transform . It is often convenient to extend these sequences to all intgers integers by putting
Vn+kn = Yn and Yhikn = 4n for all n;k 2 Z; with this extension, the above formulas remain true
for all | and n. These formulas are in complete analogy with the continuoug-ourier transform and
its inverse described in equations (20.1) and (20.2).

29.2 The fast Fourier transform

The fast Fourier transform is a group of algorithms that speeds up the calculation on thediscrete
Fourier transform by rearranging the order of operations in equation (29.1). As described by this
equation, the number of multiplications is about N 2, sincey} needs to be computed for all values of
with0 | <N ;inthe rearranged version, the number of multiplications is of the order of magnitude
N logN .2%! This makes the calculation of the discrete Fourier transfom fairly inexpensive in most
situations.

In the old days, the time needed to perform a computer algorith ms was estimated by the number of
multiplications needed to perform the algorithm, since att he time multiplications were fairly time consuming,
whereas additions were much faster. Perhaps this is still a reasonable way to estimate the time needed for
performing an algorithms, but many things changed in comput er technology since then that make this way of
estimating computer time fairly inaccurate: pipelining (t he di erent parts of the processor performing several
multiplications at the same time, each part of the processor working on di erent stages of the multiplication;
other complex operations can similarly be pipelined), caching (storing frequently used data in a fast and

291 As always in these notes, log indicates natural logarithm, though i t makes no di erence in the present context
except that the base of logarithm needs to be greater than 1. This is becau se of the base conversion formula for
logarithms: we have log , x = log , x=logya (a;b> 0, a;b6 1, and x> 0).
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relatively expensive memory before transferring it to the ma in memory, and parallel processing (several
di erent processors { or cores as they are often called) working on di erent parts of the problem. Often, the
assessment of an algorithm involves suitability for e cien t processing using the methods described. For this
reason, it is quite a complicated task to write an e cient line ar algebra program; they are packages that can
adapt to di erent processors; see e.g. BLAS (Basic Linear Al gebra Subprograms).

In its simplest incarnation of the fast Fourier transform, t he Cooley{Tukey fast Fourier transform
algorithm described James Cooley and John Tukey in 1965%2 assumes thatN is a power of 2 and
splits up the calculation in equation (29.1) into two parts according as the subscriptn is even or
odd:

Nx2 1 N2 1
9] - Yon€ 2il (2n) =N +e 2il =N
n=0 n=0

— 2il =N .
- 'yl;even +e ! ?I;odd-

2il (2n) =N
e
(29.3) Yon+1

The calculation uses recursion, calculatingy*by rst calculating Y. even @nd ¥\:o4q in & similar way.
Note that these need to be calculated only fol with 0 | < N=2 since

W even = Y1+ N=2:even and M:odd = Y+ N=2:0dd

If N is not a power of 2, one can use 0-padding, i.e., extending theequencehgy : 0 | <N
by adding Os at the end so as to make its length a power of 2. Therare variants of the algorithm
that work of sequences for any compositéN, and other versions that work when N is prime. In
most cases, the algorithm runs in timecN logN for some positive constantc, but if one completely
wants to avoid 0-padding, there are some exceptional primealues ofN, unlikely to be encountered
in practice, for which the algorithm requires N2 multiplications. In most applications, 0-padding
causes no harm.

The inverse discrete Fourier transform described by formu (29.2) can be speeded up the same
way by a slight modi cationof the fast Fourier transform; on ly a sign change (from to + in the
exponents) is involved.

29.3 The number of multiplications needed

Assuming N is a power of 2, we will show that the number of multiplications needed to perform the
fast Fourier transform on a sequence of lengttiN so as to calculate all values ofy*(0 <N )is

N log, N. Using induction, assume this is true for everyM < N replacing N, where M is a power
of 2. On the right-hand side of (29.3) there is one new multipilcation for each value ofl (0 <N )

amounting to N multiplications. at most ( N=2)log,(N=2) multiplications to calculate all values

% even @nd at most (N=2) log,(N=2) multiplications to calculate all values of $.,44. Thus, the total

number of multiplications needed is

N +2(N=2)log,(N=2) = N +2(N=2)(log, N 1)
= N+ N(og, N 1)= Nlog,N:

For N = 1 no multiplications are needed since in that case the only alue ofy is yy, and we have
Yo = Yo.

292 The algorithm was also described by Gauss in an unpublished manuscript d  ating back to around 1805.
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30 Representation of band-limited functions

Let f be a square integrable function continuous function such tht its Fourier transform f" is zero
outside a the interval ( ; ).3%! In the discussion below, we will omit a rigorous discussion fo
convergence issues.

In electronic technology, such functions whose Fourier trasforms are restricted to a nite interval
are called band-limited. They are very important in signal processing, since, as we will see, they can
be reproduced exactly by sampling at regular time intervals Band-limited signals can be produced
by analog electronic lters before digital processing (wha& they can be further Itered). By the
Fourier inversion formula (20.2

z

(30.1) f(x)= 912: f(y)e™ dy:

Note that f" is also square integrable, since the Fourier transform is afsometry according to Sub-
section 20.2. Represenf'\ as a Fourier serieson ( ; ) as

*
(30.2) fi(x) = che™ ;
n=1
where
1% 1
(30.3) 0= o f(x)e "‘de:pZ:f( n (1 <n< 1);

where the last equation follows from (30.1). Substituting this into equation (30.2), and then into
equation (30.1) we obtain

z

1 R 1 o
f(x)= pzj p?f( n) e e dy
(30.4) L % =t
= o f( n) MYy
n=1

By making the substitution t = i(x + k)y, wheret and y are the variables andx is a parameter, we
have

z ) 1 z i (x+n)
gty dy = . e dt
(30.5) | '(X- +N) i (x+n)
_d ) e T Oy 25in (x+ n)
- i(x + n) - x+n '

where the last equation follows from the Euler formula (13.D); for x = 0, we take sinx=x = 1 (this
makes the right-hand side 2 in casex + n = 0; in this case, the integrand on the left-hand side is
1, so this indeed gives the correct result). Substituting ths into the above formula, we arrive at

sin (x+ n).

1 R
(== f(mI

n=1

301 \We could take any other nite interval want to consider only the simpl est case.
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Replacingn by n, one may also write

1 X sin (x n).

(30.6) f(x)= f(n)

n=1

This formula is called the Whittaker{Shannon interpolatio n formula3°2

30.1 The Nyquist{Shannon sampling theorem
We can interpret formula (30.6) as follows. In the formula
1 Z1 ,
(x) = P== f(y)e ™ dy;
1

the bandwidth limit corresponds to the valuex = , then the exponential €* ore 'Y as a
function of y has has a period of 2. Thinking ofy as time, this corresponds to the frequency %2
per unit time. Then formula formula (30.6) says that if the maximum frequency is 12, then the
function f can be perfectly reconstructed by sampling it once at integetimes. This explains the
Nyquist frequency described in Subsection 16.2 from a matheatical point of view.

30.2 The Poisson summation formula

Assumejf j is integrable on (1 ;1 ), and let
X

(30.7) o(x) = f(x+2k )
k=1

The Fourier series ofg is

X _
g(x) = Cn €™ ;
n=1
where 1 z
G =5 ge™dt (1 <n<1)
according to equations (13.11) and (13.15). Fox = 0 these give
R 1 R z .
9(0) = = o g(tye ™ dt
- 2
n=1 n=1
1 ® 2 .
=5 f(t+2k )e ™ dt
n=1 k=1
I .
e f(t+2k )e |n(t+2k)dt;
2 n=1 k=1

302 The formula occurs in the works of Whittaker in 1915, in those of CI aude Shannon in 1949, but it occurs even
earlier in the works of E. Borel in 1898 G. H. Hardy also discovered the fo rmula in 1911.
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in the last step, we interchanged the integration and the sum and used the equatione it =
e Mgk =g N2k ) (pecausee®' =1). In the last integral we can substitute x = t + 2Kk :

1 X h s y4 (2k+1) )
g0)= — f(x)e "™ dx
2 k=1 @k 1)
X 1 _ X
= zi f(x)e ™ dx = é f\(n):
n=1 1 2 n=1
Taking equation (30.7) into account, this gives
b3 1 R
(30.8) fen)= p— f\(n):
n=1 2 n=1

This is called the Poisson summation formula The formula is widely used in number theory, and it
has several important modern generalizations.

30.3 Simple properties of the Fourier transform

In order to extend the Poisson summation formula to more genel situations, we need the following
simple properties of the Fourier transform:

Lemma 30.1. Letf be a complex-valued integrable function omR, and let be a real number. If
g(x) = f(x)&* , then g(x) = f(x ), and if h(x) = f(x + ) then fi(x) = f(x)é* . Further, if
k(x) = f (x= ) with some > 0, then R(x)= f(x).
Proof. The proof of these statements consists in simple substitutins in formula (20.1). We have
z 1 z 1
0X)= P=  gi)e ™ dy=p—  f()e¥ e ™ oy

1

=|E’12j f(y)e ' Wdy="f(x )

and
)= p>=  hie ™ dy=p=  fly+ )e™dy
zh ooz,
= plzj f (e X Jdt= ¢ plzj f (e M dt= &% f(x);
1 1

here, for the third equation, we used the substitutiont = y + . Finally
z 1 z 1

ﬁ(x):plzj ) f(y=)e ™ dy:plzj ) f(t)e ¥t dt = f(x);

where the second equation was obtained by making the substition t = y= .
O

Using this Lemma with t replacing , we can restate the Poisson summation formula (30.8) as

f(2n)edn fin t);

-
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and as
X

1 .
fen +t)= p=— f\(n)e
n=1 2 n=1
for any real t. Using the part of the lemma for the Fourier transform of k(x), we can also make
a scale change in these formulas; for example, with = 2 , the former of these formulas can be
rewritten as

. _ R
f(n)e2™ = P2 2 (n 1):
n=1 n=1
Restating this with x = 2t , we obtain
* . p_ X
(30.9) f(n)e ™ =" 2 f2n + x):
n=1 n=1
30.4 Aliasing
Equation (30.9) can also be written as
X 1 R _ x 1 .
(30.10) f(x+2n)= p=— f(n)e ™ = p=—f( n)e™
n=1 2 n=1 n=1 2
If we assume thatf’\(x) =0 for jXxj , then this equation becomes identical to what is expressedyb

equations (30.2) and (30.3) together’®3 Recall that in those equations this assumption was indeed
make. Our aim here is to study howf can be reconstructed from its sampled values at integer
arguments, i.e., from the valuesf (n) for n 2 Z.

From this point on, we can mimic the derivation of formula (30.6), but the result we obtain will
be di erent. Write

R
(30.11) G(x) = f(x+2n)
n=1
and write
1 z
(30.12) F(x)= P G(y)e™ dy:
Note that if f'\(x) = 0 for jxj then F(x) = f(x) according to equation (30.1). Proceeding

similarly as in equation (30.4), we now replaceG(y) in equation (30.12) with the right-hand side of
equation (30.10) (with y replacing x). We obtain

VA
1 1 ) .
F(X)= p=— p—f( n)ev ¥ dy
2 ., 2
oz
1 R ; 1 R sin (x+ n)
= — f(n ety dy= = f( n)—————=;

> (n y ] (M=

n=1 n=1
303 |n the former of these two equations, we assumed that x is in the interval ( ; ). Itis unnecessary to make this

assumption here, since both sides of equation (30.10) are periodic with period 2 .
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where the last equation used formula (30.5). Replacingn by n in the summation on the right-hand
side, we obtain an equation similar to (30.6):

sin (x n).
X n

R
Foo= 2" f(n)

n=1
The problem is that F(x) is usually di erent from f (x).
Indeed, according to formulas (30.11) and (30.12) we have
1 £ % |
F(X)= p=— fly+2 n)e™ dy:

2 n=1

According to the Fourier inversion formula (20.2) we have

Z, X Z 50

f(x) = pé f(t)e dt = pé fi(t)e™ dt
2 1 2 n=1 +2n
x < _ Z _
:pzj f’\(y+2n)e'x(y+2”)dy=912j fily+2 n)eXx2n) gy
n=1 n=1

to obtain the third equation, we made the substitution y=t 2n . Hence
1R 2 .
F(x) f(x)= P @ &)y  fy+2n)ev dy:

n=1

Here the term for n = 0 is 0, but the other terms are not, and they represent the digortions added
to the original signal

30.5 Anti-aliasing lter

Aliasing is a real engineering both in image and in audio proessing. Anti-aliasing Iters are used to
eliminate frequencies exceeding the Nyquist frequency. laudio processing, an analog lter may be
applied to the incoming audio signal before analog-to-digal conversion; another Iter may be used
to prevent the distortions in the out-of-band frequencies b enter the analog signal. Digital cameras
also use anti-aliasing lters. These can use various techgues, such asbirefringent30# materials
that spread out the image of a single point to several (usuajl four) nearby points, thereby cutting
down on high spacial frequencies. Other techniques involveibrating the optical sensor so as to
blur features of the image exceeding the Nyquist frequencyifhage processing is similar to audio
processing, but the image is represented in two spacial dictions).

31 Solutions to problems

Solution of Problem 2.1. Let X = (X1;X2;:::X,)T a random column vector; without loss of
generality, we may assume that EKy) = O for each k with 1~ k n. Writing A = (a; ) for its
covariance matrix, we have

aj = E(X;iXj):

304 As in by-refringent, i.e., doubly refracting materials. These are mat erials that have refractive index depending on
the polarization and the direction of the incoming light.
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XX XX XX
XTAX: Xiaqj Xj = X E(Xin)Xj =E Xi X X]'Xj

i=1 j=1 S i=1 j=1

X 2

This shows that A is indeed positive semide nite.

Note. One can formulate this argument also in matrix form. Assuming, as before, that EX) =
0, the covariance matrix of X is A = E(XX 7). Hence, given an arbitrary n-dimensional column
vector x, we have

xTAX = xTEXX TIX=E(XxTXX TX)=E (x"X)(XTx) =E (XTx)T(XTx) :

Note that X T x is the product of a1 n matrix and an n 1 matrix, soitisa 1l 1 matrix, i.e., it
is a scalar. Hence it is its own transpose; that isX Tx)T = X Tx. Thus,

xTAx=E (X™Tx)T(X"x) =E X™x)(X"x) =E (X"x)?2 0
as we wanted to show.

Solution of Problem 4.1. The characteristic equation of the recurrence equatiory; = y; 1+ V; 2
isl= + 2 ie.,is 2+ 1 =0. The solutions of this equation are

_ _ 1 — — 1
_ 1+p5_ 1+p5 and 1 p5_ 1 p5
R R 2 2T T2 T 2 ’
the easiest way to see these equations is by noting that; , = 1. Thus, the general solution of the
above recurrence equation is
I I
_-t _-t
_C 1+ P 5 i C 1 P
Yo = C1 5 2 >

The initial conditions yo =0 and y; = 1 lead to the equations
Ci+Cy=0

and
IOB p
+ C, =1:

It is easy to solve these equations. Multiplying the rst equation by 1=2 and subtracting it from the
second equation, we obtain p_

5
5 (C1 Cy) ;

that is
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Adding the rst equation to this, we olﬁaJn 2Cy = 2=p 5, or elseC; = 1=p 5. Substituting this into
the rst equation, we obtain C, = 1= 5. With these values forC; and C,, the formula for y; gives

Solution of Problem 4.2.  The di erence operator
(B 3°

will lower the degree of the polynomial in the rst term to O (i .e., it will change the terminto ¢ 3 !
with a nonzero c), while it will not change the degrees of the other polynomids. The di erence
operator

B 2°

will annihilate the second term, while it will not change the degrees of the polynomials in the other
terms. Finally, the di erence operator
(B 5°

will annihilate the third term, while it will not change the d egrees of the polynomials Hence the
product of these di erential operators,

(B 3°(B 2°B 5)°

will change the rst term into ¢ 3 ! with a nonzero c, while it will annihilate the second and the
third terms.
This argument can be used to show that if

at? 3+t 2+ ct? 51 0

then we must havec; = 0. Similar arguments can be used to show that we must also hawc, = 0
and ¢z = 0; hence the termst® 3 {, t* 2 ' andt®> 5 ! are linearly independent.

Solution of Problem 5.1. Let the events A be de ned asA be the eventA = (X 6 0); further,
let A1 =(X 1),andforn> 1letA, = 1=(n 1)>X 1=n . We have

As the eventsA,, \ A, =0 if m 6 n, this implies that
R
P(A)=  P(An):
n=1
As P(A) > 0, there is ann 1 such that P(A,) > 0. With this n we have

E(X?) P(An) F12> o:
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Solution of Problem 5.2. We may assume that PX 6 0) > 0, since otherwise EKXY ) = 0, so
the inequality to be proved clearly holds. Then, according b Problem 5.1, E(X?) > 0. Let be an
arbitrary real number. Then, again by Problem 5.1, the equafon

E(X +Y) =0

can hold only if X + Y =0 almost surely. As X 6 0 with positive probability, this equation can
only hold for a single value of .
Now,
E(X +Y)? = 2E(X?)+2 E(XY)+E(Y?):

Considering
ZE(X?)+2 E(XY)+E(Y®)=0

as a quadratic equation for with the various expectation as coe cients,3!! this equation has at
most one real solution, Hence its discriminant cannot be pdsive. That is,

2E(XY) ° 4E(X?)E(Y?) O

Rearranging this, we obtain the inequality to be proved.

Solution of Problem 5.3. We have

E X EX) Y EY)

Corr(X;Y )= *
E X EX)°E Y EX)°?

This is between 1 and 1 in view of Schwarz's inquality (cf. Problem 5.2). The &sertion is true also
when X and Y are complex-valued random variables, since Schwarz's inaglity is also true in the
complex case (cf. Problem 17.1).

Solution of Problem 7.1. These equations, properly arranged, give us a way to evaluatthe
coecients ¢ and the moments E€?). Lett OandnwithO n t be integers, and assume
noto have been calculated for all pairs (%t% such that 0 t°<t and 0 n® t%ort°= t and
n<n® t;also assume that E€) has been calculated for allk with 0 k <t.

We can start out this calculation in caset = 0 by noting that

E(e§) = E(Y9)

according to equation (7.10) witht = 0. If t > O then ; can be calculated from equation (7.11)
with n = t, since the only term on the right-hand side involvesl =0, and  |n = 0.0 =1 in this
case according to equation (7.7). That is,

it = E(Y:Yo)=E(€f):

IfO<n<t then .t can be calculated from the same equation (7.11), since for lathe coe cients
all the quantities on the right-hand side are known except fo the ., which occurs forl =t n as
part of the term

Ot n nt E(etz n) = nt E(et2 n)s

311 This equation is a genuine quadratic equation, since E( X 2) 6 0, that is, the coe cient of 2 s not zero, according
to what we said above.
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the equation here holds in view of equation (7.7¢*? That is,

ty 1
E(VtY: n) tn okt ntlt E(QZ):
1=0

1

nt = E(elz n)

Finally, for n = 0 we have ,; =1 according to equation (7.7).
As the nal step, we can use equation (7.8) to evaluate E€):

1

X
E(e?) = E(Y?) 2t E(eD):

1=0
Solution of Problem 13.1. We have

1. .1 X 1

Dn(t)sin =t =sin =t + 2coskt sin=t

2 2 2

k=1 |

-sin}t+X] sin k+} t sin k } t =sin n+} t;
T2 2 2 2

the second equation uses the fourth equation in (13.3), andhe third equation results by cancela-
tions.313

Solution of Problem 13.2.  According to equations (13.4) we have
z
(31.1) a, = — x cosnxdx =0

for n 0. The equation here holds since the integrand is an odd funan3* so the integral on
[ ; O] cancels the integral on [0 ]. Further, by integration by parts we obtain

Z B Z
1 cosnx x= 1 cosnx
—X +

1 :
b, = — xsinnxdx = B - . dx
(31.2) , =
1X cosnx x= 1sinnx x=  _ 2( 1)"
- n X= nZ «x= - n '

the last equation holds because cas = ( 1)" and sinn = 0 for integer n. Hence the Fourier
series off (x) is

sinnx:
n=1

312 For calculating nt we need to assume that E( et2 n) 6 0. However, in the case of E( & n) =0 we do not need

to do any calculations, since in this case e n = 0 almost surely according to Problem 5.1, and so nit Ooccurs with

coe cient 0 or almost surely O in the above equations, and so we can take nt to be anything (the best is to take
nt = 0 in this case.

313 That is, the sum telescopes, or collapses. A telescoping or collapsing sum is a sum of the type

(ak+1  a)=(az a)+(as a)+(as az)+ :ii+(an+1 @n)= an+1  ai:
k=1

314 The function f is oddif f( x)= f(x).
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Solution of Problem 13.3.  With f (x) as in Problem 13.2, we have
Y4 Z

1

1 2 123 27?2
— f = = 2 = - ___ = ___:
(x) “dx X< dx 3 3

Further, in Problem 13.2 a, and by, are given by equations (31.1) and (31.2); using these equains,
we have
X 4

3
N N

n=1 n=1

According to equation (13.17), the right-hand sides of the &st two displayed equations are equal,
establishing equation (13.18).

Solution of Problem 14.1.  Assume the polynomialsP;(z) and P,(z) are di erent. Then

P(2) € Pa(z) Pi(2)

is a nonzero polynomial of degree less thaN such that P(z¢) =0 for all k with1 k N. Since
the numbersz, are distinct, this is a contradiction, since a nonzero polymmial of degree less thaN
cannot haveN zeros.

Solution of Problem 15.1. Let

P: 1=Xg<Xx1<X,<:::<xp=1

be a partition and let ; 2 [x; 1;Xxi]be atagforeachiwithl i n.Letk=k(P)withl k n
be such thatx; < O fori<k andx; Ofori Kk; clearly, k depends on the partition P. Then
1 ifi=k;
i i 1) = ' 1 i :
g(xl) g(xl l) 0 ifi6 k: ( | I"I)

Hence "
S(P)y= f(i)alxi) axi 1) =F(k)=f(kr))
i=1
S(P) depends on also on the tags, not just orP, but this dependence is not indicated. Making
kPk! 0, we have yp)! 0. Sincef is continuous at 0, we have
z 1
f(x)d = i S(P)= i f = f (0):
[F00dg = im S(P)= im f (k)= ()

Solution of Problem 15.2. Formula (15.3) can be written with a sum instead of a Stieltjes
integral as
1 X!
(31.3) fx) = N f (Xk)Dm (X Xk):
k=0
Solution of Problem 15.3. Instead of substituting the coe cients a, and b, from equations

(13.4) into equation (13.5), we now substitute equations (#.13) into (14.14), the calculations given
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in formula (13.8) can be repeated with only minor changes:

VA VA
b
f(xn)= zi f(y)d n(y)+ 1 f (y)(cosky coskx, + sin ky sinkxy,) d! y (y)
(31.4) |z . k=1 7
=5 f 1+2 cosk(y xn) din()= - fODu(y xa)din(y):
k=1

It is probably best to stop at this point, and not pursue the rest of the calculations in formula (13.8)
since the next step is a change of variable in the integral, ath to do this, we would need to use
Theorem 15.3, and the expression we obtain that way would radt in some complications. Since
D(x) = D( x) for all x, the above equation can also be written as

z

()= 5 (DM V()

This establishes equation (15.4).

Solution of Problem 15.4. Let N =2M, and de ne by in analogy with the second equation as

K 1

b &2 ) SInM (xn x0)

n=0
According to equation (14.1), we haveM (X,  Xo) = n , and so equation (14.9) implies

2 X1

by = N f(Xp)sinn =0
n=0

since sinn =0 for all integers n, we can rewrite formula (14.18) as

a X1
f(xp) = §+ (ax coskxy + b sinkxy)
k=1
+%a,\,|cosM(xn Xo) + by sin M (X, Xp) (0O n<N):

Then, similarly as in equation (31.4) we have
17 1% 17
f(xp) = > f(y)dn(y)+ — f (y)(cosky coskx, +sin ky sinkx,) d! n (y)
. 7 k=1
+ 'R f(y) cosM(y Xg) cosM (Xn Xo)

+sinM(y Xg)sin M(X, Xo) d!In(Yy)
17 K1
=5 f(y) 1+2 cosk(y xp)+cosM(y xn) din(y)
k=1

This formula can be written as
Z

()= 5= TODFUY x)dn ),
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where

M1
Dmod (1) €1 42 coskt + cosMt = Dy 1(t) + cos Mt
k=1
is the modi ed Dirichlet kernel. 31-°
Solution of Problem 17.1. We will only consider the case whenV is an inner product space

over C, since the proof for that case also works wherV is an inner product space overR, except
that in this latter case complex conjugation has no e ect. The proof is similar to the one given
in the solution of Problem 5.2, except that taking complex inner products causes minor additional
complications.

We may assume thathx;yi & 0, since otherwise the inequality to be proved clearly hold; then
we also havex 6 0. Let be a complex humber. Then, by Clause (a) of De nition 17.1 of hner
product, we have

hx +y; x +yi 0

and equation here holds only if x + y = 0. Since we assumed thatx 6 0, this equation can only
hold for a single value of if at all. Hence
0 hx +y;x +yi=hx;x i+ hxyi+hy,;xi+hyyi
(31.5) = hgxi+ hgyi+ hyxi + hygyi
= Phoxi+2< hayio + hygyi;
the third equation holds since =j j% and, with z= hy;xi = hyi , we havez = Ix;yi

according to Clause (b) of De nition 17.1, and z + z = 2<z, where the <z denotes the real part
of z. Let

_ Ihyi
andput = (o, where is an arbitrary real (recall that we assumed thathx;yi & 0). Then j oj =1
and soj j? = 2. Further, the expression
hGyi = ohxyi = jhyij
is real, and so< hx;yi = jhx;yij. Thus, inequality (31.5) becomes
(31.6) Zh; xi +2 jhxyij + hyyi O

According to what we said about the former inequality, we hawe equality here for at most one real
value of .26 Hence the equation

2hw; xi +2 jhx;yij + hy;yi =0:

is a quadratic equation for with real coe cients (recall that hx;xi & 0 by Clause (a) of De nition
17.1 of inner product, sincex 6 0). that has at most one real solution. Hence its discriminant
cannot be positive. That is,

2h; yi 2 ahx; xihy;yi  O:

315 The modi ed Dirichlet kernel is often denoted as D, (t); we avoided this notation, since we use the asterisk to
denote complex conjugate.

316 saying that is real is important here, since this inequality does not even have to ho Id if is not real. This
inequality is a consequence of inequality (31.5) only for real . This is because the equation < hx;yi = jhx;yij
holds only for real
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Rearranging this, we obtain the inequality to be proved.
This solution can be greatly shortened by taking
icyii? o hgyihgyi o byi
hexihxyi — hoxihxyi — hoxi

in inequality (31.5). Indeed, this choice corresponds to the choice

i yij
hx; xi *

which is the value of  for which the left-hand side of inequality (31.6) assumes its minimum. Such a
shortening is, however, no real simplication, since it is a chieved by skipping the explanation why this
choice of is taken.

Solution of Problem 17.2. As in the solution of Problem 17.1, we assume thatV is an inner
product space overC. We have

(kxk + kyk)? = kxk? + 2kxkkyk + kyk? h x;xi +2jhx;yij + hy;yi
hx;xi +2<(hx;yi)+ hy;yi = g xi + hyi + byl + hygyi
= hexi + hyi + hy;xi + hy;yi = b+ y;x+ yi = kx + yk;
here the rst inequality follows from Schwarz's inequality, established in the solution of Problem 17.1.

Solution of Problem 17.3. We have
. . . 1=2
nI!|1m hg;f, fi | nIlllm (kgkkf, fk)
according to Schwarz's inequality. The limit on the right is 0 in view of our assumptions. This

establishes the assertion to be proved.

Solution of Problem 17.4. We need to show thath; i satis es Clause (b) in De nition 17.1,
and that it satis es Clause (c) also for complex in the same de nition. We can see the former as
follows:

hg;fi = hg;fig + ihg;fig = H;gig + iHf;ig iR

= H;gig + ihf;i 2gir = H;gig + ihf; gigr

= H;gir ihf;gir= H;gig+ ihf,gir =H;fi ;
where the third equation holds according to equation (17.12 To see the latter, it is enough to show
that

H;igi = iHf;gi:
Indeed, we have
H;igi = H;igir + ihf;ig ir = hf;i 2gir + ih2f;i 2gir

hf, gir+ih f; gir= hif;gir+ iH;gir

i ihf;gigr+ H;gir = iH;gi;

where the second equation holds according to equation (172).
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Solution of Problem 17.5. According to Minkowski's inequality (Clause (c) of De niti on 17.2)
we have
kfk=k(f g+ ok kf gk+ kgk;

and so
kfk k gk kf gk

Similarly,
kgk k fk kg fk=kf gk

Putting the last two inequalities together, inequality (17 .14) follows.

Solution of Problem 17.6.  According to equation (17.14), we have
jkfnk kK fki k f, fk! O
which is what we wanted to show.
Solution of Problem 20.1. We have
f+d?jf g*=(f+g(f+g (f o 9

(31.7) =(f +g)f+9 (f 9g)f 9
=(ff+fg+gf+gg (ff fg gf+gg=2f g+2gft

Using this with if replacingf we obtain

jif +g2 jif g2= 2f g+2gif:

Multiplying the second equation by i and adding the resulting equations, we obtain equation (2(®).
Solution of Problem 20.2. Similarly to equation (31.7), we have
kf +gk? kf ogkl=H +g;f+gi hf gf g

= HW;fi+H,gi+hyfi+hyg H;fi h f;gi hog;fi+hg;g

=2H;gi +2hg;fi:
Using this with if replacingf, we obtain

kif + gk® k if gk?=2hf;gi+2hg;ifi = 2ik;gi+2ihy;fi:
Multiplying the second equation by i and adding the resulting equations, we obtain equation (2QL2).

Solution of Problem 20.3. The necessity of equation (20.13) for the normk k to be a norm
induced by a real- or complex-valued inner product on a vectospaceV over R or C can be easily
established. Indeed, assuming that

kfk?=H;fi  foral f 2V
for a real- or complex-valued inner product, for allf;g 2 V we have

kf + gk®+ kf gk®=H +g;g+fi hf g;g fi
= Hf i+ Mg+ hgifi+hgig + Wfihfgihgfi+hyd
=2H;f i +2hy;g = 2kf k? + 2kgk?:
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To show that equation (20.13) is su cient for k:k to be induced by an inner product in caseV
is a hormed vector space oveR, de ne a putative inner product as

(31.8) H;gi & % kf+ gk kf gk  forall fg2V:

It is easy to see that we then havetf;f i = kf k?, so if h; i is an inner product, then it induces the
norm k k. We need to show thath; i is indeed an inner product, i.e., that it satis es the clauses
in De nition 17.1. This is clear for Clauses (a) and (b), the latter since h; i is real valued and

symmetric. Next, we will establish Clause (d).
To this end, we will rst show that

(31.9) h‘;gi+h‘;hi:%l‘2f;g+hi:
We have
A Thi — 1 2 2 1 2 2
H,g|+h‘,h|—zrkf+gk k f gk Zkf+hk k f hk
= % kf + gk?+ kf + hk® + % kf  gk?+ kf  hk?
Using equation (20.13), the right-hand side becomes
% k(f + @)+ (f + h)k2+ k(f +g) (f + h)j?

k(f g +(f hK+k(f g (f h)?

k2f + g+ hk?+ kg hk? %sz g hk+k (g hk

®I P @R -

k2f +(g+ h)k> k 2f (g h)k? =%hZf;g+hi;

where the last equation follows from equation (31.8). This eri es equation (31.9).
Now, it is easy to see from equation (31.8) thathf; Oi = 0. Hence

H;gi = H;gi + H; 0 = %hZf;gi;

where the last equality holds by equation (31.9). Putting this together with equation (31.9), we
obtain

(31.10) H;gi + H;hi = H;g + hi;

which establishes Clause (d) in De nition 17.1.
By repeated addition, equation (31.10) implies that

(31.11) H;, gi= H,qgi:
for every positive integer . As

H,gi+ hf; gi=H;0 =0;
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this equation also follows for all negative integeran. Hence we can conclude that

H,gi = 1 f; 19

for all nonzero integers by replacing g with (1= )gin equation (31.11). Therefore, we can conclude
equation (31.11) for all rational

To verify equation (31.11) for a given irrational , let , be a sequence of rationals such that
n! . Then we have

nllllm k( n Jgk = rlllrln j n jkgk=0:
Hence, using equation (31.11) for rational , replacing , we have
H:gi = lim ,.H;gi = lim H; ,gi = lim L+ ngk? kf agk?
nl1 nll nli 4
:%kf+ gk? kf gk® =H; g i;
here the third and fth equations hold according to equation (31.8), and the fourth equation holds

according to equation (17.15). Thus equation (31.11) follavs also for irrational . This establishes

Clause (c) of De nition 17.1, completing the proof that h; i is a real-valued inner product onV
over R.

Solution of Problem 20.4. The necessity of equation (20.13) was already established ithe
solution of Problem 20.3. Assuming that this equation is sais ed and considering V as a normed
vector space overR, it also follows from (the solution of) Problem 20.3. that there is an inner
product h; ir satisfying equation (31.8). That is,

h‘;giR:%kf+gk2 kf gk? forall f;g2V:
As kif k = jijkf k = kf k for all f 2 V, this equation implies that
H;gir = hf;ig ir forall f;g 2 V:

Henceh; ir can be extended to a complex-valued inner product accordingo Problem 17.4.

Solution of Problem 20.5  Using equation (20.1), we have

Z 1 Z 1
1 . 1 .
f)=pr= flye™dyi=p— e Ve M dy
1
1 21 2y2 ixy 1 21 y x=@ ) x=2 )?
=P f dy=pz= © dy
1 1
e 2ol Tt y k=@ )’ | Za )
= e p? e dy= —e pzj e ' dt;
1 1

one can think of the last step here as using the substitutiort = y  ix=(2 ) wherey andt are the
variables andx and are parameters, but for a rigorous jusgcation one needs touse line integrals
in the complex plane. The integral on the right-hand side is™ = according to equation (2.3); hence

f\(x) = ﬂ%—ze x*=@ ).
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