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1 Introduction

In these notes we present some aspects of time series, mainlymathematical rather than statistical.
There are many important mathematical issues that are oftennot discussed in time series text-
books. One needs a basic understanding of complex Taylor series and the behavior of solutions of
homogeneous linear di�erence equations to see the reason why certain models of stationary time
series assume that the polynomials involved have all their zeros outside the unit circle. Frequency
analysis demands some basic familiarity of Fourier series,the Fourier transform and trigonometric
interpolation. This is provided without getting involved w ith convergence issues, even though occa-
sionally we point out the presence of such issues. For example, at times we indicate that Riemann
integration theory is inadequate to deal with certain of the subtleties, and one needs Lebesgue in-
tegration theory; we, however, try to keep such discussionsnon-technical, so as to make it available
for advanced undergraduates. Wavelets are extremely important for time series, and, after a late
start, they are exerting an increasing in
uence in applications for �nance, yet introductory tex-
books almost never discuss wavelets. Here we give the basic mathematical background, and not just
calculational algorithms. The Kalman �lter is ubiquitous i n its application; we provide the basic
mathematical background. An everyday cell phone uses wavelets for image representation, and it is
running several Kalman �lters. The notes are written with ad vanced undergraduates in mind, and
issues of mathematical precision are often treated lightly. No applications are mentioned, and in
general we underemphasized aspects of time series that are adequately represented in introductory
texts. In particular, the book [11] gives an excellent coverage to these aspects. The book also gives
numerous examples as to how to use theR programming language to build practical models of time
series.

There are many footnotes in these notes, to provide additional insight where including these
comments in the main text would have interrupted the main 
ow of reasoning. In old times, printers
used to complain about footnotes, since it was hard to typeset them and to make sure that the page
had the correct size. This is no longer an issue with computerized typesetting, and the quantity
of footnotes is simply a matter of writing style. These noteswere written in LaTeX running under
Debian Linux.
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2 The multivariate normal distribution

2.1 The single variable normal distribution

Let � and � be reals, and assume that� > 0. The random variable X is said to have a normal
distribution with mean � and standard deviation � if its density function f X is

(2.1) f X (x) =
1

p
2� �

exp
�

�
(x � � )2

2� 2

�
:

The factor before the exponential ensures that

(2.2)
Z 1

�1
f X (x) dx = 1 :

This is easy to see, since

� Z 1

0
e� x 2

dx
� 2

=
Z 1

0
e� x 2

dx
Z 1

0
e� y2

dy =
Z 1

0

Z 1

0
e� x 2

e� y2
dy dx

=
ZZ

f (x;y ): x � 0; y � 0g
e� x 2 � y2

dy dx =
ZZ

f ( r;� ): r � 0; 0� � � �= 2g
e� r 2

r dr d�:

The last integral was obtained by transforming the double integral in Cartesian coordinates to polar
coordinates. This last integral is easily evaluated by iterated integration; it equals

Z �= 2

0

Z 1

0
e� r 2

r dr d�
Z �= 2

0

1
2

dr d� =
�
4

;

the inner integral was evaluated by the substitution t = r 2. This implies that

(2.3)
Z 1

�1
e� x 2

dx = 2
Z 1

0
e� x 2

dx = 2

r
�
4

=
p

�:

As we said, From here (2.2) follows by a simple change of variable. The single variable normal
distribution with mean � and standard deviation � , i.e., variance � 2 is denoted asN (�; � 2).

2.2 The multivariate normal distribution

Writing AT for the transpose of the matrix A, consider the random column vectorX = ( X 1, X 2,
: : :, X n )T . X is said to have a multivariate normal distribution if there i s a random column vector
Z = ( Z1, Z2, : : :, Zk )T for some integerk with 0 � k � n whose components are independent
random variables2.1 each with distribution N (0; 1), an n � k matrix A of reals, and ann-dimensional
column vector � such that

(2.4) X = AZ + � :

2.1 What we mean here is that the whole collection of of these random varia bles is independent, which is a stronger
condition than saying that they are pairwise independent; the latter means that any two of them are independent. In
case we are given an in�nite number of random variables, by their indep endence we mean that any �nite subcollection
is independent. We will always use independence in this sense; when we mean pa irwise independence, we will explicitly
say so.
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If k = n and A is a nonsingular matrix, then X is said to have a nondegenerate multivariate normal
distribution; if k < n or k = n and A is a singular n � n matrix, then X is said to have a degenerate
multivariate normal distribution. 2.2 While the degenerate case is important for statistics, since it can
happen that the residuals in case of a least-squares �tting have a degenerate multivariate normal
distribution, discussing the degenerate case is more complicated with the means at our disposal,
since the joint density function does not exist in the degenerate case (this causes no di�culty with
more advanced tools from measure theory).

2.3 The covariance matrix

Write A = ( aij )1� i � k 1� j � k , and � = ( � 1; � 2; : : : ; � n )T . Let p, q be integers with 1 � p; j � n. We
have X p =

P k
i =1 api Z i + � p and X q =

P k
j =1 aqj Z j + � q. Let � ij be Kronecker's delta, that is

� ij =

(
1 if i = j;
0 if i 6= j:

Using the independence of theZ i , we obtain

Cov(X p; X q) = E
�
(X p � � p)(X q � � q)

�
= E

� kX

i =1

api Z i

kX

j =1

aqj Z j

�

=
kX

i =1

kX

j =1

api aqj E(Z i Z j ) =
kX

i =1

kX

j =1

api aqj � ij =
kX

i =1

api aqi

Putting � = AA T , the right-hand side is the entry in the pth row and the qth column of �. For this
reason, � is called the covariance matrix of the random vector X . For a random vector X , we will
write Cov(X ) for its covariance matrix.2.3 Note that if X is a random column vector andE(X ) = �
then

(2.5) Cov(X ) = E
�
(X � � )(X � � )T �

:

Indeed, if X = ( X 1; X 2; : : : ; X n ) and � = ( � 1; � 2; : : : ; � n ), then

(X � � )(X � � )T

is an n � n matrix with the entry ( X p � � p)(X q � � q) in the pth row and qth column. Given a matrix
(Zpq) of random variables, its expectation is taken entry-wise,that is E

�
(Zpq)

�
=

�
E (Zpq)

�
.

2.4 The density function of a nondegenerate multivariate no rmal distri-
bution

While the degenerate case is important for statistics, since it can happen that the residuals in case of
a least-squares �tting have a degenerate multivariate normal distribution, discussing the degenerate
case is more complicated with the means at our disposal, since the joint density function does not

2.2 We may require A to be an n � n matrix. If A is an n � k matrix, we can replace it with the n � n matrix A 0

whose �rst k columns agree with those of A , and the remaining columns are zero.
2.3 Note that there is no cause for confusion between the notation Cov( X; Y ), with two arguments, denoting the

covariance of two random variables and Cov( X ), with a single argument, denoting the covariance matrix of the
random vector X .
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exist in the degenerate case (this causes no di�culty with more advanced tools from measure theory).
Hence, for discussing the density function, we assume thatk = n and the matrix A is nonsingular.

Writing z = ( z1, z2, : : :, zk )T , the joint density function of Z is

(2.6) f Z (zT ) = f Z (z1; z2; : : : ; zn ) = (2 � ) � n= 2 exp
�

�
1
2

nX

i =1

z2
i

�
= (2 � ) � n= 2 exp

�
�

1
2

zT z
�

:

Assuming A is nonsingular, for x = Az + � , writing we have z = A � 1(x � � ). The Jacobian
matrix @z=@x equalsA � 1. Let � = AA T be the covariance matrix discussed above. Then we have
det � = det( AA T ) = det A det AT = (det A)2. Hence

(2.7)

�
�
�
�det

@z
@x

�
�
�
� = j det(A � 1)j = (det �) � 1=2:

Furthermore

(2.8) zT z = ( x � � )T (A � 1)T A � 1(x � � ) = ( x � � )T � � 1(x � � );

the last equation holds since � � 1 = ( AA T ) � 1 = ( AT ) � 1A � 1. Note that zT z =
P n

i =1 z2
i � 0 unless

z = 0. Thus, the above equation with y = x � � shows that y � y > 0 unlessy = 0 (note that
y = A � 1z = 0 only if z = 0). Hence, the matrix � is positive de�nite { see [23, x35, pp. 159{]. We
cannot recover the matrix A from �, there is, however, a unique positive de�nite matrix A0 such that
(A0)2 = �. We call A0 as the square root of �. and we write

p
� for this matrix,

p
� is symmetric

and it commutes with � { see [24, Subsection 9.5, p. 27]. For the density function f X we have

f Z (zT )
nY

i =1

dzi = f Z (zT )

�
�
�
�
@z
@x

�
�
�
�

nY

i =1

dxi = f X (x)
nY

i =1

dxi :

Thus, by equations (2.6) (2.7), and (2.8), we have

(2.9) f X (xT ) = (2 � ) � n= 2(det �) � 1=2 exp
�

�
1
2

(x � � )T � � 1(x � � )
�

:

According to this formula, if we take A0 =
p

�, and X 0 = AZ + � , then X and X 0 have exactly the
same density functions, and soX = X 0. So, in our considerations, we may, without loss of generality,
assume thatA is a positive de�nite symmetric matrix. 2.4

2.5 Marginal distributions of the multivariate normal dist ribution

Given a positive de�nite symmetric matrix �, the matrix � � 1 is also positive de�nite. This is
because, given any nonzero column vectorx, with A =

p
�, put u = A � 1x, we have

xT � � 1x = ( Au)T � � 1(Au) = uT AT � � 1Au = uT � � 1AA u = uT � � 1� u = uT u > 0;

For the third equation, note that A is symmetric and it commutes with �, and therefore also
with � � 1; namely multiplying the equation A� = � A by � � 1 from both left and right, we obtain
� � 1A = A� � 1.

2.4 That is, it is positive de�nite if it is nonsingular. In the singula r case we can only assume that it is positive
semide�nite. We will comment on the case of singular A at the end.
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Writing y = x � � , y = ( y1; y2; : : : ; yn )T , and P = ( pij ) = � � 1 we have

(2.10)

(x � � )T � � 1(x � � ) = y T Py =
nX

i =1

nX

j =1

yi pij yj

= p11y2
1 + 2y1

nX

i =2

p1i yi +
nX

i =2

nX

j =2

yi pij yj

= p11

 

y1 +
nX

i =2

p1i

p11
yi

! 2

�
nX

i =2

p2
1i

p11
y2

i +
nX

i =2

nX

j =2

yi pij yj

= p11

 

y1 +
nX

i =2

p1i

p11
yi

! 2

+
nX

i =2

nX

j =2

yi

�
pij � � ij

p2
1i

p11

�
yj

where in the third equation we made use of the fact thatpij = pji .
Substitute this into (2.9) and integrate with respect to dx1. Noting that dx1 = dy1, we will use

the substitution

t =
1

p
2

p
p11

 

y1 +
nX

i =2

p1i

p11
yi

!

;

observe thatp11 > 0 sincep is positive de�nite; { see [23,x35, pp. 159{]. Writing y2 = ( y2; y3; : : : ; yn )T ,
equation (2.3) gives that the marginal density of X 2 = ( X 2; X 3; : : : ; X n )T equals

f X 2 (y2)T ) =
Z 1

�1
f X (y )T ) dx1 = (2 � ) � n= 2(det �) � 1=2 p

�
p

2(p11) � 1=2

exp

0

@�
1
2

nX

i =2

nX

j =2

yi

�
pij � � ij

p2
1i

p11

�
yj

1

A

= (2 � ) � (n � 1)=2(det �) � 1=2(p11) � 1=2 exp

0

@�
1
2

nX

i =2

nX

j =2

yi

�
pij � � ij

p2
1i

p11

�
yj

1

A :

This has the form of the density function of a multivariate normal distribution. To make sure that
it is indeed represents multivariate normal distribution, we only need to ascertain that the matrix
with entries �

pij � � ij
p2

1i

p11

�
(2 � i; j � n)

is positive de�nite, i.e., that
nX

i =2

nX

j =2

yi

�
pij � � ij

p2
1i

p11

�
yj > 0

unlessy2 = y3 = : : : = yn = 0. This is however immediate, since the the expression is identical to the
right-hand side of (2.10) for the choice ofy1 that makes the expression under the square in the �rst
term there zero, since we know that his right-hand side is positive unless y1 = y2 = : : : = yn = 0.

Once we know that the marginal density ofX 2 is a multivariate normal distribution, we can write
this density function in a simpler form since the covariancematrix of X 2 is the matrix obtained by
deleting the �rst row and the �rst column of � (since the covar iances ofX i and X j are the entries
of �).
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2.6 The degenerate normal distribution

If the matrix A in equation (2.4) is singular, we are led to a degenerate normal distribution, and
the discussion in Subsection 2.4 breaks down because the matrix � is singular; in this case � is only
positive semide�nite (that is x � x � 0 always, but it can equal 0 even ifx 6= 0). However, if � > 0
and I is the n � n identity matrix, then the matrix �+ �I is nonsingular. This is because a matrix is
singular if and only if 0 is one of its eigenvalues. As � is positive semide�nite, all its eigenvalues are
nonnegative real numbers, and all the eigenvalue of � + �I are of form � + � with � and eigenvalue
of �. The singular case then can be handled with replacing � by � + �I , and making � & 0. The
density function will exist for all � > 0, and so does the joint distribution function. The limit of t he
joint distribution when � & 0 will de�ne the joint distribution function for � = 0, while the joint
density function will remain unde�ned. One needs some machinery from measure theory to de�ne
the density function (or, rather, more properly, the density measure) in case� = 0.

2.7 Independence and no correlation

We have the following

Theorem 2.1. Assume the random variablesX and Y have a joint normal distribution. If Cov(X; Y ) =
0 then X and Y are independent.

Proof. Assume Cov(X; Y ) = 0; then the covariance matrix � of ( X; Y ) has form

� =
�

� 2
X 0
0 � 2

Y

�
:

If � X = 0 then X is constant with probability 1, in which case X and Y are independent; similarly,
if � Y = 0. If � X 6= 0 and � Y 6= 0, then � is nonsingular, and we have

� � 1 =
�

� � 2
X 0
0 � � 2

Y

�
:

The joint density function of X and Y is given by

f X;Y (x; y) =
1

2�� X � Y
exp

�
�

(x � � 1)2

2� 2
X

�
(y � � 2)

2� 2
Y

�

according to (2.9), and sof X;Y (x; y) = f X (x)f Y (y), since f X and f Y is given by (2.1) with appro-
priate modi�cations.

This result naturally extend to two vector variables X and Y having a joint normal distributions.
If in the joint covariance matrix, each entry involving an X component and aY component is zero,2.5

then X , and Y are independent as vector variables, that is that is, for joint the density function we
have

f X ;Y (x ; y ) = f X (x)f Y (y ):

The proof of this is similar to that of the above theorem; we omit the details.

2.8 Problem

Problem 2.1. Given a positive integer n, an n � n matrix A with real entries is called positive
semide�nite if xT Ax � 0 for every n-dimensional column vectorx with real components. AssumeX
is a random column vector with real entries. Show that its covariance matrix is positive semide�nite.

2.5 In this case, one says that X and Y are uncorrelated .
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3 Some background from complex function theory

The theory of complex functions of a single variable is an extension of single variable calculus, in that
the functions are de�ned in a part of the complex plane, and the values are also complex numbers.
Such a function f de�ned on a disk D = f z 2 C : jz � aj < r , where a is a complex number,r is
a positive real, and C denotes the set of complex numbers, is called di�erentiablein D if for any
z 2 D the limit

lim
� ! z

f (� ) � f (z)
� � z

exists, and this limit is denoted as f 0(z) and is called the derivative of f at z. So far this is the
same de�nition as given in real variable calculus, but the requirement for di�erentiability much more
stringent. To explain this, note that is z = x + iy where x and y are real, then f (z) can be written
as

f (z) = u(x; y) + iv (x; y);

where u and v are real functions of two real variables. The existence of the limit above means, in
particular, that, for real h the limits

lim
h! 0

f
�
(x + h) + iy

�
� f (x + iy )

h

and

lim
h! 0

f
�
x + i (y + h)

�
� f (x + iy )

ih
are equal. The equation of these limits can be written in terms of the functions u and v as

@
@x

u(x; y) =
@
@y

v(x; y) and �
@
@y

u(x; y) =
@

@x
v(x; y):

These equations are called the Cauchy{Riemann equations. We will have no use for them in what
follows, we mention them only to underline the di�erences between real and complex analysis.

The rules of di�erentiation (di�erentiation of sums, produ cts, fractions, and composition of
functions) are the same in complex variables as in real variables, but there are some features in
complex analysis that are very di�erent from what we know in real analysis. In particular, if f is
di�erentiable in D then f 0 is also di�erentiable in D { nothing like this is true for real variables.
Furthermore, if f is di�erentiable in D , then the Taylor series

1X

k=0

f (k)(a)
k!

(z � a)k

absolutely converges tof in D .
The above facts have the following consequence, important for time series: if P(z) and Q(z)

are polynomials, andQ(z) has no zeros inD , then the Taylor series of P(z)=Q(z) at a absolutely
converges inD . We will need this result with a = 0. If P(z) and Q(z) have real coe�cients and a
is real, then the Taylor series isP(z)=Q(z) at a will have real coe�cients, since the whole Taylor
series can be determined by staying within the realm of real numbers. Determining the coe�cients
by repeated di�erentiation is usually to time-consuming, and it is easier to use polynomial division
to do this in casea = 0, the main case of interest to us. The usual method of dividing polynomials
can be used, but the polynomials need to be arranged in increasing powers, and the terms with the
lowest power need to be divided at each step.
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3.1 The natural exponential function with a complex argumen t

There are several ways to extend the natural exponential function expx = ex for complex values of
x. One is to use the Taylor series

ex =
1X

n =0

xn

n!
;

another one is using the limit

ex = lim
n !1

�
1 +

x
n

� n
;

the latter approach has more intuitive appeal { see [25]. In the quoted note, one can �nd a proof of
Euler's equation

(3.1) eix = cos x + i sinx;

where i is the imaginary unit. This equation is true for real and complex values ofx; in [25], the
proof given only for real x.3.1

4 Homogeneous linear recurrence equations

An equation of form

(4.1)
mX

k=0

ak yt � k = 0 ( a0 6= 0 ; am 6= 0 ; m > 0; �1 < t < + 1 )

is called a recurrence equation, more precisely, ahomogeneous linearrecurrence equation. (If the
right-hand side is replaced with some function ofn that is not identically zero, then what he get
is called an inhomogeneousrecurrence equation. In this section, we will only discuss homogeneous
recurrence equations.) Hereak for integers k with 0 � k � m are given numbers, and we seek
solutions yn such that these equations are satis�ed for all nonnegative integers n. m is called the
order of this equation. The assumptionsa0 6= 0 and am 6= 0 are reasonable in the sense that if
either of these assumptions fail, the equation can be replaced with a lower order equation. It will
be advantageous to work with complex numbers; i.e., the numbers ak and yn will be allowed to be
complex. It is convenient to consider a solution of this equation as a vector

y = h: : : ; y� 2; y� 1; y0; y1; y2; : : :i

with two-way in�nitely many components. These vectors can be added componentwise, that is

h: : : ; y� 2; y� 1; y0; y1; y2; : : :i + h: : : ; z� 2; z� 1; z0; z1; z2; : : :i

= h: : : ; y� 2 + z� 2; y� 1 + z� 1; y0 + z0; y1 + z1; y2 + z2; : : :i ;

and can be multiplied by scalars, that is

� h: : : ; y� 2; y� 1; y0; y1; y2; : : :i = h: : : ; �y � 2; �y � 1; �y 0; �y 1; �y 2; : : :i :

3.1 Euler's equation has an appealing intuitive content for real x if one considers the extension of exp x for complex
x using the limit above. The equation is easy to prove for complex x if one uses the Taylor series of exp x, cosx, and
sin x, but such a proof has no intuitive content.
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The solution vectors form an n-dimensional vector space. First, they form a vector space,since if y
and z are solutions then� y + � z is also a solution. It is also clear that the dimension of thisvector
space ism since each solution is determined if we specify the numberyi for m consecutive integer,
for example, for each each integeri with 0 � i � m � 1 (indeed, yt for j � m is then determined
by the recurrence equation, asa0 6= 0 and am 6= 0), and the numbers yi for these m consecutive
integers can be speci�ed arbitrarily.

Write

(4.2) P(� ) =
mX

k=0

ak � k :

The polynomial P(� ) is called the characteristic polynomial of the recurrenceequation (4.1), and the
polynomial equation P(� ) = 0 is called its characteristic equation. Here � is a complex variable.4.1

4.1 The forward and backward shift operators

The backward shift operator B on functions of de�ned on the set of all integersZ is given by writing
Bf (t) = f (t � 1);4.2 The powers of the operatorB can be de�ned by B n f (t) = B

�
B n � 1f )f (t)

�

in addition, we can also use the identity operator I . Polynomials of the operator B will be called
di�erence operators.4.3 yt will be considered as a function ofn, and the operator B on yt will act
according to the equation By t = yt � 1.4.4 The recurrence equation (4.1) can be written in terms of
the operator B as

(4.3)
� mX

k=0

ak B k
�

yt = 0 ( t 2 Z):

The forward shift operator on function de�ned on the set of al l integers Z given by writing Ef (t) =
f (t + 1). We have B = E � 1 , so equation (4.3) can also be written as P(E � 1)yt = 0. Multiplying both sides
by E m (the degree of P (� )) makes no di�erence, since this equation is supposed to hold for all t 2 Z , so this
equation is more conveniently written as

E m P(E � 1)yt = 0 :

Observe that Q(� )
def
= � m P(� � 1) is also polynomial, and this is called the characteristic po lynomial of

equation (4.1) when the equation is written in terms of the forw ard shift operator. When discussing di�erence
equations, usually the forward shift operator is used, but in the theory of time series it is more common to
use the backward shift operator. The solutions of equation (4. 2) will be discussed in terms of the zeros of

4.1 Or an indeterminate, from an alternative viewpoint. An indetermina te is a symbolic variable used in de�ning a
polynomial ring, and is not to be interpreted as representing a number .

4.2 The backward shift operator is always associated with a variable; if more than one variable were associated with
backward shift operators, the notation should indicate the varia ble in question as well, for example E t would shift
the variable t forward, while Es would shift the variable s, etc.

In a more rigorous treatment, however, B always acts on the function, and not the variable. That is, Bf is the
function such that ( Bf )( t ) = f )( t � 1) for all t . It is, however, useful to maintain the �ction that B acts on a variable
in order not to complicate the notation too much.

4.3 A basic di�erence operation is the backward di�erence operator r = I � B . Since we have B = I �r , a recurrence
equation can also be written in terms of the backward di�erence operato r. For this reason, a recurrence equation is
also called a di�erence equation .

4.4 It would be formally more correct, but less convenient, to say that B acts on vectors y h: : : ; y � 2 ; y� 1; y0 ; y1 ; y2 ; : : :i .
In fact, properly, the vector y can be considered a function on the set of integers Z, where yt stands for y (t ).
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the equation P(� ) = 0. Since P(� ) = 0 if and only if Q(1=� ) = 0. 4.5 Hence, results stated in terms of the
zeros ofP (� ) can easily be also described in terms of the zeros ofQ(� ); in fact, the latter description is more
common { except when discussing time series.

By solving the characteristic equation, the characteristic polynomial can be factored as the
product of m linear factors; assuming that � j is a zero4.6 of multiplicity mj of the characteristic
polynomial for j with 1 � j � N (the � j 's are assumed to be pairwise distinct), we have

mX

k=0

ak � k = am

NY

j =1

(� � � j )m j ; where
NX

j =1

mj = m;

the second equation here just says that the above polynomialequation (of degreem) has m roots,
counting multiplicities. The di�erence operator in recurr ence equation (4.3) has a corresponding
factorization:

mX

k=0

ak B k = am

NY

j =1

(B � � j )m j ;

here B � � j could also have been written asB � � j I , but the identity operator is often omitted
when is has a number coe�cient. This is because the rules of algebra involving polynomials of the
variable � and polynomials of the forward shift operator B are the same.4.7

The degree of a polynomialP(t) of t will be denoted by degP(t); the constant polynomial that
is not identically zero will have degree zero, and the identically zero polynomial will have degree� 1.
Then we have

Lemma 4.1. Let � and � be nonzero complex numbers, and letP(t) be a polynomial oft that is not
identically zero. Then

(B � � )P(t)� � t = Q(t)� � t ;

where Q(t) is another polynomial of t such that degQ(t) = deg P(t) if � 6= � and degQ(t) =
degP(t) � 1 if � = � .

Proof. Given an integer k � 0, we have

(B � � )tk � � t = ( t � 1)k � � ( t � 1) � �t k � � t =
kX

j =0

�
k
j

�
t j (� 1)k � j � � t +1 � �t k � � t

=

0

@(� � � )tk + �
k � 1X

j =0

�
k
j

�
t j (� 1)k � j

1

A � � t ;

the second equality was obtained by using the Binomial Theorem. This equation says it all; if � = �
then the term involving tk will cancel, and if � 6= � then this term will not cancel. In the former
case, the operator lowers the degree oftk in the term tk � � t by one. (In this case, if tk is the term
of the highest degree of the polynomialP(t), then the resulting term � �

� k
1

�
tk � 1� � t will not cancel

against the terms resulting from lower degree terms ofP(t), since the degrees of those terms will
also be lowered.) The proof is complete.

4.5 � = 0 cannot happen here, since P (0) = a0 6= 0 by our assumptions. Similarly, Q(0) = am 6= 0.
4.6 A zero of a polynomial is a root of the equation obtained by equating the polynomial to zero.
4.7 In particular, given complex numbers � and � the operators B � � and B � � commute; that is

(B � � )( B � � ) = ( B � � )( B � � ):

Note that B does not commute with expressions involving t . For example, tBt 2 = t(t � 1)2 , and t2Bt = t2 (t � 1).
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4.2 Linear independence of certain functions

Functions here mean functions onZ; instead of the word \function" we could have used the phrase
\two-way in�nite sequence." The lemma just established has several important corollaries.

Corollary 4.1 (Linear Independence). Let r � 1 be an integer. Let f k (t) = Pk (t)� � t
k be functions

of t for k with 1 � k � r , where Pk (t) is a polynomial of t that is not identically zero, and � k is
a nonzero complex number, such that if1 � k < l � r then either � k 6= � l , or if � k = � l then
degPk (t) 6= deg Pl (t). Then the functions f k are linearly independent.

Proof. Assume, on the contrary, that we have
rX

k=1

ck Pk (t)� � t
k � 0;

where not all the complex coe�cients ck are zero (� here means that equality holds identically; in
the present case this means that equality holds for every integert). We will show that this equation
cannot hold. To this end, without loss of generality, we may assume that none of the coe�cients
are zero, since the terms with zero coe�cients can simply be discarded. Further, we may assume
that among the terms Pk (t)� � t

k the polynomial P1(t) is the one that has the highest degree (other
polynomials Pk (t) with nonzero ck for � k 6= � 1 may have the same degree, but not higher). Letd
be the degree ofP1(t). Then

(B � � 1)d
� Y

k :2� k � r;

� k 6= � 1

(B � � k )d+1
� rX

k=1

ck Pk (t)� � t
k = c� � t

1 ;

with a nonzero c. The product is taken for all k for which � k is di�erent from � 1.4.8 The reason
for this equation is that the di�erence operator ( B � � k )d+1 annihilates the term Pk (t)� � t

k when
� k 6= � 1 according to the Lemma 4.1 above, (since degPk (t) � d). These operators will not
change the degree of the polynomial in the termP1(t)� � t

1 according to the same Lemma (because
� k 6= � 1). The operator (B � � 1)d will annihilate the term Pk (t)� � t

k in case� k = � 1 and k 6= 1 (since
degPk (t) < d in this case, according to our assumptions). Finally, the operator (B � � 1)d lowers
the degree ofP1(t) by d in the term P1(t)� � t

1 according to the Lemma (while none of the other
operators change the degree ofP1(t) in this term, as we mentioned). Hence, after the application
of the above di�erence operators, the resulting function will be c� � t

1 with c 6= 0; this con�rms the
above equation. So, applying the di�erence operator to bothsides of the equation expressing linear
dependency, we obtain that

c� � t
1 � 0;

while c 6= 0. This is a contradiction since � 1 6= 0 according to assumptions, showing that the
functions in question are linearly independent.

4.3 The solution of the recurrence equation

Corollary 4.2 (Solution of the Homogeneous Equation). Assuming

mX

k=0

ak � k = am

NY

j =1

(� � � j )m j ; where
NX

j =1

mj = m;

4.8 This arrangement is of course highly redundant, because if � k = � l , there is no need to take both of the factors
(B � � k )d+1 and (B � � l )d+1 , but such redundancy is harmless and it serves to simplify the notation .
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and the � j 's are pairwise distinct, the functions t r � � t
j for r and j with 0 � r < m j and 1 � j � N

represent m linearly independent solutions of the di�erential equation

� mX

k=0

ak B k
�

yt = 0 :

Proof. The linear independence of the functions claimed to be representing the solutions have been
established in Corollary 4.1. Since a recurrence equation of order m can have at most m linearly
independent solutions, these functions will represent a complete set of linearly independent solutions.
To see that each of these functions is a solution, it is enoughto note according to the equation

mX

k=0

ak B k = an

NY

j =1

(B � � j )m j

that, in view of Lemma 4.1, the di�erence operator

(B � � j )m j

annihilates the function t r � � t
j for r < m j .

Thus we exhibited m linearly independent solutions of equation (4.1). If follows that any solution
of (4.1) is a linear combination of these solutions.

4.4 The inhomogeneous linear recurrence equation

Given bt for all t 2 Z, the equation

(4.4)
mX

k=0

ak yt � k = bt (t 2 Z)

is called an inhomogeneous recurrence equation, with (4.1)as the corresponding homogeneous equa-
tion. If the vectors

y1 = h: : : ; y(1)
� 2 ; y(1)

� 1 ; y(1)
0 ; y(1)

1 ; y(1)
2 ; : : :i and y2 = h: : : ; y(2)

� 2 ; y(2)
� 1 ; y(2)

0 ; y(2)
1 ; y(2)

2 ; : : :i

are solutions of the inhomogeneous equation, then, clearly, y2 � y1 is a solution of the homogeneous
equation. Stated in another way, if we �nd a solution yp of the inhomogeneous equation, then every
solution of the inhomogeneous equation can be obtain asyp + yh , where yh is a solution of the
homogeneous equation. The solutionyp is often called aparticular solution.

4.5 Problems

Problem 4.1. The Fibonacci numbers yt , t = 0, 1, 2, : : : are de�ned by the equations y0 = 0,
y1 = 1 and yt = yt � 1 + yt � 2 for every integer t � 2. Write a formula expressingyt .

Problem 4.2. Write a di�erence operator that annihilates all but the �rst term in the expression

c1t3 � 3� t + c2t4 � 2� t + c3t2 � 5� t ;

while it reduces the �rst term to c � 3� t , where c is a nonzero constant (it is assumed thatc1 6= 0).

16



5 Di�erencing and other transformations of time series

5.1 Stationary time series

A sequence
f Yt g = hYt : t 2 Zi

of random variablesYt is called a time series. Considering two-way in�nite time series is an idealiza-
tion. A time series is usually observed in a �nite interval. f Yt g is called strictly stationary if given
any n � 0, the joint distribution of the sequence of random variables hYt + k : 0 � k � ni does not
depend ont 2 Z . It is called stationary if E( jYt j2) < 1 for all t, E(Yt ) does not depend ont,5.1 and
for any n 2 Z, the covariance Cov(Yt ; Yt + n ) does not depend ont.5.2

5.2 Time series and recurrence equations

Let P(x) be a polynomial with constant term 1, and assume the time seriesf Yt g satis�es the equation

(5.1) P(B )Yt = E t (t � 0);

where E t is the error at time t; at this point, we do not assume anything about E t ;5.3 in fact, we
would treat the whole question as involving a numerical series, except that our concern is to turn
the time seriesf Yt g into a stationary series. Normally, equations of the type (5.1) are considered in
autoregressive models of time series. Here, we are not concerned with modeling; in fact, we are not
assuming that our time series is stationary, and autoregressive modeling is usually considered for
stationary time series. So, before modeling, one wants to turn the time series into a stationary time
series. The main tools for this is di�erencing and seasonal di�erencing, and other transformations.

One might ask, why would a time series satisfy an equation such as(5.1). In fact, Section 23, especially
Subsection 23.2 gives an answer. State space models describe how the random variable Yt produced at time
t is produced by the state of the system. Such states may be natural for all time series; however, in most
situations, not much if anything can be known about the state. On ly in models of engineering processes
would be a more or less clear understanding of states. Usually, the only choice one has is to try to model
the time series, whatever mechanism produces it.

We do not assume that the polynomialP(x) is known to the person analyzing the time seriesf Yt g;
in fact, we assume that it is not known. The only use we are making of equation (5.1) is to explain
certain patterns of behavior of the time series that is observed by analyst, without knowing anything
about this equation. All the actions described below to remedy the undesirable patterns of behavior
are to be taken without any knowledge of this equation. On theother hand, the e�ects of these
actions can be best explained with this equation in sight.

5.3 Di�erencing

Di�erencing means applying the operator r
def
= I � B to Yt , and considering the time seriesfr Yt g,

and considering what equation the latter time series satis�es. We can analyze the e�ects of such a
transformation in terms Lemma 4.1 and Corollary 4.2.

5.1 The assumption E( jYt j2 ) < 1 implies that E( Yt ) exists.
5.2 Note that the assumption E( jYt j2 ) < 1 implies that j E(Yt )j < 1 , we have

j E(X )j � E( jX j) = E( jX j) � E(1) � E( jX j2 ) � E(12 ) = E( X 2 );

where the second inequality holds by the Schwarz inequality (see 5.2) .
5.3 If the degree of P (x) = m, then Yt needs to be de�ned for all t � � m for the above equation to make sense.
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First note that equation (5.1) is an inhomogeneous recurrence equation, and, according to Sub-
section 4.4 its solution is a particular solution of this equation and a solution of the homogeneous
equation. In Corollary 4.2 we described the basic solution of the homogeneous equation; the general
solution of the homogeneous equation is a linear combination of these basic solutions. The coe�-
cients of this linear combination are determined by the initial conditions, i.e., the initial observations
of the time seriesf Yt g. Because of the random nature of these observations, all basic solutions of
the homogeneous equation are likely to occur with nonzero coe�cients.

According to Corollary 4.2, the solutions of the homogeneous equation involve terms of form
tk � � t , where � is a zero of the polynomialP(x) with multiplicity greater than k (k � 0). If j� j > 1
then lim t !1 tk � � t = 0, so such terms cause trouble in the long run, i.e., they do not prevent the
time series from being stationary, at least asymptotically. On the other hand, if j� j < 1 or if j� j = 1
and k � 1 limt !1 tk � � t = 1 , so in this case the time seriesf Yt g will not be stationary. In view of
Lemma 4.1, the operatorr = � (I � B ) has essentially no e�ect on the termtk � � t , more precisely,
it will not change its degree k unless� = 1. So di�erencing is of no use unlessP(1) = 0.

On the other hand, if 1 is a p-fold zero ofP(x), then p successive di�erencing will help. This can
be seen as follows. In this case, we haveP(x) = R(x)(x � 1)p, whereR(x) is a polynomial such that
R(1) 6= 0. Then we have P(x) = ( � 1)pR(x)(1 � x)p and so P(B ) = ( � 1)pR(B )r , and equation
(5.1) can also be written as

R(B )r pYt = ( � 1)pE t (t � 0):

This is an equation for r pYt where the characteristic polynomial R(x) no longer has a zero at 1.
But the other zeros have not been dealt with, and the remaining zeros� with j� j < 1 will cause
trouble.

If � is a zero ofP (x) with j� j > 1, the terms involving � � t in the solution of the homogeneous equation
associated with equation (5.1) will tend to 1 in absolute value ast ! �1 ; so how come we are not concerned
about these zeros. One answer might be that we are concerned about the future of the time series, and not
its past; but there is another answer. What ever happened in th e past, the errors E t in equation (5.1) were
such that they accommodated whatever values the time series assumed in the past. So the coe�cients of
the various terms involving � � t were such that Yt remained within certain bounds in the past (if it indeed
did). On the other hand, we have no such control over the future , especially since the future errors E t are
random, so we very much need to be concerned with the troublesome terms � � t with j� j < 1, since these
term will tend to 1 when t ! 1 .

5.3.1 Inverting di�erencing (integrating)

Having obtained the time seriesf X t g by di�erencing f Yt g, we build a model for model for f X t g.
Then we can apply this model to analyzef Yt g by restoring it from the modeled time series. Assuming

(5.2) X t = r Yt = Yt � Yt � 1 (t 2 Z);

we have
Yt = Yt � 1 + X t ;

so, given the sequencef X t g and an initial value for f Yt g, we can easily restore the whole sequence.
For example

Yt = Y0 +
tX

k=1

X k (t > 0):
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Given Y0, restoration for Yt for t < 0 is also possible, given equation (5.2), but usually is of no
interest in the context of time series. If we have performed several di�erencing, we need to perform
inverting the same number of times.

5.4 Seasonal di�erencing

If the time series f Yt g shows a periodic behavior of a periodd for somed, such a periodicity is called
seasonality. The origin of the term is that certain time series sampled once a month often naturally
show seasonality of period 12, since often such time series are a�ected by the seasons of the year.

In this case, one usually applies the seasonal di�erencing operator r d
def
= I � B d. The e�ect of this

can also be analyzed in terms of equation (5.1). In terms of solutions of the homogeneous equation
corresponding to this equation can be explained by the presence of a term� � t among the solutions
of the of the homogeneous equation that is periodic with period d; this in possible only if � = e2�il=d

for some integerl . This means that P(e2�il=d ) = 0. For simplicity, assume that e2�il=d is a simple
zero (a zero of multiplicity 1) of P(x). In fact, assume all the terms � � t for � = e2�il=d for any
integer l with 1 � l < d causing periodicity of period d are present. ThenP(e2�il=d ) = 0 for l with
1 � l < d . The zeros of the equationxd � 1 = 0 are e2�il=d for l with 0 � l < d . We have

xd � 1 =
d� 1Y

l =0

(x � e2�il=d );

and so, putting

(5.3) Q(x) =
d� 1Y

l =1

(x � e2�il=d ) =
xd � 1
x � 1

=
d� 1X

l =0

x l ;

the polynomial Q(x) must be a divisor of P(x); i.e., P(x) = R(x)Q(x) holds for some polyno-
mial R(x). Assuming, for the sake of simplicity, that eache2�il=d (1 � l < d ) is a simple zero (i.e., a
zero of multiplicity 1) of P(x), the numbers e2�il=d are no longer zeros ofR(x). Now, equation (5.1)
can be written as

R(B ) Q(B )Yt = E t (t � 0):

This is an inhomogeneous equation forQ(B )Yt . The corresponding homogeneous equation no longer
has the seasonality termse2�il=d (1 � l < d ). Thus, considering

Q(B )Yt =
d� 1X

l =0

B l Yt

instead of Yt , we successfully removed seasonality. Ifeil=d is a multiple zero of P(x), then we have
to repeat this process in order to remove seasonality.

However, often this is not what is done in practice. One takes

r dYt = ( I � B d)Yt = ( I � B ) Q(B )Yt = r Q(B )Yt :

The time seriesQ(B )Yt no longer has seasonality. Assuming thatQ(B )Yt is stationary, the di�er-
encing with r on the left is unnecessary, and in our opinion it should not bedone, since it amounts
to overdi�erencing; that is, applying a di�erence operator to a time series where such application
is not necessary. The paper [9], or a shorter blog [10] by the same author, discusses the danger
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of overdi�erencing. The article [2] notes problem of the overdi�erencing with seasonal models, and
compares the overdi�erenced model with another model that avoids overdi�erencing, but it does
not seem to state the simple mathematical reason that causesoverdi�erencing in our opinion. The
lecture note [33, p. 6 of lec4-08.pdf] also points out that the polynomial Q(B ) rather than 1 � B d

should be used to remove seasonality.

5.4.1 Inverting seasonal di�erencing

Having obtained the time seriesf X t g by seasonal di�erencing and building a model for it, we want
this model adapted for the original time series. Assuming

X t = Q(B )Yt (t 2 Z);

with Q(x) given in equation (5.3), we have

(5.4) (I � B )X t = ( I � B d)Yt :

That is, writing Z t = ( I � B )X t = r X t , we have

Z t = Yt � Yt � d:

That is, if Ym is given for m with 0 � m < d and the time seriesf X t g, we can restore the time series
f Yt g. Indeed, givenX t for all t 2 Z, we can calculateZ t , and then, for n > 0 and

Ym + nd = Ym +
nX

k=1

Zm + kd (t > 0):

If we have done several seasonal di�erencing, we need to repeat above steps step of inverting seasonal
di�erencing.

In equation (5.4), we did a di�erencing by r , and, as the right-hand side shows, this amounts
to calculate r dYt , in spite of having said above that this may amount to overdi� erencing; this
observation, however, misses the main point. We model the time seriesf X t g, and we use this model
to build a model for f Yt g. That is, we calculate r X t only after we modeledX t , and calculating it is
only used as a step to expressYt in terms of X t . The problem with overdi�erencing is that it tries
to build a model for r X t instead of building it for X t .

5.5 Logarithmic and other transformations

If the polynomial P(x) in equation (5.1) has a zero� with j� j < 1 then, as we pointed out above,
this zero will cause trouble, and di�erencing or seasonal di�erencing will not help. In this case, one
might consider a logarithmic transformation, that is, inst ead of f Yt g one might one to study the
time series f logYt g.5.4 , assumingYt > 0 (if not, one might take log(cYt + d) with an appropriate
constants c and d. There may be other reasons to consider a logarithmic transformation. For
example, in stock prices, one is usually concerned with percentage gains, i.e., multiplicative gains,
and taking logarithms converts these to additive gains, which are technically easier to handle. Other
transformations one may consider is to take

X t =
Y �

t � 1
�

5.4 We use log x to denote the natural logarithm of x. This is common mathematical practice, and ln x is rarely used
in mathematical writing.
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for some �xed � > 0. if Yt > 0. Incidentally, note that

lim
� & 0

x � � 1
�

= log x

for all x > 0, as one can easily verify by l'Hospital's rule.

5.6 Convolutions and linear �lters

Given two functions f and g on R, their convolution f � g is de�ned as

(5.5) (f � g)(x)
def
=

Z 1

�1
f (x � t)g(t) dt =

Z 1

�1
f (� )g(x � � ) d�

provided the integral on the right exists; the second equation is obtained by the substitution � =
x � t.5.5 For two two-way in�nite sequences (i.e., functions on Z) we de�ne5.6

(5.6) (f � g)(n)
def
=

1X

k= �1

f (n � k)g(k) =
1X

l = �1

f (l )g(n � l ):

These equations show that convolution is a commutative operation, that is, f � g = g � f both for
functions and for sequences.

If one thinks of two-way in�nite sequences as functions on Z, then one can think of a (one-way) in�nite
sequence as a functionf on Z+ , the set of positive integers. Then a subsequenceg of f can be thought of
as the function f � h, where h : Z+ ! Z+ is a strictly increasing function.

In time series analysis, a convolution is usually called a linear �lter. If f Yt g is a time series, then
one can take a (usually �xed) number sequencef ht g, and de�ne the �ltered time series f X t g as the
convolution

(5.7) X t =
1X

k= �1

Yt � k hk :

If one wants to analyze the time seriesf Yt g in real time, then one also needs to assume that the
�lter has no future dependence, that is, hk = 0 for k < 0.

5.6.1 Moving average

Given a positive integern, the following �lter is called a moving average�lter of length n: in equation
(5.7) put

ht =

(
1=n if 0 � t < n;
0 otherwise:

For example, stock analysts often talk about moving averages of a stock price, such as, say, a 50 day
moving average, to even out 
uctuations.

5.5 We have d� = � dt, but when we perform the substitution, we also have to interchange t he limits of the integral,
canceling the negative sign.

5.6 Sometimes it helps clear conceptual understanding to note that two-way in�nite sequences are just functions on
Z.
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5.7 Problems

Problem 5.1. Let X be a real-valued random variable such that E(X 2) exists and P(X 6= 0) > 0.
Show that E(X 2) 6= 0.

Problem 5.2. Given two real-valued random variablesX and Y , show that

�
E(XY )

� 2
� E(X 2) E(Y 2):

(This inequality is Schwarz's inequality for random variables).

Problem 5.3. Given two real-valued random variablesX and Y with nonzero variances, show that

� 1 � Corr(X; Y ) � 1:

The assumption that the variances of X and Y di�er from zero is necessary in order that their
correlation be de�ned.

6 Estimating time series parameters

Given a stationary time seriesf Yt g, assume made observationsyk at times k with 1 � k � n. It is
natural to estimate E(Yt ), which, under the assumption of stationarity, is independent of t, as

E(Yt ) � �y =
1
n

nX

k=1

yk :

Such a procedure is not justi�ed without further assumptions. Namely, we only made a single
observation at time t, and estimating Yt by observations made at di�erent times does not necessarily
give the correct result.

6.1 Convergence of random variables

Let hX n : 1 � n < 1i be a sequence of random variables, and letX be a random variable. We say
that X n converges toX in the squared mean if

lim
n !1

E
�
jX � X n j2

�
= 0 :

The absolute value is not needed ifX and X n are real valued. There are many other ways for a
sequence of random variables to converge; for example, we say that X n converges toX in the mean
if

lim
n !1

E
�
jX � X n j

�
= 0;

however, convergence in the squared mean is technically easier to handle.

6.2 Ergodicity

A stationary time series f Yt g is called meanergodic when the above procedure is justi�ed, that is,
when

E(Yt ) = lim
n !1

1
n

n � 1X

m =0

Yt � m :
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Here, usually convergence in the squared mean is considered, in which case the process is called
autocovariance ergodic in the squared mean.6.1

A stationary time series f Yt g is called autocovariance ergodic when

Cov(Yt ; Yt � k ) = lim
n !1

1
n

n � 1X

m =0

E
� �

Yt � m � E (Yt � m ) )
��

Yt � m � k � E (Yt � m � k )
� �

for all k 2 Z:

Here, usually convergence in the squared mean is considered, in which case the process is called
mean ergodic or autocovariance ergodic in the squared mean.6.2

7 The innovations algorithm

Let k 2 Z, and for each integerr � k let Yn be a random variable; for the sake of simplicity, assume
Yn is real valued, but these ideas can easily be modi�ed so as to apply to complex-valued random
variables. Assume, further, that E(Y 2

n ) < 1 for eachn � k. Let

(7.1) Ŷt =
t � 1X

n = k

� nt Yn :

for some coe�cients � nt . We say that Ŷt is the best linear estimate forYt in terms of hYn : k � n < t i
if for all choices of the coe�cients � n for n with k � n < t , with

(7.2) ~Yt =
t � 1X

n = k

� n Yn ;

the expectation

(7.3) E
�
(Yt � ~Yt )2�

is minimal if � n = � nt . We have7.1

Lemma 7.1. Assume Ŷt is the best linear estimate forYt in terms of hYn : k � n < t i . Then we
have

E
�
(Yt � Ŷt )Ym

�
= 0

for all m with k � m < t .
6.1 The term ergodic was introduced by Ludwig Boltzmann. Boltzman deduced th e distribution of the speeds of

molecules in a gas in equilibrium by studying the behavior of a small p art of the gas through time. To make such
a deduction possible, he had to assume that the time series associated with th e behavior of a small part of the gas
re
ects the behavior of the whole volume of gas.

6.2 Since f Yt g is assumed to be stationary here, the t on the right-hand side in the last two equations can be replaced
with an arbitrary t0. One does not do this in a practical calculation, however, since the tim e series may only be
approximately stationary in practice, so out of prudence one would use the same t on both sides of this equation.

7.1 The geometric content of the lemma is that the shortest distance to a line or plane from an outside point is found
by dropping a perpendicular on it. The quantity E( XY ) is an inner product on the space of real-valued random
variables on a given probability space, and this inner product creates a linear geometry. See Subsection 17.1 for a
discussion of inner product spaces.
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Proof. Let ~Yt be given by equation (7.2). We have

E
�
(Yt � ~Yt )2�

= E
�

Y 2
t �

t � 1X

n = k

2� n Yt Yn +
t � 1X

l = k

t � 1X

n = k

� l Yl � n Yn

�

= E
�
Y 2

t

�
�

t � 1X

n = k

2� n E(Yt Yn ) +
t � 1X

l = k

t � 1X

n = k

� l � n E(Yl Yn ):

To �nd the minimum of this, we take partial derivatives @=@�m (k � m < t ):

@
@�m

�
E(Yt � Yt )2�

= � 2 E(Yt Ym ) +
t � 1X

l = k

t � 1X

n = k

(� ml � n + � l � mn ) E(Yl Yn )

= � 2 E(Yt Ym ) + 2
t � 1X

n = k

� n E(Ym Yn )

The minimum is assumed when the right-hand side is zero, i.e., exactly when � n for n with k � n < t
is such that

E
�
(Yt � ~Yt )Ym

�
= 0

for all m with k � m < t . This completes the proof.7.2

It follows from the above proof that for Ŷt to be the best linear estimate the coe�cients on the
right-hand side of (7.1) must satisfy the equations

(7.4)
t � 1X

n = k

� nt E(Ym Yn ) = E( Yt Ym ) (k � m < t ):

7.1 Expressing the time series in terms of innovations

With the notation introduced above, write

et = Yt � Ŷt

for t � k; to simplify the notation, we will assume k = 0 from now on. We call et the innovation at
time t. Observe that we have

(7.5) et = Yt �
t � 1X

n =0

� nt Yn (t � 0)

according to equation (7.1) with k = 0. It is easy in principle to solve these equations forYt in terms
of en for 0 � n � t; that is, we have

(7.6) Yt =
tX

l =0

 l;t et � l =
tX

l =0

 t � l;t el (t � 0)

7.2 It is clear that the expression in (7.3) is a positive semide�nite form in the variables � n , so it must have a
minimum. So the equations we found describe the place of minimum.
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with appropriate coe�cients. It is also easy to see that for t � 0 in these equations we have

(7.7)  0;t = 1 :

Further, note that Lemma 7.1 implies that

(7.8) E(et en ) = 0 if 0 � n < t:

The innovations algorithm expresses the coe�cients here interms of the expectations E(Yl Ym ). For
the sake of simplicity, we assume that for eachet 6= 0 with positive probability for all t � 0; this
implies that E( e2

t ) > 0 { see Problem 5.1.7.3

Multiplying equation (7.6) by en (0 � n � t) and taking expectations, and using (7.8), we obtain

(7.9) E(Yt en ) =  t � n;t E(e2
n ) ( t � 0):

To evaluate the coe�cients  t � m;t , we need to evaluate E(Yt en ) and E(e2
n ). This is fairly simple

to do. Multiplying equation (7.6) by itself and taking expectations and taking (7.7) and (7.8) into
account, we obtain that

(7.10) E(Y 2
t ) = E( e2

t ) +
t � 1X

l =0

 2
t � l;t E(e2

l ):

Finally, replacing t by m (0 � m � t) in equation (7.6), multiplying by Yt , and taking expectations,
using equation (7.7) we obtain

E(Yt Ym ) =
mX

l =0

 m � l;m E(Yt el ) =
mX

l =0

 m � l;m  t � l;t E(e2
l ): (0 � m � t):

Taking n = t � m and omitting the middle member, this gives

(7.11) E(Yt Yt � n ) =
t � nX

l =0

 t � n � l;t � n  t � l;t E(e2
l ): (0 � n � t):

Assuming the mixed moments E(Yt Yn ) are known for all t; n � 0, equations (7.7), (7.10),
and (7.11) can be used to evaluate the coe�cients l;t for 0 � l � t recursively. Equation (7.11)
(with some help from equation (7.7)) is used to calculate n;t , and equation (7.11) is used to cal-
culate E(e2

t ). To be more speci�c, assume that n 0;t 0 have been calculated for all pairs (n0; t0) such
that 0 � t0 < t and 0 � n0 � t0 or t0 = t and n < n 0 � t ; also assume that E(e2

t 0) has been calculated
for all t0 with 0 � t0 < t . Then we can calculate n;t from the values calculated earlier, and in case
n = 0 we can go on to calculate E(e2

t ).
That is, we do the calculations in the following order:  0;0, E(e2

0),  1;1,  0;1, E(e2
1),  2;2,  1;2,

 0;2, E(e2
2),  3;3,  2;3,  1;3,  0;3, E(e2

3),  4;4, : : : . See Problem 7.1 for details.

There is a cautionary note about the above formulas for calculating the coe�cients � t;l . They should be
taken only as a theoretical description as to how to calculat e these coe�cients, and the formulas should not

7.3 The algorithm that follows is essentially an adaptation of the Gr am{Schmidt orthogonalization, discussed in
Subsubsection 17.2.1. The additional complication here is that we d o not normalize et here, i.e., we do not make the
norm 1 in this case; that is, at present we usually do not have E( e2

t ) = 1. As for the requirement that E( e2
t ) > 0,

it helps us to write the formulas in a simple way, but it is not essenti al. Gram{Schmidt orthogonalization has no
di�culty with coping with occasional zero vectors { it simple skips them; see Subsection 17.2.1.
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be used as a basis for writing numerical algorithms to calculate these coe�cients. The problem is that the
Gram{Schmidt orthogonalization, on which the above approac h to calculate the coe�cients � t;l is based, is
numerically unstable. That is, small numerical errors comm itted initially (by rounding in�nite decimals to a
value representable on a computer) cause large errors laterin the calculation. There are numerical methods
avoiding these problem, and so there is no real impediment to calculate the coe�cients � t;l accurately. This
should be taken as a general comment for programming theoretical algorithms on computers: numerical
analysis is a separate art, and theoretically correct algori thms may have to be modi�ed when writing a
computer implementation.

The recursive equations describing the innovations algorithm are discussed in [5, Proposition
5.2.2 on p. 165].

7.2 Zero means

In the discussion above, we did not assume that E(Yt ) = 0, since there was no mathematical need
to do so. When discussing time series, if it is possible to estimate the means ofYt , it is natural
to replace Y with Yt � E(Yt ) as the �rst step in analyzing the time series. We will now make the
assumption that

E(Yt ) = 0 for all t 2 Z:

Then an immediate consequence of equation (7.5) is that

E(et ) = 0 for all t 2 Z:

In this case, one usually calls the innovationet at time as the error (committed by the mechanism
producing the time series) at time t. One often also assumes that the variableset are independent
normal variables for all t. Often there may be no rational reason to make this assumption other
than the resulting ease of mathematical handling of the problem.

7.3 The partial autocorrelation function

Let f Yt g be a time series and letX t = Yt � E(Yt ). For a given t and k � 0, let X̂ t + k be the best
linear estimate of X t + k in terms of X i with t < i < t + k and let X̂ t be the best linear estimate of
X t in terms of the sameX i with t < i < t + k.

The de�nition of X̂ t + k is easy to understand in view of Lemma 7.1, and the innovations algorithm
described in Subsection 7.1, and one can think ofX̂ t + k as the value of X t + k predicted in terms of X i with
t < i < t + k. The de�nition of X̂ t is somewhat less natural, since sinceX t is known before one �nds out
the values of X i with t < i < t + k. Nevertheless, the mathematics for this postdiction , i.e., \backward
prediction," is the same, one merely needs to replacet by N � t in the equations (for an arbitrarily chosen
integer N { which can be 0 if one does not mind the fact that � t may be a negative integer).7.4

The partial autocorrelation function of the time series f Yt g is de�ned as

� t;t + k = Corr( X̂ t � X̂ t ; X t + k � X̂ t + k ):

If Yt is a stationary time series, � t;t + k depends only onk, and not on t, and one may write � (k)
instead of � t;t + k . Intuitively, � t;t + k indicates the degree of relatedness betweenYt and Yt + k with
the intervening values ofYi with t � i � t + k removed.

7.4 Replacing t by � t (or by N � t ) is called time reversal , discussed also below in Section 10.
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7.4 Moving average models

Given a stationary processf Yt g we write


 (n) = Cov( Yt ; Yt � n );

the de�nition of stationarity given in Subsection 5.1 impli es that the right-hand side here does not
depend ont. It is also easy to see that
 (n) = 
 (� n). One also usually writes that

� (n) = Corr( Yt ; Yt � n );

Note that � (n) is de�ned unless 
 (0) = 0, and the case 
 (0) = 0 is of no interest.7.5

For t 2 Z let et be uncorrelated random variables with zero means.7.6 Let q be a positive integer.
A moving average processf Yt g is a process of orderq is a process satisfying the equations

(7.12) Yt = et �
qX

n =1

� n et � n

with some coe�cients � n for n with 1 � n � q. Here et is called the error in the process at timet.
If f Yt g is a stationary process such that E(Yt ) = 0, then the innovation algorithm can be used to
determine the coe�cients � n . Writing

� (x) = 1 �
qX

n =1

� n xn ;

we can write
Yt = � (B )et :

Corollary 4.2 requires that for all zeros� of � (x) we have j� j � 1. Indeed, the random nature of
the errors et will ensure that all basic of the solutions of the homogeneous equation � (B )et will be
represented in the solutions of the inhomogeneous equation� (B )et = Yt (considering this to be an
equation of et for q initial values of Yt , where q is the degree of� (x). The solution corresponding to
j� j < 1 would imply that lim t !1 et = �1 . This would also imply that lim t !1 Yt = �1 , and this
would contradict that stationarity of Yt .

7.5 Problem

Problem 7.1. Explain how equations (7.7), (7.9), (7.10), and (7.11) can be used to evaluate the
moments E(e2

t ) and the coe�cients  t;l for 0 � l � t . assuming that the mixed momentsE(Yt Yn )
are known for all t; n � 0.

8 Autoregressive processes and the Yule{Walker equations

Assume E(Yt ) = 0 for all t. The processf Yt g is said to be autoregressive of orderp if the following
conditions are satis�ed. The

(8.1) Yt =
pX

k=1

� k Yt � k + et (t 2 Z)

7.5 
 (0) = 0, i.e., Var( Yt ) = 0 means that Yt is almost surely constant (see Problem 5.1. Since E( Yt ) does not depend
on t for stationary series, this means that the whole series f Yt g almost surely assumes the same value.

7.6 One often assumes that the variables et are independent normal variables; their variances do not have to be th e
same.
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holds, whereet is the error at time t; it is assumed that the random variableset are uncorrelated,
and E(et ) = 0 and � (et ) < 1 for all t; the variable et is unobservable. Further, we assume that for
all t0 < t , the variable Yt 0 is uncorrelated with et .

Writing

(8.2) � (x) = 1 �
pX

k=1

� k xk

and using the backshift operator, we have

� (B )Yt = et :

Assuming f Yt g is a stationary process, given an arbitrary integer (positive, negative, or zero), the

covariance 
 t;t � k = Cov( Yt ; Yt � k ) does not depend onk, so we can write 
 (k)
def
= 
 t;t + k . This

assumption allows us to derive a system of equations for the coe�cients � k in equation (8.1). Hence,
for k > 0 we have


 (k) = Cov( Yt ; Yt � k ) = Cov
� pX

i =1

� i Yt � i + et ; Yt � k

�

=
pX

k=1

� i Cov(Yt � i ; Yt � k ) + Cov( et ; Yt � k ) =
pX

i =1

� i 
 (k � i );

the last equation holds since Cov(et ; Yt � k ) = 0 for k > 0 (the assumption k > 0 is essential here,
since the erroret at time t certainly in
uences the value of Yt ). That is

(8.3) 
 (k) =
pX

i =1

� i 
 (k � i )

for any integer k > 0. Noting that with � t;t � k
def
= Corr( Yt ; Yt � k ), � (k) = � t;t � k does not depend on

t, and � (k) = 
 (k)=
 (0), and can the above equation with 
 (0). Taking these equations only fork
with 1 � k � p, we obtain.

(8.4) � (k) =
pX

i =1

� i � (k � i ) (1 � k � p):

These equations are the equivalent equations (8.3) are called the Yule{Walker equations.
While the derivation shows that these equations should alsobe satis�ed for k > p , but then we

may have more equations than unknowns, and the equations maybe contradictory. For the optimal
choice ofp, taking a p0 > p , in the analogous equations

� (k) =
p0

X

i =1

� 0
i � (k � i ) (1 � k � p0);

� 0
i should not be signi�cantly di�erent from � i for k with 1 � k � p and � 0

i should not be signi�cantly
di�erent from 0.
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8.1 Best linear prediction for stationary processes

Given a stationary time series f Yt g, we want to predict Yt in terms of the previous p observa-
tions f yt � n g1� n � p, and write

Ŷt � 1(1) =
pX

n =1

�̂ n yt � n ;

the symbol on the left-hand side denotes the one-step ahead prediction of Yt made at time t � 1.8.1

That is, writing

Yt � 1(1) =
pX

n =1

�̂ n Yt � n ;

Ŷt � 1(t) is the value obtained for the random variableYt � 1(1) by substituting the observed values of
f Yt � n g1� n � p in this equation. The prediction error is the random variable Yt � Ŷt � 1(1). Because
of the assumption that E(Yt ) = 0 for all t made above, we can see that the mean square prediction
error is

(8.5) Var
�
Yt � Yt � 1(1)

�
= E

 
�

Yt �
pX

n =1

�̂ n Yt � n

� 2
!

:

This will be minimum when equations (7.4) are satis�ed with �̂ t � n replacing � nt and t � p replacing
k. Noting that f Yt g is stationary with mean 0, we have E(Yt � i Yt � n ) = Cov E( Yt � i Yt � n ) = 
 (n � i ),
and similarly, E( Yt Yt � i ) = 
 (i ), this gives the equations

(8.6)
pX

n =1

�̂ n 
 (i � n) = 
 (i ) (1 � i � p):

These equations are identical to the Yule{Walker equations(8.3) given above.

8.2 Solvability of the Yule{Walker equations

We have the following

Theorem 8.1. Let f Yt g be a stationary process such that
 (0) 6= 0 and limn !1 
 (n) = 0 . Then,

for every p � 1, the covariance matrix � p
def
=

�

 (k � i )

�
1� i;k � p is nonsingular.

The covariance matrix � p is the matrix of the form of the Yule{Walker equations given in (8.3));
the nonsingularity of this matrix means that those equations or equations (8.3) have a unique
solution. For the proof, we need the following

Lemma 8.1. Let m � 1, and X i for i with 1 � i � m be random variables such that the covariance
matrix C =

�
Cov(X i ; X j )

�
1� i;j � m is singular. Then there is an r with 0 � r < m and there are

numbersa1, a2, : : :, ar such that X r +1 =
P r

i =1 ai X i with probability 1.
Further, if X 0

i for i with 1 � i � m is another collection of random variables with the same
covariance matrix C, then we haveX 0

r +1 =
P r

i =1 ai X 0
i with the samer and the same coe�cients ai

for 1 � i � r .

8.1 Ŷt � 1 (1) is more or less standard notation for the one-step ahead prediction made at time t � 1. In equation (7.1)
used a di�erent notation, since the present notation would have been too cu mbersome in those considerations.

29



The lemma can be found in [5, Proposition 5.1.1 on p. 160].

Proof. As C is singular, there is anr with 0 � r < m such that the (r + 1)st row of C is a linear
combination of its earlier columns; that is

Cov(X r +1 ; X j ) =
rX

i =1

ai Cov(X i ; X j ) for all j with 1 � j � m

Hence

0 = Cov( X r +1 ; X j ) �
rX

i =1

ai Cov(X i ; X j ) = Cov
�

X r +1 �
rX

i =1

ai X i ; X j

�
(1 � j � m):

Any linear combination of the right-hand sides of these equations also gives 0. Thus

Cov
�

X r +1 �
rX

i =1

ai X i ; X r +1 �
rX

i =1

ai X i

�
= 0 :

Therefore, the existence of anr as claimed follows. As for the last sentence of the lemma, it follows
since the covariance matrixC by itself allowed us to �nd r and the coe�cients ai .

For the proof, we need some background about matrices. An orthogonal r � r matrix is such
that QT Q = I , where I is the r � r identity matrix. This means that QT is the left inverse ofQ. If
a square matrix has a left inverse, then it also has the right inverse, and it is the same as the left
inverse. Hence we also haveQQT = I for an orthogonal matrix. The l2 norm of an r -dimensional
column vector x = ( x1; x2; : : : ; xr )T is de�ned as

kxk =

vu
u
t

rX

i =1

x2
i :

This norm is sometimes also denoted askxk2 to indicate that we are talking about l2 norms, but
we will refrain from this, since the only vector norm we will use is thel2 norm. An r � r matrix A
has a norm induced by the given vector norm:

kAk = max fk Axk : kxk = 1g:

We have kxk2 = xT x. If Q is an orthogonal matrix, we have

(8.7) kQxk2 = ( Qx)T (Qx) = xT QT Qx = xT (QT Q)x = xT I x = xT x = kxk2:

This shows that an orthogonal matrix preserves vector norms; for this reason, it is also an isometry
(i.e., it preserves distances, i.e., the metric). For more about orthogonal matrices, see see [23,x38,
p. 175-176].8.2

Proof of Theorem 8.1. Assume there is ap � 1 such that � p is singular, and let p be the smallest
such integer. Thenp > 1 since �1 is the 1 � 1 matrix with 
 (0) as its only entry, and 
 (0) 6= 0 by

8.2 The quoted pages are interesting for statistics also in other respects, since x38 discusses the numerical handling
of the least squares approximation.
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our assumption. Let k � p be an integer. Applying the lemma m = p for the random variables
Yk � p+ i with 1 � i � k, we �nd an r with 1 � r < p and numbersai for 1 � i � r such that

Yk � p+ r +1 =
rX

i =1

ai Yk � p+ r :

Note that r does not depend onk in view of the last sentence of the lemma. The only important point
here is that Yk � p+ r +1 can be expressed as a linear combination ofYj for j with 1 � j � k � p + r .
Applying this result for each term on the right-hand side, we obtain that Yk � p+ r +1 is expressible as
a linear combination of Yj for 1 � j � k � 1 � p + r as long ask � 1 � p. Repeating this argument
k � p times, we obtain that Yk � p+ r +1 is expressible as as a linear combination ofYj with 1 � j � r .

Taking n = k � p + r + 1, we obtain

(8.8) Yn =
r � 1X

i =1

a(n )
i Yj

for every n > r , where the coe�cients a(n )
i may depend onn. Multiplying this equation by Yn and

taking expectations, we obtain that


 (0) =
r � 1X

i =1

a(n )
i 
 (n � j ):

Making n ! 1 , we have
 (n � j ) ! 0 by our assumptions, and so, writinga(n ) = ( a(n )
1 ; (a(n )

2 ; : : : ;
a(n )

r )T , we must have

(8.9) lim
n !1

ka(n ) k = + 1

for the last equation to hold.
Writing Y k for the column vector (Yk+1 ; Yk+2 ; : : : ; Yk+ r )T equation (8.8) can be written in matrix

form as
Yn = Y T

1 a(n ) :

Multiplying by the column vector Y T
1 on the left and taking expectations, we obtain that

(8.10) (
 n � 1; 
 n � 2; : : : ; 
 n � r )T = � r a(n ) :

The matrix � r is a symmetric positive semi-de�nite, and since it is nonsingular by the minimality
assumption of p (p was assumed to be the smallest integer such that �p is singular, and r < p ),
it follows that � r is positive de�nite. All eigenvalues of a positive de�nite symmetric matrix are
positive real numbers. By the Principal Axis Theorem of linear algebra, there is an orthogonalr � r
matrix Q such that

� r = QT DQ;

where D is a diagonal matrix with the eigenvalues� 1, � 2, : : :, � r of � r being its diagonal entries;
we may assume that the entries occur in increasing order; that is, D = ( � i � ij )1� i;j � r with 0 < � 1 <
� 2 < : : : < � r ; see e.g., [30, Theorem 7.4.4' on p. 333].

Hence, for the norm of the right-hand side of (8.10) we have

k� r a(n ) k = kQT DQa(n ) k = kDQa(n ) k � � 1kQa(n ) k = ka(n ) k:
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The second and third equalities here hold sinceQT and Q are both orthogonal matrices, and so
they preserve norms (cf. (AR: preserve norms), and the inequality holds since for a column vector
x = ( x1; x2; : : : ; xr )T we have Dx = ( � 1x1; � 2x2; : : : ; � r x r )T . Since the left-hand side of (8.10)
tends to zero asn ! 1 , we must have limn !1 ka(n ) k = 0. This contradicts (8.9), completing the
proof.

8.3 Solving the Yule{Walker equations

The matrix � p has a special form, and so in solving equations (8.3) there are methods faster than
Gaussian elimination. The matrix � p is a Toeplitz matrix , that is, a square matrix in which all
elements is a diagonal parallel to the main diagonal are the same. That, is a square matrix (t ij ) is
a Toeplitz matrix if t ij = t i 0j 0 wheneveri � j = i 0 � j 0. Systems of linear equations whose matrix is
a Toeplitz matrix can be solved by variants of the Levinson algorithm { see [41]

8.4 Location of zeros of the autoregressive model polynomia ls

Assume f Yt g is a stationary process of orderp as described at the beginning of Section 8. Then,
using the backshift operator B for the covariances to meanB
 (k) = 
 (k � 1), equation (8.3) can be
described with the aid of the polynomial � (x) given in (8.2) as

� (B )
 (k) = 0;

this equation is true for all k > 0, even though in stating the Yule-Walker equations, we restricted k
to the range 1� k � p. Considering this as a homogeneous recurrence equation for
 (k), its solutions
are linear combinations of the basic solutions given in Corollary 4.2. In an example occurring in
practice, the solution is represented by a linear combination in which the coe�cient of any basic
solution is nonzero, since there need to be very special initial conditions to ensure that such a
coe�cient is zero. If � (x) has a zero� with j� j � 1, then this ensures that limk !1 
 k 6= 0. This is
an undesirable behavior in a stationary time series, therefore, in autoregressive models one usually
requires that j� j > 1 for all zeros� of � (x).

9 Mixed autoregressive moving average processes

9.1 ARMA models

Let f Yt g be a stationary time series such that E(Yt ) = 0 for all t 2 Z. The processf Yt g is called a
mixed autoregressive moving average process of order (p; q) if

(9.1) Yt =
pX

k=1

� k Yt � k + et �
qX

k=1

� k et � k ;

where et is the error at time t; it is assumed that the random variableset are uncorrelated, and
E(et ) = 0 and � (et ) < 1 for all t. The error et is also uncorrelated with Yt 0 with t0 < t . Note that
the variable et is unobservable. Such a process is also called an ARMA(p; q) process. Writing

(9.2) � (x) = 1 �
pX

k=1

� k xk and � (x) = 1 �
qX

k=1

� k xk ;

32

https://en.wikipedia.org/wiki/Otto_Toeplitz


we have

(9.3) � (B )Yt = � (B )et :

This model is reducible if the greatest common divisor� (x) of � (x) and � (x) is not constant (i.e.,
if it has degree greater than or equal to 1), since in that casewe can divide both sides by� (x). In
any case, the model can also be written as

(9.4) Yt =
� (B )
� (B )

et ;

or
� (B )
� (B )

Yt = et :

Replacing the fractions by their Taylor series at 0, these represent a pure moving average process
and a pure autoregressive process of in�nite order, respectively. For the convergence of these series
certain assumptions are needed. We do not quite need to assume that the processf Yt g is stationary.
Assuming that the expectations of the squares ofYt and et are bounded, i.e., that there is a number
M such that E(Y 2

t ) < M and E(e2
t ) < M ,9.1 and the power series

f (x) =
qX

k=0

ak xk ;

has radius of convergence greater than one, the seriesf (B )Yt and f (B )et converge in the mean (i.e.,
in expectation); for example, for Yt this means that there is a random variable �Yt such that

lim
n !1

E
� �

�
� �Yt �

nX

k=0

ak Yt � k

�
�
�

�
= 0 :

This follows from known results of integration theory, somewhat beyond the scope of this course.
Instead of convergence in the mean, one often prefers convergence in the square mean for technical
reasons:

lim
n !1

E
� �

�
� �Yt �

nX

k=0

ak Yt � k

�
�
�
2
�

= 0;

the absolute value is unnecessary for real-valued random variables.
If one requires that the polynomials � (x) and � (x) have no zeros in the closed unit diskf z 2 C :

jzj � 1g of the complex placeC, the radius of convergence of the Taylor series of both� (x)=� (x)
and � (x)=� (x) will be greater than 1; see Section 3.

9.2 Coe�cients in the pure MA representation

Writing  (x) = � (x)=� (x), equation (9.4) can be written as

(9.5) Yt =  (B )et ;

where  (x) can be represented as an in�nite series

(9.6)  (x) =
1X

n =0

 n xn :

9.1 It follows from simple inequalities involving expectations that i t is enough for this that the both the mean and
the variance of Yt and et are bounded.
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Assuming the zeros of� (x) are outside the unit circle, this series has radius of convergence> 1.
The coe�cient  n can easily be determined from the coe�cients in equations (9.2). Indeed, writing
� 0 = � 0 = � 1 and  n = 0 for n < 0, the equation  (x)� (x) = � (x) can be written as

1X

n =0

� pX

k=0

 n � k � k

�
xn =

qX

n =0

� n xn :

Equating the coe�cients of xn gives equations for the coe�cients  n . That is, noting that � 0 = � 1,
we have

(9.7)  n = � � n +
pX

k=1

 n � k � k (n � 0);

where we take� n = 0 for n > q .9.2

9.3 Calculating the MA coe�cients in ARMA models

Given a stationary time series f Yt g with zero means and positive integersp, q, we would like to
build an ARMA( p; q) model described in equation (9.1). Assume the coe�cients� k for k with
1 � k � p have already been determined. The question is how to determine the coe�cients � i for k
with 1 � k � q. To do this, we �rst need to build a pure MA model, using the innovation algorithm
described in Subsections 7.1 to calculate the coe�cients ina pure MA model (9.5), with the in�nite
series in equation (9.6) truncated to a �nite sum:

Yt =
mX

l =0

 n et � n

for some integerm, where  0 = 1; cf. equation (7.6); at present, the coe�cients  l do not depend
on t, since the time seriesf Yt g is stationary. Choosing larger values ofm will give more accurate
results; in any case, we need to make sure thatm � max(p; q). Then, using equations (9.7), the
coe�cients � n for n with 0 � n � q can be determined.9.3

9.4 The primacy of autoregressive models

Moving average models are a kind of mathematical artifact, and they do not re
ect natural forces
producing the time series. An error committed at an earlier time does not directly govern the present
behavior of the time seriesf Yt g. Any e�ect on the present value of Yt is brought about by the earlier
errors is mediated through the values ofYt 0 for t0 < t . This means that autoregresssive models give
a natural description of the time series via an equation of the form

(9.8) � 1 (B )Yt = � t ;

where the � t is the error committed at the present time, while the subscript of � indicates that

� 1 (x) = 1 �
1X

k=1

� k xk

9.2 These equations just express in equations what happens when we perform th e usual long division � (x)=� (x) with
the modi�cation that the powers of x are arranged in reverse order, i.e., in the order 1, x, x2 , : : :, and the process
goes on inde�nitely.

9.3 We have � 0 = � 1 according to these equations, since  0 = 0; � 0 does not occur directly in equation (9.1).
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is usually an in�nite series.9.4 If the time series f Yt g is stationary, it is natural to think about B as
an operator of norm 1,9.5 and so, for the convergence of the series on the left of (9.8),one wants to
make sure that the radius of convergence of the series� 1 (x) is greater than 1.

In numerical calculations, one truncates� 1 (x) to a polynomial

� m (x) = 1 �
mX

k=1

� k xk ;

and considers the truncated model

(9.9) � m (B )Yt = et ;

Truncation causes the errorset on the right-hand side to be di�erent from � t , but if we choosem to
be large,et will be a good approximation to � t . Assuming Yt has zero means, we have

Var( et ) = E
� �

� m (B )Yt
� 2

�
;

where, for stationary f Yt g, the right-hand side does not depend ont. So the variance ofet is
independent of t. Dividing equation (9.9) by � m (B ), we obtain

(9.10) Yt =
1

� m (B )
et ;

Here 1=� m (x) can be written as a power series. In view of Subsection 8.4, it seems reasonable to
assume that � m (x) has no zeros� with j� j � 1, so the Taylor series for 1=� m (x) has radius of
convergence> 1. Hence the series for 1=� m (B ) is convergent when applied toet .9.6

When building an ARMA model, 1=� m (x) in equation (9.10) is not calculated from an AR
model; and an approximation to 1=� m (x) is obtained by the innovation algorithm directly from the
autocovariances
 (k) of the stationary time series f Yt g via the innovations algorithm of Section 7.
In any case, 1=� m (x) has no zeros anywhere, it being a reciprocal. Further, one takes an AR model

� (B )Yt = et ;

where � (x) is a further truncation of � m (x). Then one replaces the model (9.10) with the equivalent
model

� (B )Yt =
� (B )

� m (B )
et :

Finally, one takes a polynomial approximation � (x) of the in�nite series � (x)=� m (x), and the sought-
after ARMA model will be

� (B )Yt = � (B )et :

In fact, we can take � (x) to be a truncation to a polynomial of the in�nite power serie s � (x)=� m (x).

9.4 We mentioned above in Subsection 5.2 that such equations are natural ly satis�ed by time series produced by
simple state-space models described in Section 23.

9.5 Norms are systematically discussed only in Subsection 17.1 below, since init ially we want to avoid too much

abstract discussion, but at present, by the norm of a random variable X we mean kX k
def
=

�
E( jX j2

� 1=2 , and B having
norm 1 means that kB (Yt )k = kYt k in view of stationarity.

9.6 As we pointed out above, E( e2
t ) does not depend on t , so kB (et )k = ket k.
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9.4.1 Why the MA polynomial in an ARMA model is expected to have no zeros in
the closed unit disk

As � (x) is usually assumed to have no zeros� with j� j � 1 in view of Subsection 8.4, neither will
have � (x)=� m (x) have such zeros (also recall that 1=� m (x) is represented by a power series with
radius of convergence greater than 1). If� (x) is a good enough approximation of 1=� m (x), then � (x)
will have no zeros in the closed unit disk either.

9.5 Prediction with ARMA models

Assume we have observationsyt of Yt for 0 � t < n , and that these observations satisfy equation
(9.1), or equation (9.3), which is just a short form of the former equation, with the appropriate
changes (such as replacingYt by yt ). We want to predict Yn at time n � 1; we will denote the
prediction with Ŷn (1). To this end we write êt for the estimated error at time t with �1 < t < n .
These error estimates are obtained by solving the equation

� (B )êt = � (B )yt
�
p � t < n

�
;

with initial conditions êt = 0 for �1 < t < p . Note that this is an inhomogeneous recurrence
equation for êt , since the right-hand side is know. If we change the initial conditions to the actual
values of the error et for t < p then the change in the solution for et will be a solution of the
homogeneous equation (i.e., the above equation with 0 right-hand side). If we require that all zeros
of � (x) are outside the unit circle, then every solution of the homogeneous equation will tend to 0 as
t ! 1 , according to Corollary 4.2, so, assumingn is large, taking 0 as initial condition will ensure
that the estimates êt will be close to the actual value ofet for n � q � t < n . We put

Ŷn � 1(1) =
pX

k=1

� k yn � k �
qX

k=1

� k ên � k :

This is is just equation (9.1), with n replacing t, Ŷn � 1(1) replacing Yt on the left-hand side, Ŷn � k

replacing Yt � k for k with 1 � k � p, ên � k replacing et � k for k with 1 � k � q, and 0 replacinget on
the right-hand side.

9.6 The importance of ARMA models

As we saw in Subsection 9.1, and ARMA model can also be writtenas a pure autoregressive model,
or a pure moving average model, each with possibly in�nitelymany coe�cients. The importance of
ARMA models lies in that they allow to model the time series with fewer parameters.

9.7 Integrated ARMA models

Let f Yt g be a time series, and assume that using the di�erence operator r = I � B d times, where
d � 0 is an integer, we arrive at the time seriesf (I � B )dYt g that is a stationary time series with 0
means. Then we can model the latter time series by an ARMA(p; q) model, that is we can write

(9.11) � (B )( I � B )dYt = � (B )et

according to equation (9.3), where� (x) and � (x) are are as in equation (9.2). If p and q are the
degrees of� (x) and � (x), respectively, such an equation is called an integrated autoregressive moving
average model of order (p; d; q), or, shortly, and ARIMA( p; d; q) model.
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10 Time reversal

When studying a time series
f Yt g = hYt : t 2 Zi ;

is it sometime useful to also look at the time series obtainedby time reversal, i.e., the time series in
which t is replaced by� t:

f Y� t g = hYt : t 2 Zi :

There may be various mathematical justi�cation for studyin g the time reversed series. For example,
if the time series f Yt g is stationary, the time reversed seriesf Y� t g is also stationary, with the
same covariance coe�cients. Hence, when constructing an autoregressive model for the time series
f Yt g, the same autoregressive model also works for the time reversed seriesf Y� t g in view of the
Yule{Walker equations (equations (8.3) or (8.4)). Since ARMA models can naturally related to
autoregressive models (cf. equation (9.4), this observation also extends to ARMA models.

Time reversal is also important in physics when studying time-reversal symmetric equations.
Yet, in a sense one feels uneasy about time reversal, since one has never seen a broken co�ee cup
spontaneously reassemble its pieces into a whole co�ee cup.Much ink has been spilled on physico-
philosophical explanations why this does not happen in spite of the time-reversal symmetry of the
equations of physics, but none of these explanations seem truly convincing.

Similarly, one may feel uneasy about time reversal in time series, since it is natural to attribute
a random component to future events; it is much less natural to attribute randomness to past
events. In any case, if the mathematical theory works, why not make use of it. The doubt however
persists whether a given time series, especially one obtained by di�erencing, can really be described
as stationary.

10.1 Estimating the residuals of an ARMA model

Assuming that the time seriesf Yt g has the ARMA model

(10.1) � (B )Yt = � (B )et

(cf. (9.3), the same ARMA model
� (B )Y� t = � (B )e� t

for the reversed time series can also be written as

(10.2) � (E )Yt = � (E )et ;

whereE is the forward shift operator (see Subsection 4.1). Assume we have observationsyt of Yt for
0 � t � n, and that these observations satisfy equation (10.1) for anARMA( p; q) model. We have
described in Subsection 9.5, given initial values of the errors et , usually called residuals in the time
series literature, for t with 0 � t < p , we can calculate the residuals fort with p � t � n. Similarly,
if the values of et for t with n � p < t � n are given, using equation (10.2) we can calculateet for
t with 0 � t � n � p. As we also pointed out in Subsection 9.5, if the zeros of� (x) are outside the
unit circle (as required for ARMA models), then errors committed in the initial values for et die out
as t increases.

This motivates the following procedure to determine the residuals (see [4, Section 7.1.5, pp. 233{
235]). For a start, take êt; 1 = 0 for t with 0 � t < p and, using equation (10.1), calculate ^et; 1 for
t with p � t � n. Next use the initial values êt; 2 = êt; 1 for t with n � p < t � n with equation
equation (10.2) to determine êt; 2 for t with 0 � t � n � p. To go forward, use the initial values
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êt; 3 = êt; 2 for t with 0 � t < p with equation equation (10.1), to calculate êt; 3 for t with p � t � n.
Assuming that � (x) has all its zeros outside the unit cirle, this procedure converges, and we can take

êt = lim
k !1

êt;k (0 � t � n)

for the values of the residuals of the observed time seriesf yt g.

10.2 Conditional and unconditional sum of squares

Given the above observed time serieshyt : 0 � t � ni , the conditional sum of squares of the residuals
is the sum

nX

t =0

ê2
t; 1:

That is, this sum is conditional on the assumption that the initial values of the residuals are taken
to be 0 in the above calculation.10.1 The unconditional sum of squares is the sum

(10.3)
nX

t =0

e2
t ;

whereet can be calculated as described above. The coe�cients of the model are usually described by
requiring that the conditional sum of squares or else the unconditional sum of squares be the least
possible. The method relying on the conditional sum of squares is numerically more stable, but,
especially since a short time series there is not enough timefor the errors in the initial conditions to
die out,10.2 a more accurate model may be constructed by using the unconditional sum of squares.
It also seems that using the unconditional sum of squares method strongly relies on the correctness
of the assumption that the time series is stationary, while this is not the case for the conditional
sum of squares method.

10.3 The likelihood function of an ARMA model

Let X = ( X 1; X 2; : : : ; X n ) be a vector of random variables, and assume we are considering a model in
which the joint density function of as f (P ; X ), where P = ( P1; P2; : : : ; Pm ) is a vector of parameters.
The goal is to �nd the parameter vector best describing the random variable vector X . Assume we
have a single observationx i for the random variable X i for 1 � i � n. When one considers these
observationsx = ( x1; x2; : : : ; xn ) as given, f (P ; x) is called the likelihood function of the parameter
vector P. The Maximum Likelihood Estimate takes the place of maximumP = P (0) of the function
f (P ; x) as the estimate of the parametersP of the model.10.3

Given an ARMA model as in equation (10.1), the residualset are usually assumed to be identically
random variables with an N (0; � 2

e) distribution, i.e., with a normal distribution of mean 0 an d

10.1 The initial condition 0 seems reasonable in that nothing is known ab out the residuals except that their expectation
is 0.
10.2 This is especially so if in the obtained model � (x) has a zero that is close to the unit circle (while being outside
the unit circle).
10.3 The nature of most statistical models is such that the function f (P ; x ) has a single place of maximum for �xed x .
One would be tempted to describe such a model as unimodal , but one needs to be somewhat cautious here, since the
term \unimodal" is usually used for density functions having a single place of maximum, and we are talking about
likelihood functions, not density functions; that is, we are not look ing for the place of maximum in x given P , we are
looking for the place of maximum in P given x .
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standard distribution � e, so the joint density of the residuals is

(10.4)
1

(2� )(n +1) =2� n +1
e

exp
�

� 2� n � 1� � 2(n +1)
e

nX

t =0

ê2
t

�
:

Often, one likes to consider the logarithm of this, called the log likelihood function:

(10.5) � 2� n � 1� � 2(n +1)
e

nX

t =0

ê2
t �

n + 1
2

log(2� ) � (n + 1) log � e:

The the residuals êt are functions of the parameters, i.e., of the polynomials� (x) asnd � (x) (or,
rather, or their coe�cients). That is, the maximum likeliho od method for an ARMA model consists
in �nding the coe�cients of these polynomials for which the u nconditional sum of sqares in equa-
tion (10.3) is the least possible. That is, the maximum likelihood method in this case is a form of
least squares approximation.

It is important to note that the likelihood function should n ot be considered a function of the
residuals êt and � e; properly, it is a function of the model parameters, i.e., the coe�cients � k and
� l in equation (9.1) and of the available observations of the time seriesf Yt g; the residuals êt in
formulas (10.4) and (10.5) should be determined from these model parameters. The variance� e

occurring in these formulas can also be estimated from the observations of the time seriesf Yt g, but
this is unimportant for the application of the maximum likel ihood method.

11 The extended autocorrelation function

An ARMA( p; q) process is described by the equation

(11.1) � (B )Yt = � (B )et ;

where

� (x) = 1 �
pX

k=1

� k xk and � (x) = 1 �
qX

k=1

� k xk :

That is,

(11.2) Yt =
pX

k=1

� k Yt � k + et �
qX

k=1

� k et � k ;

Assuming that f et g are independent normal variables of zero mean, and noting that

(11.3) Wt
def
= Yt �

pX

k=1

� k Yt � k = et �
qX

k=1

� k et � k ;

we have

(11.4) � (p)
l = Corr( Wt ; Wt + l ) = 0 whenever l > q;

since on the right-hand side ofWt + l of (11.3) with t + l replacing t, et 0 occurs only for t0 > t , and
so et 0 so et 0 is independent ofYt 00 for t00� t . The quantity � (p)

l is called theextended autocorrelation
function. A similar argument using the right-hand side of (11.3) gives

(11.5) � (p)
l = Corr( Yt ; Wt + l ) = 0 whenever l > q;
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11.1 The generalized Yule{Walker equations

Assuming that f Yt g is stationary, using the middle member of equation (11.3), equation (11.5) can
be also written as

(11.6) � (l ) =
pX

k=1

� k � (l � k) whenever l > q;

where recall that � m = Corr( Yt 0; Yt 0+ m ) for any t0; m 2 Z (that is, the correlation on the right-hand
side does not depend ont0). One usually considers these equations forl with q+ 1 � l � q+ p. The
equations are called the generalized Yule{Walker equations. See equation (8.4) for the Yule-Walker
equation for an autoregressive process.

11.2 Determining the order of an ARMA model

In order to build an ARMA model of the correct order, one tentatively build an ARMA( p; q) model,
and then tests if equation (11.4) is satis�ed. In building the model, given a series of observations
f yt g of the processf Yt g, one determines the coe�cients in the ARMA( p; q) model

Yt =
pX

k=1

�̂ k Yt � k + et �
qX

k=1

�̂ k et � k ;

and calculateswt as

(11.7) wt
def
= yt �

pX

k=1

� k yt � k :

Then one calculates the sample autocorrelation as follows.
If yt is available for t with 0 � t � n, then wt is available for t with p � t � n � t. One estimates

the sample mean as

�w =
1

n + 1

nX

i = p

wi ;

and then estimates the sample autocorrelation as

�̂ (p)
l =

n � p
n � p � l

P n � l
i = p (wi � �w)(wi + l � �w)

P n
i = p(wi � �w)2

;

more commonly, the �rst factor on the right-hand side is omit ted, and one takes

�̂ (p)
l =

P n � l
i = p (wi � �w)(wi + l � �w)

P n
i = p(wi � �w)2

instead. The di�erence is small, sincen is usually much larger than p or l . Then one tests if
� (p)

l = 0 for l > q (cf. equation (11.4). For the test, one may note that the distribution of �̂ (p)
l is

asymptotically N
�
0; 1=(n � p � l )

�
. So the hypothesis that � (p)

l = 0 is rejected with con�dence of
95% if

j�̂ (p)
l j >

1:96
p

n � p � l
for l > q:

If the validity of equation (11.4) is not rejected by this test, then the given ARMA( p; q) is accepted
as having the correct order; otherwise, and improved model needs to be built. See [12, Exhibit 6.4
on p. 117 and Exhibit 6.17 on p. 124] about how to plot the extended autocorrelation function.
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12 Exponential smoothing

Various forms of exponential smoothing go back to Poisson. For time series forecasting, the two
parameter exponential smoothing discussed below is usually attributed to C. C. Holt, and the three
parameter version to cope with seasonality, to P. R. Winters. Assume we are given an observed time
seriesf x t g (t � 0). We want to �lter out the noise to get at the core of the data. We construct a
smoothed series:

s0 = x0

st = �x t + (1 � � )st � 1 (t > 0);

where 0< � < 1 is the smoothing factor. We will discuss how to chose� .

12.1 One-step ahead forecast

The value st can be used to forecast the time seriesf x t g one step ahead

x̂ t (1) = st :

The forecasting error is
et = x t � x̂ t � 1(1):

Now, if observations for t with 1 � t � n are available, � can be chosen by taking the sum of the
squared past forecasting errors

nX

k=1

e2
t

to be a minimum.

12.2 Trend: double exponential smoothing

Simple exponential smoothing does not well handle forecasting a time series with a trend. To deal
with this, a trend term f Tt g is included:

s1 = x1

T1 = x1 � x0

st = �x t + (1 � � )(x t � 1 + Tt � 1) ( t > 2);

Tt = � (st � st � 1) + (1 � � )Tt � 1 (t > 2);

where 0< �; � < 1 are smoothing parameters. Theh step ahead forecast will now be

x̂ t (h) = st + hTt :

12.3 Seasonality: triple exponential smoothing

To cope with seasonality, a seasonal termI t and a third smoothing parameter 
 with 0 < 
 < 1
is also introduced. The seasonal e�ect may be additive or multiplicative. Assume a multiplicative
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seasonal e�ect, and consider a seasonal periods:

s1 = x1

st = �x t + (1 � � )(x t � 1 + Tt � 1); (t � 1)

Tt = � (st � st � 1) + (1 � � )Tt � 1; (t � s)

I t = 

x t

st
+ (1 � 
 )I t � s (t > s ):

At least 2s steps are needed to initializeTt and I t . One can take

Tk =
1
s2

k+ s� 1X

i = k

(x i + s � si ) (0 � k < s ):

For the initialization of I k one �rst calculates the quantities Ak ; with N being the number of complete
cycles present in the dataf x t g, we put

A j =
1
s

sX

i =1

xs( j � 1)+ i (1 � j � N );

I i =
1
s

NX

j =1

xs( j � 1)+ i

A j
(1 � j � s):

The h step ahead forecast at timet can be written as

x̂ t (h) = ( st + hTt )I t � s+ h (1 � h � s):

For more details on exponential smoothing, see [6,xx5.2.2{5.2.8, pp. 76{80] and [19].

13 Fourier series: a brief introduction

13.1 Trigonometric series

Let f be a function on the real line. We are trying to representf with a trigonometric series

(13.1) f (x) =
1
2

a0 +
1X

k=1

(ak coskx + bk sinkx);

the coe�cient 1 =2 in front of a0 is used to make sure that the �rst equation in (13.2) below is true
also in casek = l = 0. The series on the right-hand side is called the Fourier series of the function
f . Since the trigonometric functions on the right-hand side are periodic with a period that is a
multiple of 2� , for this to be possible, f must also be periodic with a period (that is a multiple)
of 2� . Assuming periodicity, it is indeed possible to represent alarge class of functions as a series
described in formula (13.1); see Subsection 13.2 below.

The trigonometric functions satisfy the following relations, called orthogonality relations:

(13.2)

1
�

Z �

� �
coskx coslx dx =

(
� kl if l > 0;
2� kl if l = 0 ;

(k � 0; l � 0);

1
�

Z �

� �
sinkx sin lx dx = � kl (k > 0; l > 0);

1
�

Z �

� �
sinkx coslx dx =0 ( k > 0; l � 0):
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These equations can easily be proved from the trigonometricformulas13.1

(13.3)

2 cosx cosy = cos(x � y) + cos(x + y);

2 sinx siny = cos(x � y) � cos(x + y);

2 sinx cosy = sin( x + y) + sin( x � y);

2 cosx siny = sin( x + y) � sin(x � y):

Ignoring issues of convergence, we multiply equation (13.1) by coskx or by sin kx and integrate; we
obtain

(13.4) an =
1
�

Z �

� �
f (x) cosnx dx (n � 0) and bn =

1
�

Z �

� �
f (x) sin nx dx (n > 0):

13.2 Dirichlet's theorem and the Dirichlet kernel

In 1829, L. Dirichlet proved that if f is 2� -periodic and bounded, and, considered only on the inter-
val [� �; � ), it has �nitely many discontinuities and it is put together from �nitely many monotonic
pieces, then the series on the right-hand side of equation (13.1), where the coe�cients are given by
equations (13.4), converges tof at every point of continuity, and at a point x of discontinuity it
converges to

1
2

�
lim
t % x

f (t) + lim
t & x

f (t)
�

:

Dirichlet's theorem is based on the eponymous formula13.2 writing

(13.5) sn (x) =
1
2

a0 +
nX

k=1

(ak coskx + bk sinkx);

for the partial sum with the coe�cients given by equations (1 3.4), we have

(13.6) sn (x) =
1

2�

Z �

� �
f (x � t)Dn (t) dt;

where Dn (t), called the Dirichlet kernel, is de�ned as

(13.7) Dn (t)
def
= 1 + 2

nX

k=1

coskt =
sin

�
n + 1

2

�
t

sin 1
2 t

;

for the second equation, see Problem 13.1. below.13.3 Formula (13.6) can be proved by substituting

13.1 It is convenient to list also the fourth among these equation, even thoug h it is an easy consequence of the third
one and the equation sin( � t ) = � sin t .
13.2 That is, on the formula called Dirichlet's formula.
13.3 There are also some slightly di�erent de�nitions of the Dirichlet kern el in the literature, in that some authors
divide the expression in our de�nition by 2 or perhaps 2 � .
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the coe�cients an and bn from equations (13.4) into equation (13.5):

(13.8)

sn (x) =
1

2�

Z �

� �
f (y) dy +

1
�

nX

k=1

Z �

� �
f (y)(cosky coskx + sin ky sinkx) dy

=
1

2�

Z �

� �
f (y)

�
1 + 2

nX

k=1

cosk(y � x)
�

dy =
1

2�

Z �

� �
f (y)Dn (y � x) dy

= �
1

2�

Z x � �

x + �
f (x � t)Dn (� t) dt =

1
2�

Z x + �

x � �
f (x � t)Dn (t) dt

=
1

2�

Z �

� �
f (x � t)Dn (t) dt;

here, the fourth equation was obtained by the substitution t = x � y, the �fth equation uses the
relation Dn (� t) = Dn (t), and the sixth equation uses the fact that the integrand hasperiod 2� .

Dirichlet's formula (13.8) is the key in proving most converg ence results about Fourier series, including
Dirichlet's own. While such proofs involve technical di�cul ties of various levels that puts them beyond the
scope of these notes, in the proof, �rst one notes that

(13.9)
1

2�

Z � �

� �
D n (t) dt = 1 ;

an easy consequence of the �rst equation in (13.7) de�ning the D irichlet kernel. The key idea is that in view
of formula (13.8) we have

f (x) � sn (x) =
1

2�

Z �

� �

�
f (x) � f (x � t)

�
D n (t) dt

=
1

2�

� Z �

� �
+

Z � �

� �
+

Z �

�

�
�
f (x) � f (x � t)

�
D n (t) dt;

the �rst equation here holds in view of equation (13.9). The last two integrals tend to 0 as n ! 1 by the
Riemann-Lebesgue lemma, which says that the limits

lim
� !1

Z b

a
g(x) sin �x dx and lim

� !1

Z b

a
g(x) cos�x dx

are zero for any function g that is integrable in the interval [ a; b]; this lemma is applied to the integral
� Z � �

� �
+

Z �

�

�
f (x � t)D n (t) dt =

� Z � �

� �
+

Z �

�

�
f (x � t)

sin 1
2 t

sin
�

n +
1
2

�
t dt

as n ! 1 . The estimation of the integral
Z �

� �

�
f (x) � f (x � t)

�
D n (t) dt

is more technical.

13.3 Problems

Problem 13.1. Prove the second equation in formula (13.7).Hint: expand

Dn (t) sin
1
2

t

with the aid of the �rst equation in (13.7), and use the fourth equation in (13.3).
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Problem 13.2. Find the Fourier series of the 2� -periodic function f (x) such that f (� � ) = 0 and
f (x) = x when � � < x < � .

13.4 Complex Fourier series

Using Euler's equation (3.1) and the equation obtained fromit by replacing x by � x and the relations
cos(� x) = cos x and sin(� x) = � sinx, we obtain the equations

(13.10) cosx =
eix + e� ix

2
and sinx =

eix � e� ix

2i
:

Substituting these equations into equation (13.1), we obtain the complex form of a Fourier series

(13.11) f (x) =
1X

k= �1

ck eikx ;

where

(13.12) c0 =
1
2

a0; ck =
ak � ibk

2
; and c� k =

ak + ibk

2
(k > 0):

If ak and bk are real, we havec� k = c�
k , where the asterisk indicates complex conjugate.13.4 These

equations can also be written as

(13.13) a0 = 2c0; ak = ck + c� k ; bk = ( ck � c� k )i (k > 0):

The orthogonality relations analogous to (13.2) can be written as

(13.14)

1
2�

Z �

� �
eikx �

eilx � �
dx =

1
2�

Z �

� �
eikx e� ilx dx

=
1

2�

Z �

� �
ei (k � l )x dx = � kl (�1 < k; l < 1 ):

Multiplying equation Ignoring the issues of convergence, multiplying equation (13.11) by e� in and
integrating, the orthogonality relations allow us to express the coe�cients as

(13.15) cn =
1

2�

Z �

� �
f (x)e� inx dx (�1 < n < 1 ):

Again, ignoring issues of convergence, and de�ning theL 2 norm kf k of f on the interval [� �; � )
by the �rst equation next, we obtain from equation (13.11) th at

(13.16)

1
2�

kf k2 =
1

2�

Z �

� �
jf (x)j2 dx

=
1

2�

Z �

� �
f (x)

�
f (x)

� �
dx =

1
2�

Z �

� �

1X

k= �1

ck eikx �
1X

l = �1

c�
l e� ilx dx

=
1

2�

1X

k= �1

1X

l = �1

ck c�
l

Z �

� �
ei (k � l )x dx =

1X

k= �1

ck c�
k =

1X

k= �1

jck j2;

13.4 In mathematics, the complex conjugate of the number z is usually denoted by �z, but this notation con
icts with
the notation �X for the (sample) mean of the random variable X in statistics. On the other hand, it is common in
mathematics to use A � for the Hermitian conjugate of the matrix A , and in a way this is an analog of the complex
conjugate for matrices.
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the penultimate13.5 equation on above holds because the orthogonality relations. The square root
of sum on the right is called the l2 norm of the sequencef ck g1

k= �1 . The equation of the left- and
right-hand sides in this formula is called Parseval's identity, named after Marc-Antoine Parseval.
He claimed this identity without proof as self-evident in a paper dated 1799. A similar calculation
involving equation (13.1) gives Parseval's formula for thecoe�cients ak and bk

(13.17)
1
�

kf k2 =
1
�

Z �

� �

�
f (x)

� 2
dx =

ja0j2

2
+

1X

k=1

�
jak j2 + jbk j2

�
:

One usually considers this equation only for realak and bk , in which case the absolute values can
be omitted.

In undergraduate courses, when integration is de�ned precisely, usually the integral concept
introduced by Bernhard Riemann in 1854 is discussed in his Habilitationsschrift. 13.6 For a deeper
understanding of the L 2 norm a newer integral concept, introduced by Henri Lebesguein 1904 is
needed. We will not go into these issues.

13.5 Problem

Problem 13.3. Use the solution of Problem 13.2 and Parseval's formula (13.17) to prove

(13.18)
1X

n =1

1
n2 =

� 2

6
;

a formula �rst proved by Euler in 1741. 13.7

13.6 The complex form of the Dirichlet kernel

The Dirichlet kernel de�ned in equation (13.7) can also be written as

(13.19)

Dn (t) =
nX

k= � n

eikx = e� inx ei (2n +1) x � 1
eix � 1

=
ei (n +1) x � e� inx

eix � 1

=
ei (n +1 =2)x � e� i (n +1 =2)x

eix= 2 � e� ix= 2
=

sin
�
n + 1

2

�
t

sin 1
2 t

;

the second equation is obtained by using the sum formula for the geometric progression, and the
last one follows from the second one among Euler's equations(13.10). The symmetric partial sum

(13.20) sn (x) =
nX

k= � n

ck eikx (n � 0);

where the coe�cients are given by equations (13.15), is given by equation (13.8).

13.5 The one before the last.
13.6 Habilitation is a post-doctoral quali�cation at universities in v arious countries; there is a Wikipedia article about
this. Habilitationsschrift is the name of the dissertation used for h abilitation in German speaking universities. There
is a German Wikipedia article about this, but it is written in German .
13.7 The problem of �nding the sum of the series on the left is called the Basel pr oblem, posed by Pietro Mengoli in
1644, and solved by Euler in 1734, though he was not able to justify his arguments rigorously until 1741.
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14 Trigonometric interpolation with equidistant nodes

14.1 Lagrange interpolation

Let N be a positive integer, let z1, z2, : : :,zN be distinct complex numbers, and letw1, w2, : : :,wN

also be complex numbers, these latter not necessarily distinct. The task of polynomial interpolation
is to �nd a polynomial P(z) of degree less thanN such that P(zk ) = wk for k with 1 � k � N ;
the points zk are called interpolation points or nodes. It is not hard to prove that if there is such
a polynomial, then it is unique; see Problem 14.1 below. We will show that there is indeed a
polynomial P(z) of degree less thanN satisfying these requirements. The polynomial interpolation
problem was �rst solved by Newton. A di�erent, elegant solut ion was later found by Lagrange. Here
we consider the latter solution.

Lagrange considers the polynomials

lk (z) =
NY

j =1

j 6= k

z � zj

zk � zj
:

It is clear that lk (z) is a polynomial of degreeN � 1, since the numbers in the denominator do not
depend onz. Further, for any integer j with 1 � j � N we have

lk (zj ) =

(
1 if j = k;
0 if j 6= k:

Indeed, if z = zk then each of the fractions in the product expressinglk (z) is 1, and if z = zj for
j 6= k then one of the fractions in this product has a zero numerator. For this reason, the polynomial
P(z) de�ned as

P(z) =
NX

k=1

wk lk (z)

satis�es the requirements; that is P(zk ) = wk for k with 1 � k � N .

Both Lagrange's and Newton's solution of the polynomial inte rpolation problem has uses. Only Newton's
solution is suitable for numerical calculations; both solu tions have theoretical applications. It is easy to see
that Lagrange's solution is works for any �eld replacing the � eld of complex numbers.

14.2 Problem

Problem 14.1. Show that the solution of the interpolation problem is unique. That is, given
points z1, z2, : : :,zN be distinct complex numbers, and w1, w2, : : :,wN complex numbers, these
latter not necessarily distinct. Let P1(z) and P2(z) be polynomials of degree less thanN such that
P1(zk ) = P2(zk ) = wk for all k with 1 � k � N . Show that then P1(z) and P2(z) are the same
polynomial.

14.3 Complex exponential interpolation with equidistant n odes

Let f be a 2� -periodic function on the real line, and let x0 be an arbitrary �xed real. We want to
represent f at the nodes

(14.1) xn = x0 + 2n�=N (0 � n < N )
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by a complex exponential polynomial as

(14.2) f (xn ) =
N � 1X

k=0

ck eikx n (0 � n < N ):

It is immediate from the main result of Subsection 14.1 that this problem has a solution. Namely,
the question can be reformulated as the polynomial interpolation problem of �nding a polynomial

P(z) =
N � 1X

k=0

ck zk

such that P(eix n ) = f (xn ) for n with 0 � n < N . 14.1 To �nd the coe�cients ck in (14.2), observe
that for k with 0 < k < N we have

N � 1X

n =0

e2nk�i=N =
e2kN�i=N � 1
e2k�i=N � 1

=
e2k�i � 1

e2k�i=N � 1
= 0;

the �rst equation holds by the sum formula of geometric series, and the second equation holds since
e2k�i = 1; this calculation is not applicable in case n = 0 since the denominator is 0 then.14.2 For
n = 0, all terms in the sum are 1, and hence the sum isN . Thus

(14.3)

1
N

N � 1X

n =0

ex n ki =
1
N

N � 1X

n =0

ek (x 0 +2 n�=N ) i

=
1
N

eikx 0

N � 1X

n =0

e2nk�i=N =

(
1 if k = 0 ;
0 if k 6= 0 ( � N < k < N ):

Hence, the orthogonality relations are

(14.4)
1
N

N � 1X

n =0

eikx n e� ilx n =
1
N

N � 1X

n =0

ei (k � l )x n = � kl (0 � k; l < N ):

Multiplying equation (14.2) by e� ilx n and summing for n, by using these orthogonality relations we
obtain

(14.5) cl =
1
N

N � 1X

n =0

f (xn )e� ilx n (0 � l < N ):

Observe that the right-hand side here can be considered as a numerical integration formula approx-
imating the integral in (13.15) (with l here replacingn in that formula). Parseval's identity can be
written as

(14.6)
1
N

N � 1X

n =0

jf (xn )j2 =
N � 1X

n =0

jcn j2:

14.1 Actually, this equation holds for all n, not just for n with 0 � n < N , but this is a consequence of the equations
f (ix n + N ) = f (ix n ) and P (eix n + N ) = P (eix n ).
14.2 More generally, the calculation is not applicable for any k that is divisible by N , since for such k the denominator
is 0; it is applicable for any other k 2 Z. That is, the above formula is true for any integer k that is not divisible by N .
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14.4 More on complex exponential interpolation with equidi stant
nodes

Instead of the range 0� k < N of exponent range in equation (14.2) we can take a exponent range
K � k < K + N for an arbitrary K 2 Z. Finding a complex exponential polynomial

(14.7) QK (x) =
K + N � 1X

k= K

ck eikx

such that

(14.8) QK (xn ) = f (xn )

for n with 0 � n < N is equivalent to the type of problem given in equation (14.2); namely, we need
to �nd a complex exponential polynomial

Q(x) =
N � 1X

k=0

ck+ K eikx

such that Q(xn ) = f (xn )e� iKx n for for n with 0 � n < N . As for the coe�cients ck , multiplying
equation (14.8) with x = xn by e� lx n and summing for n, the orthogonality relations (14.4) give the
equation

(14.9) cl =
1
N

N � 1X

n =0

f (xn )e� ilx n (K � l < K + N ):

This is of course the same as equation (14.5), except that a di�erent range of the coe�cients ck is
considered. Parseval's identity to replace equation (14.6) can now be written as

(14.10)
1
N

N � 1X

n =0

jf (xn )j2 =
K + N � 1X

n = K

jcn j2:

14.5 Real trigonometric interpolation with an odd number of equidistant
nodes

Translating these formulas to the real line is easier in caseN is odd. Assuming this and writing
N = 2M + 1, consider equation (14.7) with K = � M . Assuming f (x) is real for all x 2 R, equation
(14.9) implies that c� l = cl � for l with � M � l � M . Hence, Euler's equations (13.10), we obtain

(14.11) Q� M (x) =
MX

k= � M

ck eikx =
a0

2
+

MX

k=1

(ak coskxn + bk sinkxn )

with

(14.12) a0 = 2c0; ak = ck + c� k = 2<ck ; bk = ( ck � c� k )i = � 2=ck (0 < k � M );

the second equations forak and bk hold since c� k = c�
k . These equations identical to equations

(13.13). These equations together with the Euler equations(13.10) and equation (14.9) give the
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equations for the coe�cients:

(14.13)

ak =
2
N

N � 1X

n =0

f (xn ) coskxn (0 � k � M );

bk =
2
N

N � 1X

n =0

f (xn ) sin kxn (0 < k � M ):

That is, according to equation (14.8) we have

(14.14) f (xn ) =
a0

2
+

MX

k=1

(ak coskxn + bk sinkxn ) (0 � n < N; N = 2M + 1) :

with these coe�cients. As it can be seen, the number of coe�cients here is 2M + 1 = N . The
coe�cient equations can also be obtained directly from the orthogonality relations

(14.15)

2
N

N � 1X

n =0

coskxn coslx n =

(
� kl if l > 0;
2� kl if l = 0 ;

(0 � k; l � M );

2
N

N � 1X

n =0

sinkxn sin lx n = � kl (1 � k; l � M );

2
N

N � 1X

n =0

sinkxn coslx n =0 (1 � k � M; 0 � l � M ):

To prove these equations, we need �rst observe that

(14.16)
N � 1X

n =0

sin(kxn + � ) =
N � 1X

n =0

cos(kxn + � ) = 0 (1 � j kj < N and � 2 R):

These equations are valid for both even and oddN . They follow by multiplying (14.3) by ei� and
taking real parts and imaginary parts, respectively. Then equations (14.15) can be easily proved
using the trigonometric formulas (13.3). Parseval's equation can be written in this case as

(14.17)
2
N

N � 1X

n =0

jf (xn )j2 =
ja0j2

2
+

MX

n =1

�
jan j2 + jbn j2

�
:

14.6 Real trigonometric interpolation with an even number o f equidistant
nodes

The case of evenN > 0 is somewhat more complicated. Given a real-valued 2� -periodic function f
on R, with xn as in equation (14.1), writing N = 2M , we put

(14.18) f (xn ) =
a0

2
+

M � 1X

k=1

(ak coskxn + bk sinkxn ) +
aM

2
cos

�
M (xn � x0)

�
(0 � n < N ):

The number of coe�cients here is also N . This equation can be justi�ed as follows. Representf
with the interpolation formula in (14.7) with K = � M + 1; that is, also using equation (14.7), we
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have

(14.19) f (xn ) =
MX

k= � M +1

ck eikx n :

According to equation (14.1), we haveM (xn � x0) = n� , and so equation (14.9) implies

(14.20)

cM eiMx 0 =
1
N

N � 1X

n =0

f (xn )e� iM (x n � x 0 ) =
1
N

N � 1X

n =0

f (xn )e� in� =
1
N

N � 1X

n =0

f (xn )( � 1)n

=
1
N

N � 1X

n =0

f (xn ) cosn� =
1
N

N � 1X

n =0

f (xn ) cos
�
M (xn � x0)

�
:

Equations (14.12) are now replaced with

(14.21)
a0 = 2c0; aM = 2cM eiMx 0 ;

ak = ck + c� k = 2<ck ; bk = ( ck � c� k )i = � 2=ck (0 < k < M ):

all these equations except for the second one can be justi�edthe same way as in formula (14.12).
The reason for the second equation will be clear soon.

It is easy to see that with this choice of of the coe�cients ak and bk we have

(14.22)

~f (x)
def
=

a0

2
+

M � 1X

k=1

(ak coskx + bk sinkx) +
aM

2
cos

�
M (x � x0)

�

=
M � 1X

k= � M +1

ck eikx + < (cM eiMx );

the second equation here needs some explanation. By virtue of the second equation in (14.21) we
have

< (cM eiMx ) = <
� aM

2
eiM (x � x 0 )

�
=

aM

2
cos(M (x � x0);

the last equation holds sinceaM = 2cM eiMx 0 is real according to formula (14.20). The second
equation in (14.22) follows from this equation. This also justi�es the adoption of the second equation
in (14.21). Further, the observation just made that aM = 2cM eiMx 0 is real also implies thatcM eiMx n

is real for every integern. Indeed, we have

cM eiMx n = cM eix 0 eiM (x n � x 0 ) = cM eix 0 ein� = cM eix 0 (� 1)n ;

the third equation here holds in view of the de�nition of xn given in formula (14.1). Thus, for x = xn

the right-hand side of (14.22) equals

~f (xn ) =
M � 1X

k= � M +1

ck eikx n + < (cM eiMx n ) =
M � 1X

k= � M +1

ck eikx n + cM eiMx n

=
MX

k= � M +1

ck eikx n = f (xn );

the real part < (�) was dropped from the second member of these equation, sincethe term it was
applied to is real. The last equality holds according to equation (14.19). The equality of the sides
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show that the trigonometric polynomial ~f (x) indeed interpolates f (x) at the given notes, justifying
the de�nition of the interpolation polynomial in equation ( 14.18).

The orthogonality relations corresponding to the above equations are

(14.23)

2
N

N � 1X

n =0

coskxn coslx n =

(
� kl if l > 0;
2� kl if l = 0 ;

(0 � k; l < M );

2
N

N � 1X

n =0

coskxn cos
�
M (xn � x0)

�
=0 (0 � k < M );

2
N

N � 1X

n =0

cos2 M (xn � x0) =2 ;

2
N

N � 1X

n =0

sinkxn sin lx n = � kl (1 � k; l � M );

2
N

N � 1X

n =0

sinkxn coslx n =0 (1 � k; l < M );

2
N

N � 1X

n =0

sinkxn cos
�
M (xn � x0)

�
=0 (1 � k < M );

The third of these equations holds since cos
�
M (xn � x0)

�
= cos n� = ( � 1)n , as we saw in equation

(14.20), the rest follows the same way as (14.15) from the equations in (14.16) and the trigonometric
formulas (13.3). Using the orthogonality relations, equation (14.18) implies that

(14.24)

ak =
2
N

N � 1X

n =0

f (xn ) coskxn (0 � k < M );

aM =
2
N

N � 1X

n =0

f (xn ) cosM (xn � x0);

bk =
2
N

N � 1X

n =0

f (xn ) sin kxn (0 < k < M ):

Parseval's equation becomes

(14.25)
2
N

N � 1X

n =0

jf (xn )j2 =
ja0j2

2
+

M � 1X

n =1

�
jan j2 + jbn j2

�
+

jaM j2

2
:

15 The Stieltjes integral

There is a clear analogy between the formulas describing Fourier series and trigonometric inter-
polation with equidistant nodes. This analogy can be brought out more clearly by rewriting the
interpolation formulas with the aid of Stieltjes integrals . The next three de�nitions describe the
Riemann{Stieltjes integral.15.1

15.1 There is also a Lebesgue{Stieltjes integral that extends the concept of of Ri emann{Stieltjes integrability. See
footnote 13.6 on p. 46. The x i in the de�nition that follows has nothing to do with the nodes of the interpolation also
denoted by x i in a di�erent context.
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De�nition 15.1 (Partition) . A partition of the interval [a; b] is a �nite sequencehx0; x1; : : : ; xn i of
points such that

P : a = x0 < x 1 < x 2 < : : : < x n = b:

The width or norm of a partition is

kPk
def
= max f x i � x i � 1 : 1 � i � ng:

De�nition 15.2 (Riemann{Stieltjes sum). Given a partition

P : a = x0 < x 1 < x 2 < : : : < x n = b:

of the interval [a; b], a tag for the interval [ x i � 1; x i ] with 1 � i � n is a number � i 2 [x i � 1; x i ] for
eachi . A partition with a tag for each interval [ x i � 1; x i ] is called ataggedpartition. Given a tagged
partition as described, and given the functionsf and g on [a; b], the corresponding Riemann{Stieltjes
sum is

S =
nX

i =1

f (� i )
�
g(x i ) � g(x i � 1)

�
:

The Riemann{Stieltjes integral Z b

a
f (x) dg(x)

is de�ned as the limit of the Riemann{Stieltjes sums S associated with the partition P as kPk ! 0,
independently of the choice of the tags. While not important for our purposes, we will give a rigorous
de�nition:

De�nition 15.3 (Riemann{Stieltjes integral) . If there is a real numberA such that for every � > 0
there is a � > 0 such that for any Riemann{Stieltjes sum S for f associated with a partition of width
< � of [a; b] we havejA � Sj < � , then we call A the Riemann{Stieltjes integral of f with respect to
g on [a; b], and we write A =

Rb
a f . In this case we callf Riemann{Stieltjes integrable with respect

to g on [a; b].

Let N > 0, and let the interpolation points xn be chosen as formula (14.1). except now we want
to consider xn for any n 2 Z. That is, given some realx0

(15.1) xn = x0 + 2n�=N (n 2 Z):

Assumef is a continuous 2� -periodic function, and de�ne the function ! N on R as

(15.2) ! N (x) =
2�n
N

if xn � x < x n +1 (n 2 Z):

Then we can write equation (14.5) as

cl =
1

2�

Z �

� �
f (x)e� ilx d! N (x) (0 � l < N );

emphasizing the analogy with equation (13.15) { cf. Problem15.1. Since we assumed thatf is
2� -periodic, we could integrate on any interval of length 2� instead of [� �; � ].15.2 Other equations

15.2 If we integrate on the interval [ xm ; xm + 2 � ], then the value of the integrand at xn + N = xm + 2 � will contribute
to the integral, and its value an xm will not. This is because in equation (15.2) we de�ned ! N (x) to be constant on
the interval [ xn ; xn +1 ).
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involving interpolations can also be rewritten as Stieltjes integrals. In caseN = 2M + 1 is odd,
writing, in analogy with formula (13.8),

(15.3) ~f (x) =
1

2�

Z �

� �
f (y)DM (x � y) d! N (y);

then we have

(15.4) ~f (xn ) = f (xn ) for 0 � n < N:

The easiest way to see this is use real form of interpolation as given in equation (14.11), and
repeating the calculations in equation (13.8) with M replacing n; see Problem 15.2 below. For even
N , equation (13.8) needs a minor modi�cation.15.3

15.1 More on Stieltjes integrals

The only reason we mentioned Stieltjes integrals is to more closely highlight the analogy between Fourier
series and trigonometric interpolation. We will include he re some simple results to put Stieltjes integrals
in the proper context, even though they are not needed for the d iscussion below. The �rst one converts
Stieltjes integrals into Riemann integrals in certain case s (but not in the case of interest to us above, when
the function playing the role of g is not continuous).

Theorem 15.1. Assumeg is di�erentiable on [a; b]. Assume further that the Riemann integral
Rb

a f (x)g0(x) dx

and the Riemann{Stieltjes integral
Rb

a f (x) dg(x) exist. Then

Z b

a
f (x) dg(x) =

Z b

a
f (x)g0(x) dx:

Proof. Let
P : a = x0 < x 1 < x 2 < : : : < x n = b:

a partition of the interval [ a; b]. By the mean-value theorem of di�erentiation, for each i with 1 � i � n
there is a � i 2 [x i � 1 ; x i ] such that g0(� i )( x i � x i � 1) = g(x i ) � g(x i � 1).15.4 Hence we have

nX

i =1

f (� i )
�
g(x i ) � g(x i � 1)

�
=

nX

i =1

f (� i )g
0(� i )( x i � x i � 1):

Making kPk ! 0, the left-hand side tends to
Rb

a f (x) dg(x) and the right-hand side tends to
Rb

a f (x)g0(x) dx,
completing the proof.

Theorem 15.2 (Integration by Parts) . Assume the integral
Rb

a f (x) dg(x) is de�ned. Then the integral
Rb

a g(x) df (x) is also de�ned and we have

Z b

a
f (x) dg(x) = f (b)g(b) � f (a)g(a) �

Z b

a
g(x) df (x):

15.3 In formula (15.3) we used the fourth member of formula (13.8), since the rest of the transformations in that
formula are not valid in the present situation.
15.4 In order to apply the mean-value theorem, we need to assume that g is real valued, since the mean-value theorem
is not valid for complex-valued functions. The result can nevertheless be p roved in case g is complex valued by
establishing it separately for the real and the imaginary parts of g.
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Proof. For the proof, we rede�ne the concept of partition by allowin g P = hx i : 1 � i � ni to be a
nondecreasing sequence. This is a harmless change, since theterms f (� i )

�
g(x i ) � g(x i � 1)

�
for which x i � 1 = x i

do not contribute to the Riemann{Stieltjes sum. Let P be such an arbitrary partition; that is

P : a = x0 � x1 � x2 � : : : � xn = b;

and let � i 2 [x i � 1 ; x i ] be arbitrary tags. We have the identity
nX

i =1

f (� i )
�
g(x i ) � g(x i � 1)

�
= f (xn )g(� n ) � f (� 1)g(x0) +

n � 1X

i =1

g(x i )
�
f (� i ) � f (� i +1 )

�
:

This is easy to verify; namely, the same terms are added on both sides, in di�erent order. Indeed, for i
with 1 � i � n, both sides adds the term + f (� i )g(x i ), except that on the right-hand time for i = n this
term is written out separately. Further, both sides adds the terms � f (� i )g(x i � 1) for i with 1 � i � n,
even though on the right-hand side this term is written as � f (� i +1 )g(x i ) for i with 1 � i � n � 1, and
the term corresponding to i = 0, i.e., the term � f (� 1)g(x0), is written out separately. This rearrangement
of a sum is called partial summation or Abel rearrangement, named after the Norwegian mathematician
Niels Henrik Abel.

Making the assumption a = x0 = � 1 = x1 and xn � 1 = � n = xn = b, the above identity becomes
nX

i =1

f (� i )
�
g(x i ) � g(x i � 1)

�
= f (b)g(b) � f (a)g(a) �

n � 1X

i =1

g(x i )
�
f (� i +1 ) � f (� i )

�
:

Considering
P 0 : a = � 1 � � 2 � � 3 � : : : � � n = b

with the tags x i 2 [� i ; � i +1 ] for i with 1 � i � n � 1, the right-hand side contains a Riemann{Stieltjes
sum for the integral

Rb
a g(x) df (x), and the left-hand side contains a Riemann{Stieltjes sum f or the integral

Rb
a f (x) dg(x); the fact that we allow x i � 1 = x i makes no di�erence here, since the terms with x i � 1 = x i

make no contribution to the sum. 15.5 Since � i � 1 � x i � � i � x i +1 � � i +1 for all i with 1 � i � n � 1,
x0 = x1 , and xn � 1 = xn , we have kPk � 2kP 0k. Hence, making kP 0k ! 0, we also havekPk ! 0; hence the
left-hand side tends to

Rb
a f (x) dg(x), since this integral was assumed to exist. So, the right-hand side also

has a limit; thus, the integral
Rb

a g(x) df (x) also exists, it being the limit of the sum on the right-hand si de.
This completes the proof of the theorem.

We also have a change of variables (i.e., substitution) formula for Riemann{Stieltjes integrals; it is even
simpler than the one for regular Riemann integrals. For this , we need to put

Z a

b
f (x) dg(x)

def
= �

Z b

a
f (x) dg(x) (a < b);

as is usual in case of Riemann integrals. At this point, we might as well put
Rb

a f (x) dg(x) = 0 in case a = b.

Theorem 15.3. Assume the integral
Rb

a f (x) dg(x) exists, and let h : [A; B ] ! [a; b] be a nondecreasing or

nonincreasing function onto [a; b]. Then the integral
RB

A f
�
h(t)

�
dg

�
h(t)

�
, exists and we have

Z B

A
f

�
h(t)

�
dg

�
h(t)

�
=

Z h ( B )

h ( A )
f (x) dg(x):

Note that h(A) = a and h(B ) = b in case h is nondecreasing, andh(A) = b and h(B ) = a in case h is
nonincreasing. As for the proof, it is fairly direct and stra ightforward except that it involves simple results
about uniform continuity, and so we omit the proof. 15.6 Readers familiar with uniform continuity can easily
construct a proof.

15.5 The equality � i = � i +1 is possible, whether or not we allow the possibility that x i � 1 = x i . This causes no trouble,
just as allowing x i � 1 = x i causes no trouble.
15.6 A function h satisfying the requirements of Theorem 15.3 is necessarily continuous, and so also uniformly contin-
uous.
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15.2 Problems

Problem 15.1. Let f be a function on [� 1; 1] that is continuous at 0, and let g be the function
that is

g(x) =

(
0 if � 1 � x < 0;
1 if 0 � x � 1:

Show that Z 1

� 1
f (x) dg(x) = f (0):

Problem 15.2. Re-write formula (15.3) with a sum instead as a Stieltjes integral.

Problem 15.3. Prove equation (15.4).

Problem 15.4. Write the equation corresponding the equations (15.3) and (15.4) with an even
number of points. Hint: the formula you obtain is essentially identical, but with a slightly modi�ed
version of the Dirichlet kernel.

16 Spectrum of a time series

Given the observationsyt of a time series for 0� t < N we want to represent it in the form

(16.1) yt =
N � 1X

k=0

ck e2ikt�=N (0 � t < N ):

This is just the interpolation formula (14.2) with yt = f (x t ) and x t = 2 t�=N ; other forms of the
interpolation formula could also have been used instead. The term ck e2ikt�=N is said to represent
the frequencyk=N in the above sum. That is, yt is decomposed as a sum of frequencies.

Given a complex numberz, it can be written in what is called a trigonometric form z = jzjei� ;
here � is called the argument ofz, and it is determined only up to an additive multiple of 2 � (since
e2�i = 1). We write � = arg z; we usually take 0� argz < 2� , though occasionally other values of
argz may be taken. According to (14.5), we have

(16.2) ck =
1
N

N � 1X

t =0

yt e� 2ikt�=N (0 � k < N ):

Here jck j is called the amplitude of the frequencyk=N and argck , its phase in the time seriesyt ,
0 � t < N .

16.1 The periodogram

In equation (16.1), the frequency ranges from 0 to (N � 1)=N, so roughly 0 to 1. We will assume
that yt is real. Hence we havecN � k = c�

k ; this is clear from equation (16.2), since

e� 2i (N � k ) t�=N = e� 2iNt�=N � e2ikt�=N = e2ikt�=N =
�
e� 2ikt�=N � �

:

For this reason, jck j for k > N= 2, is of no interest. That is, the amplitude is only if interest in the
range [0; 1=2].16.1

16.1 In the real interpolation formula (14.15 the frequencies clearly ran ge from 0 to 1=2, but much of the discussion is
simpler with the complex interpolation formula (14.2) is simpler.
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In electromagnetic radiation, the squares of the amplitudes of the electric and magnetic �elds
are proportional to the energy density of the the radiation. Analogously, for 1 � k � N=2, the term
ck e2ikt�=N contributes an energy ofjck j2. This energy is restricted to the frequency range

�
2k � 1

2N
;

2k + 1
2N

�
:

Given that the length of this interval is 1 =N, this gives an energy density ofN jck j2. Given that t is
an integer, we have

cN � k e2i (N � k ) t�=N = cN � k e� 2ikt�=N :

hence this term represents the same frequency,16.2 and it contributes an additional energy of jcN � k j2

to the same frequency range. Since we havecN � k = c�
k ; we have jcN � k j2 = jck j2. This makes the

energy density at the frequencyk=n to be 2N jck j2 for 1 � k < N= 2. If N is even andk = N=2, then
N � k = k, so only one term contributes to the energy density. Thus we de�ne the periodogram as

(16.3)
I

�
k
N

�
def
= 2N jck j2 (1 � k < N= 2);

I
�

1
2

�
def
= N jcN= 2j2 if N is even:

With this notation, equation (14.6) becomes

N � 1X

t =0

y2
t � N jc0j2 = N

N � 1X

n =1

jcn j2 =
bN= 2cX

n =1

I
�

k
N

�
:

The term jc0j2 does not represent a wave, and so it carries no \energy."

16.2 Sampling rate and the Nyquist frequency

We saw that the time series above can be described in terms of frequencies in the range [0; 1=2].
In electric engineering, one has a continuous time series (Voltage, for example), and one takes
measurements of this time series, to represent the continuous time series as a discrete16.3 time series,
perhaps for digital transmission or recording. Often, one wants to reconstruct the continuous time
series. This is the situation, for example, with the transmission or digital recording of sound. Sound
is really an oscillation at various frequencies, and an accurate reconstruction of these frequencies
is important. The considerations above show that only frequencies in the range [0; 1=2] can be
reconstructed, where the unit time is the time between samples. That is, to reconstruct sound
waves in the range of 0 two 6000 Hz16.4 one needs to sample the signal representing the sound 12000
times a second. That is, the sampling rate must be twice the maximum frequency that can be
reconstructed from the signal. This maximum frequency is called the Nyquist frequency after the
Swedish-born American electronic engineer Harry Nyquist.

16.2 Unless but one wants to consider negative frequencies; however, in the real f orm (14.14) there are no negative
frequencies.
16.3 It is important to learn the di�erence between discrete and discreet .
16.4 Cycles per second. Named after the German physicist Heinrich Rudolf Hertz, wh o experimentally demonstrated
the existence of electromagnetic waves, after the theory of electromagnetism d eveloped by James Clerk Maxwell
predicted their existence.

57



16.3 Variance of a complex-valued random variable

Below, we are going to calculate the variance of a complex-valued random variable. If X is a
complex-valued random variable, we de�ne its variance as

Var( X ) = E
�
jX � E(X )j2

�
:

We have

Var( X ) = E
�
jX � E(X )j2

�
= E

� �
X � E(X )

��
X � � E(X � )

� �

= E
�
XX � � X E(X � ) � X � E(X ) + E( X ) E(X � )

�

= E( XX � ) � E(X ) E(X � ) � E(X � ) E(X ) + E( X ) E(X � )

= E( jX j2) � E(X )
�
E(X )

� �
�

�
E(X )

� �
X E(X ) + E( X )

�
E(X )

� �
= E( jX j2) �

�
�E(X )

�
�2

:

in complete analogy with the situation when X is real valued.

16.4 The spectrum of a stationary process

Assumef Yt g is a real-valued stationary process, and write� = E( Yt ). Writing

Yt =
N � 1X

k=0

Ck e2ikt�=N : (0 � t < N ):

the analog of formula (16.2) becomes

(16.4) Ck =
1
N

N � 1X

t =0

Yt e� 2ikt�=N (0 � k < N ):

Taking expectations, we obtain

(16.5) E(Ck ) =
1
N

N � 1X

t =0

E(Yt )e� 2ikt�=N =

(
� if k = 0 ;
0 if 1 � k � N � 1

according to (14.3). So we also have

Ck =
1
N

N � 1X

t =0

Yt e� 2ikt�=N =
1
N

N � 1X

t =0

(Yt � � )e� 2ikt�=N (1 � k < N );

the second equation here holds according to (14.3). Hence, for k with 1 � k < N we have

Var( Ck ) = E( jCk j2) �
�
�E(Ck )

�
�2

= E( C2
k ) =

1
N 2 E

 �
�
�
N � 1X

t =0

(Yt � � )e� 2ikt�=N
�
�
�
2
!

=
1

N 2 E
� N � 1X

t =0

N � 1X

t 0=0

(Yt � � )(Yt 0 � � )e� 2ik ( t � t 0) �=N
�

=
1

N 2

N � 1X

t =0

N � 1X

t 0=0

e� 2ik ( t � t 0) �=N E
�
(Yt � � )(Yt 0 � � )

�

=
1

N 2

N � 1X

t =0

N � 1X

t 0=0

e� 2ik ( t � t 0) �=N 
 (t � t0):
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That is, putting t = t0+ m, we have

N Var( Ck ) =
1
N

1X

m = �1


 (m)e� 2imk�=N
min( N � 1;N � 1+ m )X

t =max(0 ;m )

1:

Of course, the outside sum here is not a truly in�nite sum, since the inside sum is empty (and
therefore zero) for jmj > N . Writing f = k=N, we obtain

N Var( CfN ) =
N � 1X

m = � N +1


 (m)e� 2ifm� N � j mj
N

:

Making N ! 1 , it follows that

(16.6) lim
N !1

N Var( CfN ) =
1X

m = �1


 (m)e� 2ifm� ;

assuming that this series
P 1

m = �1 j
 (m)j is convergent. The limit on the left-hand side is called the
power spectral densityS(f ). Given that 
 (m) is real, by (13.10) we have

(16.7) S(f ) = 
 (0) + 2
1X

m =1


 (m) cos(2fm� ):

The result showing the existence of the spectrum is called the Wiener{Khinchin theorem.16.5 The
frequency function here de�ned is an even function with a period of 1; this means that its values
in the interval [0 ; 1=2) determine its values on the whole real line. Comparing these equations to
equation (16.3), we expect that periodogram approximates twice the spectrum.16.6 The problem of
estimating the spectrum is, however, somewhat more complicated, as we will discuss below.

16.5 The periodogram is an inconsistent estimator of the spe ctrum

The question arises how good is the periodogram, described in equation (16.3), for estimating the
spectrum. We will consider the special case of a white noise process. That is, let Yt (0 � t < N )
be independent normal N (0; � 2) variables. Let N > 3 be an integer (we expectN to be fairly
large), and 1 � k < N= 2. For the sake of simplicity, assumeN is odd.16.7 Then Ck de�ned by
equation (16.4) is a complex-valued random variable.

Writing

Ak =
2
N

N � 1X

t =0

Yt cos
2kt�
N

and Bk =
2
N

N � 1X

t =0

Yt sin
2kt�
N

in analogy with equations (14.13). with x t = 2 �t=N and f (x t ) = Yt , these equations imply that
the joint distribution of ( Ak ; Bk ) is a multivariate normal distribution according to the de� nition

16.5 What we stated is only the discrete case. The Wiener{Khinchin theorem is ab out a more general class of stochastic
processes.
16.6 We have E( jCk j2 ) = Var Ck , since E(Ck ) = 0 according to equation (16.5).
16.7 All the arguments that follow will also work in the case of even N . The only reason that we assume N is odd is
that we will refer to real interpolation formulas with N nodes, and the case of an odd number of nodes is somewhat
simpler than the case of even number of nodes. In any case, when referring to for mulas involving interpolation, we
would have to refer to di�erent formulas when the number of nodes is od d or even.
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given in equation (2.4). These equations are connected withCk with the equations Ak = 2<Ck and
Bk = � 2=Ck according to equations (14.12).

It is not hard to calculate the variances of Ak and Bk :

Var( Ak ) = E
�
(Ak )2�

=
4

N 2 E
� � N � 1X

t =0

Yt cos
2kt�
N

� 2
�

=
4

N 2 E
� N � 1X

t =0

N � 1X

t 0=0

Yt cos
2kt�
N

Yt 0 cos
2kt0�

N

�

=
4

N 2

N � 1X

t =0

N � 1X

t 0=0

E(Yt Yt 0) cos
2kt�
N

cos
2kt0�

N

=
4

N 2

N � 1X

t =0

E(Y 2
t ) cos2 2kt�

N
=

4
N 2

N � 1X

t =0

� 2 cos2
2kt�
N

=
2
N

� 2;

the fourth equation holds becauseYt and Yt 0 are independent fort 6= t0 and the last equation holds
in view of the �rst equation in (14.15), and because Var(Yt ) = � 2. Similarly, we have

Var( Bk ) = E
�
(Bk )2�

=
4

N 2 E
� � N � 1X

t =0

Yt sin
2kt�
N

� 2
�

=
4

N 2 E
� N � 1X

t =0

N � 1X

t 0=0

Yt sin
2kt�
N

Yt 0 sin
2kt0�

N

�

=
4

N 2

N � 1X

t =0

N � 1X

t 0=0

E(Yt Yt 0) sin
2kt�
N

sin
2kt0�

N

=
4

N 2

N � 1X

t =0

E(Y 2
t ) sin2 2kt�

N
=

4
N 2

N � 1X

t =0

� 2 sin2 2kt�
N

=
2
N

� 2;

the fourth equation holds becauseYt and Yt 0 are independent fort 6= t0 and the last equation holds
in view of the second equation in (14.15).

We next show that Cov(Ak ; Bk ) = 0. We have

Cov(Ak ; Bk ) = E( Ak Bk ) =
4

N 2 E
� N � 1X

t =0

N � 1X

t 0=0

Yt cos
2kt�
N

Yt 0 sin
2kt0�

N

�

=
4

N 2

N � 1X

t =0

N � 1X

t 0=0

E(Yt Yt 0) cos
2kt�
N

sin
2kt0�

N

=
4

N 2

N � 1X

t =0

E(Y 2
t ) cos

2kt�
N

sin
2kt�
N

=
4

N 2

N � 1X

t =0

� 2 cos
2kt�
N

sin
2kt�
N

= 0;

the fourth equation holds becauseYt and Yt 0 are independent fort 6= t0 and the last equation holds
in view of the third equation in (14.15). Thus Ak and Bk , being uncorrelated random variables with
a joint multivariate normal distribution, are independent in view of Theorem 2.1.

Thus, the the covariance matrix of (Ak ; Bk ) is
�

2� 2=N 0
0 2� 2=N

�
:
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As we have Ck = ( Ak � iB k )=2 according to equation (14.12), we have E(N jCk j2) = E
�
N (A2

k +
B 2

k )=4
�

= � 2: Thus N jCk j2 = N (A2
k + B 2

k )=4 has a� 2(2) distribution 16.8 with expectation � 2. Thus
N jCk j2 has the distribution of � 2=2 times a standard � 2 variable of degree of freedom 2. Hence its
variance is N jCk j2 is (� 2=2)2 � 4 = � 4, since the variance of the standard� 2 variable of degree of
freedom 2 is 4 (see footnote 16.8 on p. 61). So, using the sample value ck of Ck to estimate the
spectrum gives poor results (cf. equations (16.3), (16.6),and (16.7)). In statistical language, the
periodogram is an inconsistent estimator of the spectrum.16.9

16.6 Estimating the spectrum

As we we have seenN jck j2 is an inconsistent estimator of the spectrumS(f ) with f = k=N. To
develop a better estimator, we simply average neighboring values. That is, let � n;N be a sequence
of nonnegative of nonnegative numbers such that

1X

n = �1

� n;N = 1;

here, usually only a �nite number of the � n;N is nonzero; often, the best choice is to make aboutp
N of them to be nonzero. Then, instead ofjck j2, we use

1X

n = �1

� k;N jck � n j2

to estimate the spectrum.16.10 The sequencef � n;N gn is called a spectral window. Usually, the value
of � n;N is the largest for n close to zero. Most often, the window is symmetric, that is wehave
� � n; N = � n;N . There are a great variety of spectral windows in use.

17 Orthogonal systems of functions

17.1 Inner product spaces

Let V be a vector space overF , where F is either the set of real numbersR or the set of complex
numbers C.

De�nition 17.1. An inner product is a mapping h�; �i : V � V ! F such that

(a) For all x 2 V , hx; x i � 0, and hx; x i = 0 only if x = 0,

(b) hx; yi = hy; xi � for all x; y 2 V ,

(c) � hx; yi = hx; �y i for all � 2 F and x; y 2 V ,

(d) hx; yi + hx; zi = hx; y + zi for all x; y; z 2 V .

16.8 I.e., a � 2 distribution with degree of freedom 2. The standard � 2 distribution of degree of freedom k is de�ned
as the sum the squares of k independent standard normal random variables. Its mean is k and its variance is 2 k. A
constant multiple of such a variable is called a � 2 variable of degree of freedom k.
16.9 Given a parameter � and an estimator �̂ calculated from a sample, �̂ is said to be a consistent estimator if �̂
converges to � in probability when the sample size goes to in�nity. calculating the periodogram in formula (16.3), a
sample size of N is used to calculate ck .

16.10 Note that this sum is the convolution of the sequences f � n;N g and fj cn j2g.
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A vector space with an inner product is called aninner product space.

In Clause (a), hx; x i � 0 means that the complex numberhx; x i is actually a nonnegative real.
According to Clauses (b) and (c), we have� hx; yi = h� � x; yi . If F = R, the complex conjugation
has no e�ect. In Section 8, we already dealt with several inner product spaces. When discussing
Fourier series, the vector space was the set of complex-valued or real-valued functions f on the
interval [ � �; � ) for which

R�
� � jf j2 exists, and the inner product was

hf; g i =
1

2�

Z �

� �
(f (x)) � g(x) dx:

For complex Fourier series, we usedF = C, for the real version we usedF = R. The factor
1=(2� ) in front of the integral is not essential, but it makes the discussion more elegant in terms
of inner products. For the real case, it is best to use the factor 1=� instead.17.1 When discussing
trigonometric interpolation, the inner product was vector space was the set of complex-valued or
real-valued functions on the setf xk : 0 � k < N g, and the inner product was

hf; g i =
1
N

N � 1X

n =0

(f (xn )) � g(xn ):

Another example for an inner-product space is the set of complex-valued random variables on
a given probability space. For random variablesX and Y , we take hX; Y i = E( X � Y). In order
to make sure that Clause (a) is satis�ed, the random variables X and Y must be considered equal
if P( X = Y) = 1. 17.2 Similarly, the real-valued random variables give rise to aninner product space
over the reals if we takehX; Y i = E( XY ).

Schwarz's inequality says that we have

(17.1) jhx; yij 2 � h x; x i � hy; yi ;

see Problem 17.1 below. On a vector spaceV over F (with F = C or R) one often de�nes a norm:

De�nition 17.2. A norm is a mapping k � k : V ! R such that

(a) kxk � 0 for all x 2 V , and kxk = 0 only if x = 0,

(b) k�x k = j� j kxk for all � 2 F and for all x 2 V ,

(c) kx + yk � k xk + kyk for all x; y 2 V .

A vector space with a norm is called anormed vector spaceor, more shortly, a normed space.

Clause (c) is called Minkowski's inequality. With an inner product h�; �i one can de�ne the
induced norm askxk =

p
hx; x i . If the norm is induced by an inner product, Minkowski's inequality

can be proved by Schwarz's inequality; see Problem 17.2 below. In an inner product space, by the
norm we will always mean the induced norm unless otherwise mentioned.

17.1 For a proper discussion of these function spaces (i.e., the vector spaces just descri bed), Riemann integration is
not really an adequate tool, and one needs to use the newer integral concep t invented by Henri Lebesgue in 1904.
However, we will not get into subtle issues of convergence where the advant ages of Lebesgue integration are felt.
17.2 That is, the inner-product space is formed by the equivalence classes of ran dom variables under the equivalence
relation X � Y if P (X = Y ) = 1. Note that this ensures that Clause (a) is satis�ed; cf. Problem 5.1 above.
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Two vectors x and y are calledorthogonal if hx; yi = 0. Let x1, x2, : : :, xn be a system of vectors
such that x i and x j are orthogonal whenever 1� i < j � n. Then

(17.2)












nX

k=1

xk












2

=
nX

k=1

kxk k2:

Indeed, we have











nX

k=1

xk












2

=
D nX

k=1

xk ;
nX

l =1

x l

E
=

nX

k=1

nX

l =1

hxk ; x l i =
nX

k=1

kxk k2;

the last equation holds sincehxk ; x l i = 0 unless k = l. The equation we just established can be
considered an analog of the Pythagorean theorem.

17.2 Orthonormal systems

De�nition 17.3. A system of vectorsS = f f 1; f 2; f 3; : : :g is called orthonormal if

(17.3) hf k ; f l i = � kl :

It is called complete if every vector f 2 V can be expressed as

(17.4) f =
X

k

� k f k :

If the orthonormality condition (17.3) is weakened to say that hf k ; f k i > 0 and hf k ; f l i = 0 if
k 6= l then the system is called orthogonal rather than orthonormal. The system S in this de�nition
may be �nite or in�nite. In case of Fourier series, we had an in�nite orthonormal system (the factor
1=(2� ) in front of the integral above in the complex case and 1=� in the real case was needed to make
the system orthonormal rather than only orthogonal), and in case of trigonometric interpolation we
had a �nite orthonormal system. If S is in�nite, we need a concept of convergence to interpret the
sum (17.3). In an inner product space there are several notions of convergence; the simplest we can
use in this case is convergence in norm:

De�nition 17.4. Assume V is a vector space with normk � k. Let f 2 V and let f f n g1
n =1 be a

sequence, wheref n 2 V . Then we say that f n converges tof in norm if

lim
n !1

kf n � f k = 0 :

We say
1X

n =1

f n = f

if the partial sums
nX

k=1

f k

converge tof in norm.
A sequencef 2 V and let f f n g1

n =1 , where f n 2 V , called a Cauchy sequenceif

lim
m !1
n !1

kf m � f n k = 0 :

A normed vector space is calledcompleteif every Cauchy sequence is convergent.
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The trigonometric system (in the complex and real cases, andin the cases of Fourier series
and trigonometric interpolation, the respective systems are all complete). The inner product spaces
considered in these examples are all complete with respect to the norm induced by the inner product
in question.17.3 In equation (17.4), the orthonormality relations imply tha t

(17.5) � k = hf k ; f i :

This equation is the general statement of equations (13.4),(13.15), (14.6), and (14.13). We have the
following

Lemma 17.1. Let V be an inner product space,S = f f 1; f 2; f 3; : : :g be an orthonormal system of
vectors in V and let f 2 V be an arbitrary vector, and let � k = hf k ; f i . Then

(17.6)
X

k

j� k j2 � k f k2:

We have equality here if and only if

(17.7) f =
X

k

� k f k :

Inequality (17.6) is called Bessel's inequality. When we have equality in Bessel's inequality, we
obtain Parseval's identity (more on this below):

(17.8) kf k2 =
X

k

j� k j2:

This is the general statement of the Parseval identities (13.16), (13.17), (14.6), and (14.17).

Proof. Write S = f f k : k < m g, where m is an integer or m = 1 . For any integer n � m we write

gn =
nX

k=1

� k f k :

Then we havehf k ; gn i = � k for any k � n, and so

hf k ; f � gn i = hf k ; f i � h f k ; gn i = � k � � k = 0

for every k � n. Hence any two of the vectorsf � gn and � k f k (k � n) are orthogonal. Therefore
according to equation (17.2) we have

(17.9) kf k2 = kf � gn k2 +
nX

k=1

k� k f k k2 = kf � gn k2 +
nX

k=1

j� k j2:

This establishes inequality (17.6).
According to formula (17.9), equality in (17.6) means that kf � gn k = 0 for n = m if m is �nite,

or that
lim

n !1
kf � gn k = 0

if m is in�nite. In either case, this is equivalent to saying that (17.7) holds.
17.3 For the space associated with Fourier series, see the discussion below, on p. 65, especially footnote 17.4 on the
same page.
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Corollary 17.1. Let V be an inner product space,S = f f 1; f 2; f 3; : : :g be an orthonormal system
of vectors in V . Assume there is no nonzero vectorg 2 V such that hf k ; gi = 0 for all f k in S. If S
is �nite, or if S is in�nite and V is complete space, thenS is complete orthonormal system.

Note that in this corollary we have the extra assumption about the completeness ofV . This was done
in order to guarantee the convergence of the series

X

k

� k f k (� k = hf k ; f i );

in case S is in�nite. In (17.7), the convergence of the series on the ri ght-hand side was guaranteed, since
we assumed that equality holds there. Without the assumption o f equality, the conververgence of this series
is not guaranteed. However, if we assume that V is complete, the the convergence of this series follows.
Indeed, assume that S is in�nite. Inequality (17.6) implies that

P 1
k =1 j� k j2 is convergent. Writing

gn =
nX

k =1

� k f k :

for the partial sums of the series
P 1

k =1 � k f k , given integers � and � with 1 � � < � , we have

kg� � g� k2 =





�X

k = � +1

� k f k




 2 =

�X

k = � +1

k� k f k jk2 =
�X

k = � +1

j� k j2 kf k jk2 =
�X

k = � +1

j� k j2 ;

the second equality here holds according to (17.2). This shows that
P 1

k =1 � k f k is a Cauchy sequence; hence
it is convergent, since we assumed thatV is complete.

Proof. AssumeS is not complete. Then, according to the assumptions, there is an f 2 V such that
equation (17.7) does not hold for thisf , i.e., that

(17.10) g
def
= f �

X

k

hf k ; f i f k 6= 0 :

Now, for any f l in S we have

hf l ; gi = hf l ; f i �
X

k



f l ; hf k ; f i f k

�
= hf l ; f i �

X

k

hf k ; f ihf l ; f k i

= hf l ; f i �
X

k

hf l ; f i � lk = hf l ; f i � h f l ; f i = 0;

to rigorously establish the second equation here, some convergence issues need to be dealt with,
but these are easily handled with Schwarz's inequality (17.1) { see Problem 17.3 below. This is a
contradiction, since we assumed that no vectorg exists for which hf l ; gi = 0 for all f l in S.

The space of functions that are square integrable on the interval ( a; b), called L 2(a; b), space is an
important example of a complete space.17.4 Fourier series were considered on the spaceL 2(� �; � ).

17.4 The name L 2 (a; b) does not specify whether the functions are real valued or complex valued. When it is not clear
from the context, one can make the distinction by calling it a real L 2 space or a complex L 2 space. The completeness
of these spaces (for any interval ( a; b), �nite or in�nite) is the Riesz-Fischer theorem. It was proved independ ently by
Frigyes (Frederick) Riesz and Ernst Sigismund Fischer. The integral con cept used in this theorem is that of Lebesgue
{ the result is not true with Riemann integration.

In actual fact, the elements of L 2 (a; b) are not functions; they are equivalence classes for functions under the
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17.2.1 Gram{Schmidt orthogonalization

Let V be a vector space, letm be a positive integer and letS = f f k : 1 � k < m g be an orthonormal
system of vectors inV . AssumeS is not complete. Then, as we saw in the proof of Corollary 17.1
there is a vectorf 2 V such that the inequality in formula (17.10) holds. Taking f m = (1 =kgk)g with
the g de�ned in this formula, the system S0 = S [ f f m g is orthonormal. If V is �nite dimensional,
then starting with S = ; , we can obtain a complete orthonormal system in �nitely many steps.

If V is in�nite dimensional, then, in order to obtain a complete orthonormal system one needs to
proceed more delicately, because even after repeating thisstep in�nitely many times, the resulting
in�nite system may not be complete. While this issue is only of marginal interest for our purposes,
we will outline one possible way we may proceed in this case. For this, we need the following

De�nition 17.5. Let V be an inner product space and letM � V . We say that M is dense inV
if for every � > 0 and for every f 2 V there is a g 2 M such that kf � gk < � .

We recall that given a vector spaceV and a subsetD , the span of D is the smallest subspace
of V including D. It is well known that the elements of the span ofD are exactly the �nite linear
combinations of the elements ofD .17.5

Lemma 17.2. Let V be an inner product space,S = f f 1; f 2; f 3; : : :g be an orthonormal system of
vectors in V and let f 2 V . Let M be a set such that the span ofM is dense inV , and assume that
equation (17.4) holds for everyf 2 M . Then S is complete.

Proof. By linearity, equation (17.4) holds for all f in the span of M , and then, by taking limits, we
can conclude that this equation holds for everyf 2 V . HenceS is complete.

If M = f hk : 1 � k < 1g is a subset ofV such that the span of M is dense inV , then one
can modify the above method to obtain an orthonormal system in V as follows. Let m > 0 be an
integer and assume the orthonormal systemSm = f f k : 0 � k < m g has already been constructed.
Pick the least positive integer l such that Sm [ f hl g is linearly independent.17.6 If such an l can be
found, then writing,

(17.11) gm
def
= hl �

m � 1X

k=1

hf k ; hl i f k 6= 0 :

put Sm +1 = Sm [ f f m g with f m = (1 =kgm k)gm . If no such l can be found, put Sm +1 = Sm . Then
the system

S =
1[

m =1

Sm

is a complete orthonormal system. The reason is that the construction ensures that equation (17.4)
holds for every f 2 M ; hence the completeness ofS follows from Lemma 17.2.

equivalence relation

f � g �
Z b

a
jf � gj2 = 0 :

It is necessary to take equivalence classes in order to make sure that Clause (a ) of De�nition 17.1 is satis�ed. It
is common parlance, however, to talk about elements for L 2 (a; b) as functions rather than equivalence classes of
functions. Functions that belong to the same equivalence class are said t o be equal a.e. (almost everywhere).
17.5 Linear combination always means �nite linear combinations, unless o therwise indicated. We included the word
\�nite" for emphasis, since we have considered in�nite sums above.
17.6 It is easy to see that any orthonormal system is linearly independent, and so Sm itself is linearly independent.
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There are several well-known countable dense subsets ofL 2(a; b). The simplest one is formed
by the �nite linear combinations with rational coe�cients o f the characteristic functions of all �nite
open intervals with rational endpoints.17.7

17.3 Problems

Problem 17.1. Given two vectors in an inner product spaceV over R or C, show that

�
�hx; yi

�
�2

� h x; x ihy; yi

for any x; y 2 V . (This inequality is called Schwarz inequality).

Problem 17.2. Let V be an inner product space overR or C, and for x 2 V de�ne its norm as
kxk =

p
hx; x i . Show that for any x; y 2 V we have

kx + yk � k xk + kyk:

(This inequality is called Minkowski's inequality.)

Problem 17.3. Let V be an inner product space with inner producth�; �i and induced norm k � k,
and let f and f n for all n > 0 be elements ofV . Assume that

lim
n !1

kf n � f k = 0 :

Show that for all g 2 V we have
lim

n !1
hg; f n � f i = 0 :

Hint: Use Schwarz's inequality.

Problem 17.4. Let V be a vector space overC, and let h�; �i R be a real-valued inner product onV
considered as a vector space overR (that is, Clause (c) in De�nition 17.1 is only assumed for real � )
with the additional property that

(17.12) hif; ig i R = hf; g i R for all f; g 2 V:

Show that

(17.13) hf; g i = hf; g i R + ihif; g i R

is a complex inner product onV over C.

Problem 17.5. Let V be a normed vector space overR or C. Show that

(17.14)
�
�kf k � k gk

�
� � k f � gk for all f; g 2 V:

Problem 17.6. Let V be a normed vector space overR or C, and let f 2 V and f n 2 V for all
positive integers n. If f n ! f in norm, show that

(17.15) lim
n !1

kf n k = kf k:

17.7 The characteristic function of a set U is a function that is 1 in U and zero elsewhere. We need to take rational
endpoints to make sure that the set of functions we obtain is countab le.
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18 Building ARIMA models directly

Let f Yt g be a time series, and assume observed valuesyn are available for times 1� n � N , where
N > 0 is an integer; we assume thatYt is real, but it is easy to extend these considerations to
complex-valued time series. Letp, q, and d be integers such that 0� d < p and q � 0. We would
like to build an ARIMA( p� d; d; q) model for Yt . We expect that d is large enough such thatfr dYt g
is stationary with zero means, but we do not wish to determined. Determine the AR coe�cients in
equation

(18.1) Yt =
pX

k=1

� k Yt � k + et �
qX

k=1

� k et � k

by using least square approximation; i.e., let� k for k with 1 � k � p be such that

(18.2)
NX

n = p+1

1
1 + y2

n

�
yn �

pX

k=1

� k yn � k
� 2

be the least possible.18.1 Write

(18.3) � (x) = 1 �
pX

k=1

� k xk :

With the notation introduced in equation (18.3), this suggests the approximate AR model

(18.4) � (B )Yt � 0:

We wrote � instead of =, since p is not large enough to build a good ARI model (where asp and q
together should be suitable to build an ARIMA model). What is meant by � here is unimportant,
since this equation will not be used, it will only be a guide asto how to build the ARIMA model.

To determine the MA coe�cients, let m � N � p� q be a large positive integer. We will comment
on the choice ofm later. Put

(18.5) y k = ( yk � m +1 ; yk � m +2 ; : : : ; yk )T (k � m):

We determine the error vectorset by orthogonalizing the vectors y t for t with m � t � N with
respect to the real inner product hx; y i = xT y without normalizing. That is, we put em = ym and
assuming that ek has been de�ned fork with m � k < t , where m < t � N , we put

(18.6) et = y t �
t � 1X

k=1
ek 6=0

1
eT

k ek
(eT

k y k )ek ;

where we sum only for those values ofk for which ek 6= 0 (in which case eT
k ek 6= 0, so we do not

have a zero in the denominator).18.2 As for the choice of m, there is a danger in choosingN too
small as compared toN , since there are aboutN � m vectors y t , and this number needs to be

18.1 Since we do not assume that the time series f Yt g is stationary, we need to allow larger errors if the value of yn is
large. We divide by 1 + y2

n instead of y2
n to avoid dividing by zero in case yn is zero.

18.2 The parentheses on the right-hand side of equation (18.6) were only w ritten for clarity; they are not needed, since
matrix multiplication is associative.
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substantially smaller than the length m of the vectors so that the orthogonalized vectors retain a
random character. There arem linearly independent vectors of lengthm, so after orthogonalizing
m linearly independent vectors, the whole space ofm-dimensional vectors will be spanned. Perhaps
the choice ofm � N �

p
N is the optimal. This makes the number of vectors to be orthogonalized

to be about
p

m.

Equation (18.6) should be compared to (17.11) of Gram{Schmidt orthogonalization; the di�erence is that
in that equation we have kf k k = 1, whereas here we do not require that kek k = 1, where the norm is the
norm induced by the inner product. 18.3 This kind of orthogonalization without normalizing was desc ribed
earlier on account of the innovations algorithm; see Section 7.

Equation (18.6) is not to be used in numerical calculations. T his is because, we mentioned at the end
of Subsection 7.1, the Gram{Schmidt orthogonalization is nu merically unstable; that is, small numerical
errors committed initially give rise to large errors later i n the calculation. There are also numerical problems
with doing least square optimization in the common sense way, that is, by taking the partial derivatives
of the expression describing the least squares error, and looking for its minimum by equating the partial
derivatives to zero. Interestingly, both of these two probl ems can be handled in a stable way by the QR
decomposition using Householder transformations. The QR decomposition starts with an m � n matrix A,
where m � n > 0 and �nds an orthogonal matrix 18.4 such that the equation

QA = R0; where R0 =
�

R
0m � n;n

�

holds, where R is an upper triangular matrix, and 0 m � n;n is the (m � n) � n zero matrix. In [23, Section 38,
pp. 174{184] it is explained how the QR decomposition can be used to solve the least squares optimization
problem. As for using it to solve the orthogonalization prob lem, the orthonormal vectors resulting from the
orthogonalization of the columns of the matrix A will be the rows of the matrix Q, i.e., the columns of the
matrix Q� 1 = QT .18.5 The coe�cients to express the kth column of A as a linear combination the �rst k
columns of the matrix QT are contained in the kth column of R0 (or R, since all the coe�cients in R0 outside
R are 0 { since R is upper triangular, only the �rst k entries in the kth column are nonzero); this is because
we have A = Q� 1R0 = QT R0. In [23], the QR decomposition is described for real matrices, but it is easy to
adapt it for complex matrices.

The numerical method we described will produce a system of the orthonormal vectors e0
t = (1 =ket k)et ,

and then we can recover the vectorset from these and the related coe�cients.

The equations in (18.6) can be rearranged to expressy t as a linear combinationet as follows to
obtain

(18.7) y t =
t � mX

l =0

 l;t et � l = et +
t � mX

l =1

 l;t et � l :

by orthonogonality. The equation  0;t = 1 easily follows from equation (18.6). As for the other
coe�cients, writing kxk = ( xT x)1=2 = hx; x i for the norm induced by the inner product we are
using, given t and l with m � t � N and 0 � l � t � m, we have

 l;t = eT
t � l y t =ket k

if et 6= 0 (in which case caseket k 6= 0); et = 0 then we can de�ne  l;t arbitrarily, except that
we want to put  0;t = 1 also in this case; these equations follow easily from the considerations in
Section 17; see e.g. equations (17.3), (17.4), and (17.5).

18.3 That is, kx k2 = x T x = hx ; x i .
18.4 Orthogonal matrices were de�ned before equation (8.7).
18.5 The latter equation holds since Q is orthogonal.
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Writing

(18.8)  t (x) =
t � mX

l =0

 l;t x l ;

the last equation can be written as

(18.9) y t =  t (B )et :

Multiplying this equation by the polynomial � (B ), where � (x) is given in equation (18.3), we obtain

(18.10) � (B )y t = � (B ) t (B )et :

It is important to point out that the operator B in � (B ) acts on everything to the right of it, even
on t in the subscript of the polynomial  t (B ). That is, we have B t (B )et = � t � 1(B )et � 1.

To explain the scope of B in � (B ), we need to write out how to obtain equation (18.10) in more de tail.
To simplify the notation, writing y t = et = 0 for t < m , in equation (18.7) we can extend the summation to
in�nity:

y t =
1X

l =0

 l;t et � l :

Note that this equation is identical to equation (18.9). Subst ituting this (with t or t � k replacing t) into
the expression

� (B ) = y t = y t �
pX

k =1

� k y t � k

(cf. equation (18.4)), we obtain the equation

y t �
pX

k =0

� k y t � k =
1X

l =0

 l;t et � l �
pX

k =1

� k

1X

l =0

 l;t � k et � k � l :

A shorter way to write this equation was given in equation (18.1 0) with the scope of B in � (B ) as described
after that equation.

Changing the from vectors to random variables, this suggests the equation

(18.11) � (B )Yt = � (B ) t (B )et ;

whereet is the random variable describing the error committed by theprocess at timet. This would
give an ARIMA model except for the dependence of t on t.

If the time series f Yt g can be modeled by an ARIMA model, we expect that the time series
f � (B )Yt g is stationary, because in this case the polynomial� (x) is expected to include a factor
(x � 1)d for which already the time seriesf (B � I )dYt g is stationary. Then, assuming that equation
(18.11) correctly models the time seriesf Yt g, the coe�cients of � (x) t (x) cannot depend ont; this
is because the innovations algorithm described in Section 7allows us to determine these coe�cients
from the moments (� (B )Yt )( � (B )Yt � k ), where the score of the operator �rst operator B stops at
the enclosing parenthesis (that is, it does not a�ect theYt � k ), and these moments only depend on
k, and not on t. Hence, if we chooseN and m large enough, for appropriate values ofp and q,
the polynomials � (B ) (which depends onN ) and � (B ) t (B ) approximate polynomials18.6 � (B ) and
� 0(B ) such that the equation

(18.12) � (B )Yt = � 0(B )et ;
18.6 Note that we cannot write � (x) t (x) instead of � (B ) t (B ), since, as we indicated above, B in � (B ) acts also on
the subscript of  t (B ), so the coe�cients of � (x) t (x) and � (B ) t (B ) are not the same.
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correctly models the time seriesf Yt g. If in the polynomial � 0(B ) we discard the terms of degree
higher than q to obtain the polynomial � (B ),18.7 then we obtain the ARIMA( p � d; d; q) model

(18.13) � (B )Yt = � (B )et :

Here d is the largest integer for which (x � 1)d is a factor of � (x).

The ARIMA model obtained this way will probably not be identi cal to the ARIMA model obtained
by di�erentiation, and numerical experiments are needed to e valuate the quality of models obtained this
way as opposed to ARIMA models obtained by di�erencing. The d i�erence can be described as follows:
The present model makes no direct assumption about the size of the errors, since the errors are determined
according to the innovation algorithms, and not by �tting an ARMA model. When �tting an ARMA model,
the least squares method assumes that these errors will be about equal size; a similar assumption is made
if the maximum likelihood method is used, since the maximum lik elihood method is also based on some
kind of least square optimization according to formula (10.5) . In an ARIMA model, the errors et do not
assume di�erencing, since in equation ARMA: ARIMA eq the polyn omial � (x) is expected to have all its
zeros outside the unit circle. That is, the expectation is tha t even in an ARIMA model the errors are of
about the same size, even when the size ofYt may increase rapidly. On the other hand, the norming factor
1=(1 + y2

n ) used in the least squares optimization makes one to expect that the errors are proportional to yn

(at least for large values of yn ; this appears to be a much more reasonable expectation.

18.1 Adding a drift term and ensuring zero means of innovatio ns

An ARIMA model with a drift term has the form

(18.14) Yt = � +
pX

k=1

� k Yt � k + et �
qX

k=1

� k et � k :

To determine the AR coe�cients in such a model by using least square approximation �nd the values
of �̂ and of the coe�cients � k for 1 � k � p such that

(18.15)
NX

n = p+1

1
1 + y2

n

�
yn � �̂ �

pX

k=1

� k yn � k
� 2

;

see footnote 18.1 on p. 68 for an explanation of the reason to divide by 1 + y2. With the notation
introduced in equation (18.3), this suggests the approximate AR model

(18.16) � (B )Yt � �̂:

Similarly to equation (18.4), this equation will not play a d irect role; it will only give an indication
as to how to build the ARIMA model. We wrote approximate equality since the value of p is not
large enough to build a correct ARI model.

To determine the MA coe�cients, let m � N � p� q be a large positive integer as before,18.8 and
let y k as given in equation (18.5), and letu = (1 ; 1; : : : ; 1)T be the m-dimensional column vector
with all its entries 1. We determine the error vectors et by orthogonalizing the vectors u and y t

for t with m � t � N (in this order, u being the �rst one) with respect to the real inner product

18.7 In fact, if an ARIMA( p � d; d; q) model is appropriate, then the coe�cients of the terms of degree higher t han q
of � 0(B ) should be near 0.
18.8 The choice of m is similar to the choice before. That is, perhaps the the best choice is m � N �

p
N . See the

discussion after equation (18.6).
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hx; y i = xT y without normalizing. As before, with the aid of these vectors we can express the vector
y t as

(18.17) y t = � t u +
t � mX

l =0

 l;t et � l = � t u + et +
t � mX

l =1

 l;t et � l :

With the notation introduced in equations (18.8), this can be written as

(18.18) y t = � t +  t (B )et ;

of course, the polynomial  t (x) now is di�erent from what it was above, but we use the same
notation. Multiplying this equation by the polynomial � (B ), where has the same look as� (x) given
in equation (18.3), but now it is the polynomial used in equation (18.16), we obtain

(18.19) � (B )y t = � (B )� t u + � (B ) t (B )et :

Here, in the �rst term on the right-hand side, the operator B in � (B ) acts on � t , but not on u, since
the latter does not depend ont. Similarly as we explained after equation (18.10), in the second term
the scope ofB in � (B ) to the right of it.

Similarly as above, changing the from vectors to random variables, this suggests the equation

(18.20) � (B )Yt = � (B )� t + � (B ) t (B )et ;

whereet is the random variable describing the error committed by theprocess at timet. This would
give an ARIMA model with drift except for the dependence of  t on t. As we explained above
on account of the model without a drift term, if the time series f � (B )Yt g is stationary, then the
polynomials in this equation should not depend ont. So, choosingN and m large enough, we will
approximate a model

(18.21) � (B )Yt = � (B )� t + � 0(B )et ;

as in equation (18.12). Here� t may depend ont, but � (B )� t should not, as we will explain below.
Writing � for � for � (B )� t , and truncating � 0(B ) by discarding the terms of degree higher thanq,
we obtain the ARIMA( p � d; d; q) model

(18.22) � (B )Yt = � + � (B )et :

Here d is the largest integer for which (x � 1)d is a factor of � (x). The constant � on the right-hand
side is called drift.

The di�erence between an ARIMA model with and without a drift term can be explained as
follows. If we want to model the time seriesf Yt g with an ARIMA model via �rst building an
ARMA model, we need to perform di�erencing on f Yt g until we obtain a stationary time series with
zero means, and then build an ARMA model. If we include a drift term, then we do the di�erencing
up to the point when we obtain a stationary time seriesf X t g but without requiring that E( X t ) = 0.
Instead, we build an ARMA model for the time seriesf X t � � g, where � is an estimate for E(X t ).
If X t = ( I � B )dYt and X t � � is modeled as

X t � � =
p� dX

k=1

~� k X t � k + � (B )et ;
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then the model in equation (18.13) can be written as

(I � B )dYt = �
�

1 �
p� dX

k=1

~� k

�
+

p� dX

k=1

~� k B k (I � B )dYt + � (B )et :

The �rst term on the right-hand side is the drift term.

18.2 Seasonal ARIMA models

We will consider a multiplicative ARIMA( p; d; q) � (P; D; Q) model with seasonal parameters, which
means that we haves equally timed observations per period. The form suggested for such a model
in [4, Subsection 9.1,3, formula (9.1.7) on p. 332] is

� (B )�( B s)( I � B )d(I � B s)D Yt = � (B )�( B s)et ;

see also [12, Section 10.2, p. 231]. Here the time seriesf (I � B )d(I � B s)D Yt g is assumed to be
stationary.

We will describe how to build such a model. As in building the model in equation (18.9), we do
not need to separate out the integration degreesd and D in advance. That is, givenp, q, P, and Q,
we will build an ARIMA( p � d; d; q) � (P � D; D; Q ) model for appropriate d and D with 0 � 0 � p
and 0 � D � Q. Assume that the observed valuesyt of Yt are available for the times 1� n � N ,
where N > 0 is a large enough integer. For the sake of simplicity, assume that s j N . We �rst
discuss the seasonal part

(18.23) Yt =
PX

k=1

� k Yt � sk + � t �
QX

k=1

� k � t � s)

of the model, where� t describes the error between timest � s and t; what we mean by this error
will be explained below. We determine the AR coe�cients in th is equation by using the least square
approximation. That is, let � k for k with 1 � k � P be such that

(18.24)
NX

n = sP +1

1
1 + y2

n

�
yn �

PX

k=1

� k yn � sk
� 2

is the least possible; see footnote 18.1 on p. 68 for an explanation of the reason to divide by 1 + y2.
We determine the seasonal error vectors, we proceed similarly as we did around equation (18.5)
except that now we need to take the seasons into account. Letm � N � sP � sQ be a large positive
integer. Put

(18.25) y k = ( yk � m +1 ; yk � m +2 ; : : : ; yk )T (k � m; s j k);

requiring s j k is important here, so yt and yt 0 occurs in the same component only ift � t0 mod s.
To determine the error vectors � t , orthogonalize the vectorsy t for t with m � t � N and s j t. As
before, the vectorsy k can be expressed as a linear combination of the error vectorsas

(18.26) y t =
t � mX

l =0

 l;t � t � sl = � t +
t � mX

l =1

 l;t � t � sl (m � t � N; s j t);
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similarly to equation (18.7). Proceeding similarly as we did after this equation, we arrive at an
equation analogous to equation (18.13):

(18.27) �( B s)Yt = �( B s)� t :

We expect that here all zeros of �( x) are outside the closed unit circle, while �( x) may have zeros
on the unit circle, since we are creating an ARIMA model directly, rather than an ARMA model.
Also note that the construction ensures that the constant term of �( x) = 1, similarly as in equation
(18.1). Expressing� T from equation (18.27, for a sequence of observationshyt : 1 � t � N i we can
then calculate the the approximate values ^� t of the seasonal errors, similarly as we did in Subsection
9.5; for this, we need initial values for ^� t ; the requirement that all zeros of �( x) are outside the unit
circle ensure that the choice of the initial values of ^� t do not signi�cantly in
uence the values of �̂ t

for moderately large t.
Next, we build an ARIMA model

(18.28) � (B )� t = � (B )et

using the sequenceĥepsilont : K � t � N i as observed values; hereK > 0 is used to discard
the values of ^�t for small t for which the e�ect of the arbitrary choice of init ial values cannot be
considered small. Hence, we obtain

� (B )�( B s)Yt = � (B )�( B s)� t = �( B s)� (B )� t = �( B s)� (B )et : = � (B )�( B s)et :

The �rst equation is obtained by multiplying equation (18.2 7) by � (B ) on the left; the second
equation is uses the commutativity of polynomial multiplication, and the third equation follows
from equation (18.28; the fourth equation again uses the commutativity of polynomial multiplication.
That is, we have

� (B )�( B s)Yt = � (B )�( B s)et :

This is the multiplicative seasonal ARIMA model we wanted to construct.

19 Bootstrap methods

In the paper in the paper [15] published in 1979, Bradley Efron described a number of statistical
methods made feasible by the revolution in computing in the middle of the twenties century. Most
statistical methods then in use, many of them still in use today, were invented in the early twentieth
century were based on methods of computing that required relatively small amounts of calculation.
Among these methods wasbootstrap, Efron's own invention.

19.1 Bootstrap for independent identically distributed ra ndom variables

Bootstrap, as originally invented for independent, identically distributed random variables, can be
described as follows. Assume we have a samplex1, x2, : : :, xn of measurements from a large
population, so that these sample values can be regarded as values of a sequence of independent
identically distributed random variables. Given the sample, we can estimate the population mean,
but the question is how good this estimate is? Since we do not know anything about the distribution
of the measurements, using normal distribution theory may lead to the wrong conclusion. In the
bootstrap method we resample these measurements with replacement, we calculate the mean of each
resample, and thereby we establish an empirical distribution of the means of the sample.
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This can be described in a mathematical language as follows.Let N be a large positive integer,
and for eachi with 1 � i � N let

f i : f 1; 2; : : : ng ! f 1; 2; : : : ; N g

be a random function (this function is not assumed to be one-to-one or onto). For eachi , this will
give a resample

x f i (1) ; x f i (2) ; : : : ; x f i (n )

of the original data. With

� i =
1
n

nX

k=1

x f i (k )

we get a collection of the sample means� i . One can now devise a con�dence interval for the
population mean � by choosing ana such that the about 5N=200 = :025N among the � i is less than
a and choosing ab such that about 5N=200 = :025N among the � i is greater than b. Then one can
say that a � � � b with 95% con�dence. The method can be used to set up estimatesfor other
population parameters, such as the variance, median, etc.

19.2 Con�dence intervals for multistep predictions in ARIM A models

Given an ARIMA model

(19.1) Yt =
pX

k=1

� k Yt � k + et �
qX

k=1

� k et � k (t 2 Z);

the errors et , also called residuals, can be estimated from an observed run of the time series, as
described in Subsection 9.519.1 (as pointed out at the cited loaction, when using this method, a
number of the beginning values of the residuals need to be discarded, because the choice of the
initial values does not correspond to their actual values) or in Subsection 10.1. Assuming thatYt

has observed valuesyt for t with 1 � t � N , and the estimated values for the residuals is ^et . Assume,
further that the residuals are considered reliable fort with K � t � N . For t > N , an estimate
for et is not available. For one prediction run, for t > N one can de�ne êt and a randomly selected
value from among the residualset 0 for t0 with K � t0 � N . In this way, replacing et with êt , one
can use equation (19.1) repeatedly witht = N + 1, N + 2, : : :, N + k to predict YN + k . Making
repeated predictions ofYN + k with new random choices of the future residuals, one can construct
an empirical distribution of YN + k , and using this empirical distribution, one can �nd a con�de nce
interval for the predicted value of YN + K .

The application of this method relies on the tacit assumption that the residuals are independent
identically distributed random variables. This assumption goes beyond the assumption of stationar-
ity of the appropriately di�erentiated time series used in t he construction of the ARIMA model, since
stationarity does only involves �rst and second moments, and says nothing about distributions. The
assumption of strict stationarity would certainly imply th is (see Subsection 5.1), but even without
the assumption of strict stationarity one often makes this assumption about the residuals.

19.1 That discussion concerned only ARMA models rather than ARIMA models. Howev er, and ARIMA model is also
an ARMA model for the appropriately di�erentiated time series, with th e same residuals.
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19.3 Other applications of bootstrap for time series

Bootstrap methods have been extended from independent identically distributed random variables
to other situations, and there are many other, more complicated applications of bootstrap methods
for time series. See Kreiss and Lahiri [21], Politis [27], and Kirch and Politis [20]; the last one
discusses bootstrap methods in the frequency domain.

20 The Fourier transform

20.1 The de�nition of the Fourier transform

Let f be a function on R. Its Fourier transform is de�ned as

(20.1) f̂ (x) =
1

p
2�

Z 1

�1
f (y)e� ixy dy;

assuming the integral exists. We then have

(20.2) f (x) =
1

p
2�

Z 1

�1
f̂ (y)eixy dy;

again f has to satisfy certain conditions for this integral to exist. The expression on the right-hand
side is called the inverse Fourier transform. We will outline how to prove formula (20.2) while
treating some convergence issues lightly.

Given a function f on R and a (large) integer N , we will represent f by a Fourier series on the
interval ( � N�; N� ). To do this, we write y = x=N

g(y) = f (Ny) = f (x);

and representg(y) by a Fourier series on (� �; � ) as 20.1

(20.3) f (x) = g(y) =
1X

n = �1

cn einy =
1X

n = �1

cn eixn=N (� N� < x < N� );

where

cn =
1

2�

Z �

� �
g(y)e� iny dy =

1
2N�

Z N�

� N�
f (x)e� ixn=N dx (�1 < n < 1 );

where the �rst equation holds according to equation (13.15), and the second equation was obtained
by using the substitution x = Ny and noting that then g(y) = f (x). Writing

(20.4) hN (t) =
1

2�

Z N�

� N�
f (x)e� ixt dx;

we havecn = (1 =N)hN (n=N ), and equation (20.3) becomes

(20.5) f (x) =
1
N

1X

n = �1

hN (n=N )eixn=N (� N� < x < N� ):

20.1 If f is continuous and put together from �nitely many monotonic pieces on �nite intervals, the next equation
will hold for all y 2 (� �; � ), i.e., for all x 2 (� N�; N� ), according to Dirichlet's theorem quoted in Subsection 13.2.
Even then, it will not hold for x = � N� unless f (N� ) = f (� N� ). If f is not real-valued, Dirichlet's theorem can be
applied separately to the real part and the imaginary part of f , assuming that those are continuous and put together
from �nitely many monotonic pieces on �nite intervals.
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where, as above, we wrotex = y=N. Putting

(20.6) h(t) =
1

2�

Z 1

�1
f (x)e� ixt dx;

we have limN !1 hN (t) = h(t) according to equation (20.4). Making N ! 1 in (20.5), the sum
approximates an integral, andhN approachesh, and so we obtain

(20.7) f (x) =
Z 1

�1
h(t)eixt dt (�1 < x < 1 ):

Equations (20.6) and (20.7) are identical to equations (20.1) and (20.2) with f̂ (x) =
p

2� h (t).

20.2 The Fourier transform is an isometry

The formula corresponding to Parseval's identity (13.16) is

(20.8) kf k2 =
Z 1

�1
jf (x)j2 dx =

Z 1

�1
j f̂ (x)j2 dx = kf̂ k2

assuming both integrals exist. This means that for f 2 L 2(�1 ; �1 ), the norm of f and f̂ is
the same; a transformation of normed vector spaces that preserves norms is called an isometry.20.2

The statement described by this equation is called Plancherel's theorem. The Fourier transform
as described in (20.1) does not exist for everyf 2 L 2(�1 ; 1 ), but every such function can be
approximated by a sequencef n of functions such that f n converges tof in norm; in fact, we can
take f n to be a continuous function that is 0 outside a �nite subinterval of (�1 ; 1 ).20.3 Taking a
sequence of functionsf n such that f = lim n !1 f n (convergence in norm), we can put

f̂ = lim
n !1

f̂ n :

The convergence here is assured, sincekf̂ n � f̂ m k = k(f n � f m )̂ k = kf n � f m k.
Plancherel's theorem (f 20.8) can be extended to inner products:

hf; g i =
Z 1

�1

�
f (x)

� �
g(x) dx =

Z 1

�1
(f̂ (x)) � ĝ(x) dx = hf̂ ; ĝi :

This is immediate from the identity

(20.9) 4f � g = jf + gj2 � j f � gj2 + i jif + gj2 � i jif � gj2:

See Problem 20.1 for the proof of this identity.

20.2 More generally, an isometry is a transformation of metric spaces that p reserves distances.
20.3 Such a function can be called a continuous function with compact support. The support of a function is a set
that contains all the points where a function is nonzero. We do not n eed the concept of compact sets at this point, it
su�ces to say that every bounded closed interval is a compact set. So, a function is said to have compact support if
it is zero outside a bounded closed interval.
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20.3 The Fourier transform and convolution

Given two functions f and g on R, according to equation (20.1) and the second equation in (5.5),
we have

(20.10)

(f � g)̂ ( x) =
1

p
2�

Z 1

�1

� Z 1

�1
f (� )g(y � � ) d�

�
e� ixy dy

=
1

p
2�

Z 1

�1

� Z 1

�1
f (� )g(y � � )e� ix� e� ix (y � � ) d�

�
dy

=
1

p
2�

Z 1

�1

� Z 1

�1
f (� )g(y � � )e� ix� e� ix (y � � ) dy

�
d�

=
1

p
2�

Z 1

�1

� Z 1

�1
f (� )g(u)e� ix� e� ixu du

�
d�

=
1

p
2�

Z 1

�1
g(u)e� ixu du

Z 1

�1
f (� )e� ix� d� =

p
2� ĝ(x)f̂ (x) =

p
2� f̂ (x)ĝ(x);

where the fourth equation was obtained by making the substitution u = y � � . That is, the Fourier
transform converts a convolution into a product.20.4 Of course, there are conditionsf and g must
satisfy in order that the transformations performed in the equations above be permissible, but we
omit any discussion of them. Besides, such a discussion can be done much more fruitfully with
Lebesgue integration theory than with Riemann integration.

One can derive a similar relation between convolutions of sequences and the Fourier series formed
by these sequences as coe�cients. Indeed, iff and g are functions onZ and

F (x) =
1X

k= �1

f (k)eikx and G(x) =
1X

k= �1

g(k)eikx

then

(20.11) F (x)G(x) =
1X

k= �1

(f � g)(k)eikx :

This is certainly true if the series representingF (x) and G(x) are absolutely convergent, and it simply
re
ects the rule for multiplying two-way power series.20.5 The above relation shows one aspect of
the importance of the Fourier transform for analysis of time series. Linear �lters or convolutions
(see Subsection 5.6) are important for analyzing or processing time series, and their e�ects are
much easier to study in the frequency domain, since productsare much easier to understand than
convolutions.

20.4 Frequency �ltering

To screen out certain frequencies from an incoming signal has been a concern for radio engineers
for a long time; for example, when you tune into a radio station, you do not want to listen to
the neighboring station at the same time. This was accomplished by analog circuits, but today,

20.4 The factor
p

2� on the right-hand side is somewhat of a nuisance. To avoid this, sometim es when discussion
convolutions and Fourier transforms together, one puts a factor of 1=

p
2� in front of the integral in the de�nition of

convolution in equation (5.5).
20.5 If z = eix then eikx = zk , so the series representing F and G are two-way in�nite power series.
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a lot of �ltering is done by mathematically processing the time series obtained by sampling the
analog signal. Practically, one would only be interested inthe discrete series resulting by sampling
rather than the continuous signal, that is, in the Fourier series rather than the Fourier transform,
but, for a theoretical understanding of the issues studyingthe Fourier transform is very important.
The isometry of the Fourier transform described in equation (20.8) is often easier the work with
than the analogous Parseval identities (13.16) or (14.6). Mathematically, �ltering out frequencies
in the signal expressed by the functionf (t) amounts to taking the characteristic function � [a;b] of
the interval, 20.6 and taking the function ( � [a;b] f̂ )̂ . One can use functions other than characteristic
functions or intervals for �ltering. In fact, in analog proc essing the �ltering function that can be
realized will only approximately be the characteristic function of an interval. This kind of �ltering is
called �ltering in the frequency domain. One can also use �ltering in the time domain, or in spatial
domain (for image transmission), or in the time-space domain.

20.5 Spectral analysis: what for?

The book [11, x9.6, pp. 183{190] describes a number of applications of frequency analysis. An
especially interesting one concerns fault detection on electric motors. Electric motors vibrate, and the
vibration has typical frequencies, and faults such as a broken rotor bars20.7 changes these frequencies.
Monitoring these frequencies can be used to detect faults. Spectral analysis can be used for stationary
time series; vibration of electric motors naturally generate stationary time series { in the electric
motor example, the signal was monitored 400 times a second, so the time series can safely be assumed
to be stationary. Monitoring frequency variations in nonstationary time series can be accomplished
with wavelets { see Section 22.

20.6 Problems

Problem 20.1. Prove equation (20.9).

Problem 20.2. Prove the analog of equation (20.9) for inner products and norms. That is, given
a complex inner product h�; �i and the induced norm k � k in a vector spaceV over C, show that

(20.12) 4hf; g i = kf + gk2 � k f � gk2 + ikif + gk2 � i kif � gk2:

Problem 20.3. Let V be a normed vector space overR. Show that the norm k � k is induced by an
inner product if and only if

(20.13) kf + gk2 + kf � gk2 = 2kf k2 + 2kgk2 for all f; g 2 V:

This identity is called the parallelogram identity.20.8 Note: This problem is di�cult. The result is
due to Maurice Ren�e Fr�echet, John von Neumann, and PascualJordan.

Problem 20.4. Let V be a normed vector space overC. Show that the norm k � k is induced by an
inner product if and only if it satis�es equation (20.13).

Problem 20.5. Find the Fourier transform of

f (x) = e� � 2 x 2
;

where � > 0.
20.6 See footnote 17.7 on p. 67.
20.7 A certain part of an alternating current induction motor { see [35]. No te that the example describes the alternating
current frequency as 50 Hz, common in Europe. In the USA, the alternatin g current frequency is 60 Hz.
20.8 If the vectors f and g stand for two sides of a parallelogram, the identity expresses the statemen t that the sum
of squares of the diagonals of a parallelogram is equal to the sum of squares of the sides.
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21 The Haar orthonormal system

In 1909, Alfred Haar designed an interesting system of orthonormal functions that became the focus
of special interest in the light of later developments.21.1 The functions � n are de�ned on the interval
[0; 1] as follows. We put � 0(x) = 1 for all x with 0 � x � 1. Further, we put

� 1(x) =

(
1 if 0 � x < 1=2;
� 1 if 1=2 < x � 1:

For eachn � 1 divide the interval [0; 1] into 2n equal intervals, and let these subintervals be denoted
as I j

n (1 � j � 2n ). We write

� (k )
n (x) =

8
><

>:

2(n � 1)=2 inside I 2k � 1
n ;

� 2(n � 1)=2 inside I 2k
n ;

0 elsewhere in (0; 1)

for 1 � k � 2n � 1:

At the jumps in the interval (0 ; 1), the value of � (k )
n will be the arithmetic mean of its values in the

neighboring intervals. Finally, we de�ne � (k )
n (x) for 0 and 1 for it to be continuous at these points

(n � 2 and 1� k � 2n � 1) in the interval [0 ; 1].
As we will see below, the Haar system is a complete orthonormal with respect to the inner

product

hf; g i =
Z 1

0

�
f (x)

� �
g(x); dx:

Nothing is really gained by considering complex-valued function, so, for the sake of simplicity, we
may assume thatf and g are real valued, and then the complex conjugation in this formula may be
omitted.

We used Haar's original notation for these functions. To simplify the notation, write � (0)
0 = � 0

and � (1)
1 = � 1. The normality of the Haar system, i.e., that

Z 1

0
j� (k )

n (x)j2 dx = 1 ;

is easy to see. Further, we clearly, we also see that
Z 1

0
� (k )

n (x) dx = 0 for n � 1:

From this, the orthogonality
Z 1

0
� (k )

n (x)� (k 0)
n 0 (x) dx = 0 if ( n; k) 6= ( n0; k0)

also follows. Indeed, ifn = n0, then at least one of� (k )
n (x) and � (k 0)

n (x) is zero, with the exception
of at most a single value ofx. If n < n 0, then � (k )

n is constant on the union the the two intervals
I 2k 0� 1

n 0 and I 2k 0

n 0 where � (k 0)
n 0 6= 0, except perhaps at the endpoints of the union.

We formulate the completeness as a separate theorem:
21.1 Haar's original paper appeared in 1910, but on the �rst page it says that it is essentially an unchanged version
of his \G•ottinger Inauguraldissertation," that is, the dissertati on written to obtain habilitation at the University of
G•ottingen, Germany. See footnote 13.6 on page 46 concerning habil itation.
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Theorem 21.1. The Haar system is a complete orthonormal system inL 2[0; 1].

We have already established orthonormality. For the proof of completeness, we will use Lemma
17.2 on p. 66. For this, note that the (�nite) linear combinat ions of the characteristic functions of
the intervals I k

n (n � 1, 1 � k � 2n ) form a dense set inL 2[0; 1].

One really needs to study Lebesgue integration to really understand this statement, if for no other reason
that the de�nition of L 2 [0; 2� ] relies on Lebesgue integration. For an intuitive understa nding for those only
familiar with Riemann integration, note that every Riemann integrable function can be approximated by a
step function with partition points coming from among the en dpoints of the intervals I k

n ; approximation is
meant here in the sense that the integral of the absolute value of the di�erence is small. To appreciate the
di�erence between the Riemann integral and the Lebesgue integral, consider the function f on [0; 1] that
is 1 at rational points and 0 elsewhere. This function is not R iemann integrable; its Lebesgue integral is 0.

In probability theory, this property of the Riemann integra l should be understood to be a de�ciency.
Consider, for example, a random variable X with values uniformly distributed in the interval [0 ; 1], and
ask the question: what is the probability of X assuming a rational value. As there are only countably
many rational numbers, and the probability of X = r for any speci�c r is zero, the probability of X being
rational is 0, because of the� -additivity axiom of probability theory, saying that if An are mutually exclusive
events (1 � n < 1 ) and A is the event that at least one of the An will occur, then

P(A) =
1X

n =1

P(A):

This property of � -additivity is built into the de�nition of Lebesgue integral , whereas it is not in that of the
Riemann integral.

Proof of Theorem 21.1. Given m � 2, let Dm be the subspace ofL 2[0; 1] spanned by the (�nite)
linear combinations of the characteristic functions ofI k

n for 1 � n � m and and 1� k � 2n .
The dimension of this space of 2m ; the reason for this is that for n < m and for 1 � k0 � 2n 0

the characteristic function of I k 0

n is a linear combination of the characteristic functionsI k
m , 1 � k �

2m .21.2 This is exactly the number of Haar functions � (k )
n belonging to this space, i.e.,� (k )

n for
n = k = 0 and for 1 � n � m and 1 � k � 2m , since

1 +
mX

n =1

2n � 1 = 2 m :

Therefore these Haar functions spanDm . Therefore the Haar functions spanD =
S 1

m =1 Dm . As D
is dense inL 2[0; � ], the Haar system is complete by Lemma 17.2.

21.1 Frequency �ltering of the Haar system

In time series with changing characteristic, one wants to �lter out distant parts; that is, one wants
to �lter in the time domain. In this sense, the Haar system (when adapted to discrete time series)
is excellent, since it perfectly �lters out far-away e�ects. Its frequency performance, however, is

21.2 Observe that the value of these functions at the end points of the int ervals i ( l )
n make no di�erence. The real

reason for this is that L 2 [0; 1] is a space of equivalence classes of functions, and not a space of functions, in spite of
one saying the opposite in loose parlance. See the second paragraph of footnote 17.4 on 65.
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another story. Indeed, for the Fourier transform of � (k )
n for x 6= 0 we have

�̂ (k )
n (x) =

1
p

2�

Z 1

�1
� (k )

n (x)e� ixy dy

=
1

p
2�

 Z (2k � 1)=2n

(2k � 2)=2n
�

Z 2k=2n

(2k � 1)=2n

!

2(n � 1)=2 e� ixy dy

=
2(n � 1)=2

� ix
p

2�

�
� e� i (2k � 2)=2n

+ 2e� i (2k � 1)=2n
+ e� 2ik= 2n

�
= O

�
1
x

�

as x ! 1 ; the last equation ignores the dependence onn.21.3 The problem here is that 1=x does
not tend to zero fast enough whenx ! 1 . In engineering terms, as says that the functions of the
Haar system have poor performance in frequency �ltering.

22 Wavelets

22.1 Haar wavelet and multiresolution analysis

Let V = L 2(R) (the real L 2 space), andI n;k be the interval
�
(k � 1)2n ; k2n

�
for 1 < k < 1 . Let

(22.1) Vn = f f 2 V : f is constant on I n;k for eachk 2 Zg:

Let � = � [0;1) be the characteristic function of the interval [0; 1) = I 0;0, that is,

� (x) =

(
1 if 0 � x < 1;
0 otherwise:

and let

 (x) =

8
><

>:

1 if 0 � x < 1=2;
� 1 if 1=2 � x < 1;
0 otherwise:

The function � is called the Haar scaling function, and , the Haar mother wavelet.22.1 We put

� n;k (x) = 2 � n= 2� (2� n x � k);

 n;k (x) = 2 � n= 2 (2� n x � k)

for n; k 2 Z. That is,

� n;k (x) =

(
2� n= 2 if x 2 I n;k ;
0 otherwise:

21.3 The \big Oh" and \little oh" symbols were introduced by Edmund Lan dau. The symbols are very convenient,
but often their exact meaning must be ascertained from the context. Given a f unction f (x), which is usually, but not
necessarily assumed to be positive, the symbol O

�
f (x)

�
denotes a function g(x) such that g(x)=f (x) remains bounded

when x ! a, or x & a, or x % a (i.e., x tends to a from the right, or from the left), where usually a = + 1 , or a = �1 ,
or a = �1 or a = 0, or else a is any other value; the value of a and how it is approached should be understood
from the context. Similarly, o

�
f (x)

�
denotes a function g(x) such that lim x ! a f (x)=g(x), (or lim x & a f (x)=g(x), or

lim x % a f (x)=g(x)), where, again a and how it is approached should be understood from the context.
22.1 The scaling function is occasionally called the father wavelet.
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and

 n;k (x) =

8
><

>:

2� n= 2 if x 2 I n � 1;2k � 1;
� 2� n= 2 if x 2 I n � 1;2k ;
0 otherwise:

For �xed n, The system of functions� n;k is orthonormal in Vn . The orthogonality is clear, since if
k 6= k0 then for all x 2 R, one of � n;k (x) and � n;k 0(x) is zero. The Haar system can be expressed in
terms of these functions as22.2

� 0 = �;

� 1 =  ;

� (k )
n =  � n +1 ;k for n � 2 and 1� k � 2n � 1:

It is also clear that any function f n in Vn can be expressed as a sum

(22.2) f n (x) =
1X

k= �1

cn;k � n;k (x);

whereck is the constant value of 2n= 2f (x) for x 2 I n;k .22.3 This equation implies that the the system
of functions � n;k is also complete inVn (cf. Lemma 17.2 with M = V in that Lemma { i.e., M = Vn

in the present case).
Observe that

(22.3) � n +1 ;k =
1

p
2

(� n; 2k � 1 + � n; 2k )

and

(22.4)  n +1 ;k =
1

p
2

(� n; 2k � 1 � � n; 2k ):

Hence, the above equation becomes

f n =
1X

k= �1

cn;k � n;k =
1X

k= �1

�
cn; 2k � 1 � n; 2k � 1 + cn; 2k � n; 2k

�

=
1X

k= �1

�
cn; 2k � 1 + cn; 2k

2

�
� n; 2k � 1 + � n; 2k

�
+

cn; 2k � 1 � cn; 2k

2

�
� n; 2k � 1 � � n; 2k

�
�

=
1X

k= �1

�
cn; 2k � 1 + cn; 2kp

2
� n +1 ;k +

cn; 2k � 1 � cn; 2kp
2

 n +1 ;k

�

22.2 Note quite, since we equality at the end points of the intervals I n;k is not guaranteed. However, these functions
are still equal a.e., i.e., in the sense of L 2 . See footnote 21.2 on page 81.
22.3 As a consequence of orthonormality, we must have

cn;k =
Z

I n;k

� n;k (x)f (x) dx = h� n;k ; f i :

We did not use complex conjugate in this equation, since f is assumed to be real valued. It is also easy to check this
equation directly.
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Writing

(22.5) f n +1 =
1X

k= �1

cn; 2k � 1 + cn; 2kp
2

� n +1 ;k

and

(22.6) gn +1 =
1X

k= �1

cn; 2k � 1 � cn; 2kp
2

 n +1 ;k ;

we havef n = f n +1 + gn +1 . Further, f n +1 2 Vn +1 . and hf n +1 ; gn +1 i = 0. This latter equation holds
sinceh� n +1 ;k ;  n +1 ;k 0i = 0. 22.4 Write

Wn +1 =

(
1X

k= �1

ak  n +1 ;k :
1X

k= �1

jak j2 < 1

)

:

It is worth restating this discussion in a more formal framework. We need a de�nition for this.

De�nition 22.1. Let X and Y be subspaces of the inner product spaceU such that for eachx 2 X
and y 2 Y we havehx; yi = 0. We then call X and Y orthogonal and we write

X � Y = f x + y : x 2 X and y 2 Yg:

X � Y is called the orthogonal sum of the spacesX and Y . If U = X � Y , then we can also write
Y = U 	 X .22.5 If U = X � Y and u 2 U, then the unique y for which u = x + y is called the
projection of u onto Y . The function P for which P u = y is called the projection operator onto
Y .22.6

We have

(22.7) Vn = Vn +1 � Wn +1 for all n 2 Z:

Let Pn be the projection operator from Vn to Vn +1 ; we havePn f n = f n +1 . There are further notable
properties of the spaces involved that will be important for describing a more general setting of
multiresolution analysis. We have

(22.8) Vn +1 � Vn for all n 2 Z:

Further,

(22.9)
1\

n = �1

Vn = f 0g;

22.4 If k 6= k0 then for any x 2 R, one of � n +1 ;k (x) and  n +1 ;k 0 is zero.
22.5 One needs to be a little careful here. The symbol � is also used to indicate the direct sum of two vector spaces.
When X and Y are subspaces of a vector spaceU (no inner product is assumed here), and X \ Y = f 0g, then the
direct sum of X and Y is de�ned as

X � Y = f x + y : x 2 X and y 2 Y g:

There is no real con
ict here, but there is one important di�erence. If U is the orthogonal sum of X and Y , then
knowing U and X , we can �nd Y . On the other hand, if U is only the direct sum of X and Y , then knowing X , we
can have several choices for Y .
22.6 It is customary to write P u instead of P (u). This is a general custom for operators. P is a linear operator (also
called a linear transformation in linear algebra).
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This is because a function belonging to all the spacesVn has to be constant on the intervals [0; 2n )
and [� 2n ; 0) for all n, and then it also needs to be square integrable. We also have

(22.10) cl

 
1[

n = �1

Vn

!

= L 2(R);

here cl(U) denotes the closure of U. For this closure to make sense,U needs to be a subspace of
a given normed space, sayZ 22.7 (at present, this space isV ). A subspaceZ is closed if given any
sequence of elements ofZ that is convergent in norm then the limit of this sequence is also in Z .
The closure ofU is the smallest closed subspace ofZ that includes U.22.8 Finally, we have

(22.11)
1M

n = �1

Wn = L 2(R);

the symbol on the left indicates the closure of the subspace formed by all �nite linear combinations
of vectors in

S 1
n = �1 Wn , and the direct sum sign also indicates that the subspacesWn are pairwise

orthogonal. The equation is the consequence of equations ofequations (22.8), (22.9), and (22.10).
Write

f n +1 (x) =
1X

k= �1

cn +1 ;k � n +1 ;k (x);

and

gn +1 (x) =
1X

k= �1

dn +1 ;k  n +1 ;k (x):

Equations (22.2), (22.5), and (22.6) imply

(22.12) cn +1 ;k =
cn; 2k � 1 + cn; 2kp

2
and dn +1 ;k =

cn; 2k � 1 � cn; 2kp
2

:

Since we havef n = f n +1 + gn +1 for all n, equation (22.11) implies that for any f n 2 Vn we have

(22.13) f n =
1X

m = n +1

1X

k= �1

dm;k  m;k :

Equations (22.12) will point to way to compute the coe�cient s in the wavelet expansion of a function.
This will be further elaborated below in a discussion of the discrete wavelet transform.

The above discussion is based mainly on [14, Chapter 5, pp. 129{].22.9 This is an award-winning
book, but it has some prerequisites in functional analysis and harmonic analysis to read it.

22.2 What are wavelets?

Given a function � 2 L 2(R), called the mother wavelet, and a function f 2 L 2(R), the continuous
wavelet transform is22.10

Fw (a; b) =
1

p
a

Z 1

�1
f (x)

�
�

�
x � b

a

�� �

dx (a; b2 R and a > 0):

22.7 An inner product space is also a normed space with the norm induced by the i nner product, as we pointed out
above.
22.8 That is, cl( U) consists of the limits of all sequences convergent in norm whose elements come from U.
22.9 The mistakes are mine.

22.10 There is a technical condition, called the admissibility condition, t hat need to be imposed on � in order that f
can be reconstructed from its wavelet transform. See [14, Section 1.3, p. 7 ].
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Often, one only considers discretely labeled wavelets, meaning that Fw (a; b) is only considered for
certain discrete values ofa and b.22.11 An illustration for this were the Haar wavelets in Subsec-
tion 22.1. Orthonormality, as exempli�ed by the Haar wavelets is a useful property in allowing
e�cient computer algorithms. There are also non-orthonormal wavelets that retain most of the
computational advantages of orthonormal wavelets.

Wavelets are used for localized frequency analysis of data.For time series occurring in practice
this is very important, since time series are usually non-stationary, and Fourier analysis is applicable
only to stationary time series. The short-time Fourier transform considers only a part of the time
series to keep track of frequency changes. It is used for analysis of a �xed frequencies at a �xed band-
width (the di�erence between the upper and lower frequencies in the analyzed range of frequencies).
Wavelets automatically adapt the analyzed frequency rangeto the size of the frequency.

Restricting time series both in time and frequency is mathematically impossible, since one needs
in�nitely long time to measure a frequency exactly. This is related to the Heisenberg's uncertainty
relations in physics concerning the determination of the location and the momentum (velocity times
mass) of a particle.22.12 Daubechies [14,x2.3, pp. 21{23] discusses the example of a phone con-
versation, which is of �nite time, and also of limited bandwi dth, since the phone line is capable of
transmitting frequencies only in a certain range. So, how well can a function be represented under
such circumstances. The problem is not an easy mathematicalproblem, and its solution involves
eigenvalues and eigenfunctions of integral and di�erential operators.

22.3 Smoothness and frequency �ltering

As we discussed in Subsection 21.1, the frequency �ltering performance of the Haar wavelet is poor;
the main reason for this is the sharp discontinuity of the Haar wavelet. In order to get better
performance, one needs smooth wavelets. The reason smoothness help frequency �ltering can be
seen by integration by parts. Indeed, assume (x) = 0 outside a bounded interval (such a function
is called compactly supported; see footnote 20.3 on p. 77.) Assume, further, that  is continuously
di�erentiable; this will allow integration by parts. We hav e

(22.14)  ̂ (x) =
1

p
2�

Z 1

�1
 (y)e� ixy dy =

1

� ix
p

2�

Z 1

�1
 0(y)e� ixy dy

for x 6= 0; 22.13 note that there is no integrated-out term, since  (y) = 0 for large y. The x in the
denominator of the factor on the right-hand side indicates the speed of convergence of̂ (x) ! 0
as x ! 0.22.14 If  is continuously di�erentiable more than once, then we can repeat integration
by parts to show even better frequency �ltering. Given any positive integer n, in [13], Daubechies
developed a method to construct orthonormal wavelets that are zero outside a bounded interval and
are continuously di�erentiable n times.

22.11 Discretely labeled wavelets are to be distinguished from the discrete wavelet transform, discussed below.
22.12 This relation is certainly not perfect. For time series, the statement is a m athematical result, for physics, it is a
basic principle that supports arguments even in cases when the exact equati ons governing a physical system are not
known.

22.13 We have i = 1 =(� i ), so we could simplify the right-hand side a little, but that is besid e the point.
22.14 Without the x in the denominator, one would expect a rate of convergence of O(1=x), as in the Haar wavelet {
see Subsection 21.1. This factor indicates that the rate of convergence is at least O(1=x2 ).
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22.4 A short history of wavelets

22.5 Wavelets and image analysis

Given a complete orthonormal system of wavelets n;k (x), one can construct a two-dimensional
complete orthonormal system of wavelets if two dimensions by taking the system of functions

	 n;k;n 0;k 0(x; y) =  n;k (x) n 0;k 0(y):

Such a system of two-dimensional wavelets can be called thetensor product of one-dimensional
wavelets. A more interesting scheme of producing two-dimensional wavelets is using multiresolution
analysis in two-dimensions directly; that is, the method the basic features of which were described in
Subsection 22.1, can be generalized to two dimensions without relying on one-dimensional wavelets;
see [14, Chapter 10, pp. 313{]. Smoothness of two-dimensional wavelets is important for avoiding
edge e�ects, caused by sharp jumps in the Haar wavelet. The site [1] has nice pictures showing
the wavelet decomposition of images, and illustrates various uses (such as e.g. edge detection) of
wavelets with pictures.

22.6 The discrete Haar wavelet transform

Let

f 0(x) =
1X

k= �1

c0;k � 0;k (x);

Start with a �nite sequence of the coe�cients c0;k ; these are perhaps the sampled value of a con-
tinuous time series (the coe�cients outside the sampled range can taken to be zero). Using equa-
tions (22.12), and can calculate the coe�cients cn;k and dn;k for n > 0. These equations show
the number of coe�cients cn +1 ;k in the nonzero range is half of the number of coe�cients cn;k in
the nonzero range. Similarly, the number of coe�cients dn +1 ;k in the nonzero range is half of the
number of coe�cients cn;k in the nonzero range. So, after a while, all coe�cients will be zero. The
coe�cients dm;k for m > 0 and z 2 Z will be the coe�cients of the wavelet expansion of f 0; cf.
equation (22.13).

22.7 Orthogonal wavelets

We will generalize the framework described in Subsection 22.1 on account of the Haar wavelets. The
starting point again will be the selection of two functions � , called the scaling function, and , called
the mother wavelet. These two functions will determine the wavelets to be constructed, and how
to select these functions is a di�cult problem. These two functions, and the subspacesVn and Wn

constructed with the aid of them will satisfy properties analogous to those described in Subsection
22.1.

The closed subspaces22.15 Vn and Wn of L 2(R) will satisfy equations (22.7){(22.11). Equation
(22.1) will be no longer in force { that equation applied only to the Haar wavelets. Instead, we will
require that

Vn = f g : there is an f 2 V0 and a k 2 Z such that

for all x 2 R we haveg(x) = f (2� n x � k)g
(22.15)

22.15 A subspace U is closed if cl(U) = U. See footnote 22.8 on p. 85.
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for all n 2 Z. Note that for n = 0 this means that if f 2 V0 and g(x) = f (x � k) for some integerk
and for all reals x then we also haveg 2 V0. Assume� 2 V0 and  2 W0, and for eachn; k 2 Z, put

(22.16)
� n;k (x)

def
= 2 � n= 2� (2� n x � k);

 n;k (x)
def
= 2 � n= 2 (2� n x � k):

Assume that f � n;k : k 2 Zg is an orthonormal basis ofVn and f  n;k : k 2 Zg is an orthonormal
basis ofWn .22.16 We have22.17

(22.17) � (x) =
1X

k= �1

hk

p
2� (2x � k) for a.e. x

with some numbershk , because� (x) 2 V0 � V� 1, and and the functions
p

2� (2x � k) = � � 1;k (x)
form an orthonormal basis ofV� 1. Similarly,

(22.18)  (x) =
1X

k= �1

gk

p
2� (2x � k) for a.e. x

with some numbersgk , because (x) 2 W0 � V� 1.
Assuming � and  are continuous, these equations hold everywhere. In this case, the values of

� at the integers determine the values of� and  at placesm=2 for all integers m. The values of �
at these points then determine values of� and  at all points m=4 for integer m. Repeating this
argument, we can see that the values of� at integers determine the values of� and  at all dyadic
rationals.22.18 Then, by continuity, � (x) and  (x) are determined for all x.

In many cases, all but �nitely many of the coe�cients are zero in equations (22.17) and (22.18).
This is certainly true if both � and  are zero outside a �nite interval (i.e., when � and  have
compact support.22.19 The method to construct compactly supported smooth wavelets was invented
by Daubechies, and it was described in [13] and also in [14]. It involves very sophisticated mathe-
matics using the Fourier transform, estimating products of certain trigonometric polynomials,22.20

eigenvalues, and polynomial algebra. Compactly supportedsmooth wavelets are indispensable for
storing pictures on your cellphone. It is interesting to re
 ect on the abstract mathematical tools
needed to develop such ubiquitous applications. In a book �rst published in 1940, G. H. Hardy [18]
re
ected on the practical usefulness of mathematics, and tried to draw the boundary between pure
and applied mathematics. The boundary has considerably shifted since then for many reasons; the
invention of computers played a major role, making vast segments of pure mathematics useful in
applications. The book is an amusing light read.

22.16 Here basis is meant in the the sense of normed vector space. That is, every element o f the vector space can be
represented as an in�nite linear combination of the basis vectors. Linear independence is still mean t in the sense of
�nite linear combinations { though this is not an issue, since linear i ndependence is a consequence of orthonormality.

We need to make these assumptions only in case n = 0, when they in e�ect de�ne the spaces V0 and W0 in terms
of the functions � and  , respectively. For other values of n, they care consequences of equations (22.16), (22.15),
and (22.7), as one can see after some consideration.

22.17 As indicated, these equations hold for almost every (a.e.) x. See the comment in the second paragraph of
footnote 17.4 on p. 65.

22.18 A dyadic rational is a number m=2n for all integers n > 0 and m.
22.19 If  has compact support, then the wavelet is called compactly supported. If � has compact support, then it
follows that  also has compact support; the proof of this is, however, technical. See [ 14, Section 6.1, p. 167].

22.20 Called Riesz products, named after F. Riesz, who was mentioned in footnote 17.4 on 65.
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22.8 The discrete wavelet transform

Given any integer m, using equations (22.16), we can rewrite equations (22.17)and (22.18) can be
rewritten as

� 0;m (x) = � (x � m) =
1X

k= �1

hk

p
2�

�
2(x � m) � k

�
=

1X

k= �1

hk � � 1;2m + k (x) for a.e. x;

 0;m (x) =  (x � m) =
1X

k= �1

gk

p
2�

�
2(x � m) � k

�
=

1X

k= �1

gk � � 1;2m + k (x) for a.e. x:

Using equations (22.16) again, these equations imply that for any integers m and n we have

� n +1 ;m =
1X

k= �1

hk � n; 2m + k ;

 n +1 ;m =
1X

k= �1

gk � n; 2m + k ;

(22.19)

where the equation of functions is meant a.e.
We want to express the functions on the right-hand side in terms of the functions on the left-hand

side. Orthonormality makes this easy. Indeed, we have

h� n +1 ;m ; � n;l i =

*
1X

k= �1

hk � n; 2m + k ; � n;l

+

=
1X

k= �1

h�
k h� n; 2m + k ; � n;l i

=
1X

k= �1

h�
k � 2m + k;l =

1X

k= �1

h�
k � k;l � 2m = h�

l � 2m :

The asterisk here indicates complex conjugation. Similarly,

h n +1 ;m ; � n;l i = g�
l � 2m :

Usually, both functions � and  are real, in which case the coe�cients hk and gk are real, and
the complex conjugation can be omitted.22.21 Since the functions � n +1 ;m and � n +1 ;m form an
orthonormal basis of the spaceVn +1 � Wn +1 = Vn , according to equations (17.4) and (17.5) this
means that

(22.20) � n;l =
1X

m = �1

h�
l � 2m � n +1 ;m +

1X

m = �1

g�
l � 2m  n +1 ;m :

Given f 2 Vn , we can write f as

f =
1X

l = �1

cn;l � n;l =
1X

m = �1

� 1X

l = �1

cn;l h�
l � 2m

�
� n +1 ;m +

1X

m = �1

� 1X

l = �1

cn;l g�
l � 2m

�
 n +1 ;m ;

22.21 If A = ( akl ) is an m � n matrix with complex entries, then its Hermitian conjugate (also called conjugate
transpose) is the matrix A � is the n � m matrix with a�

kl being the entry in the l th row and kth column . That is,
after taking the transpose of A , we take the complex conjugate of each entry. A square matrix U is a unitary matrix
if U � U = I , where I is the identity matrix of the appropriate size. That is, U � 1 = U � . The coe�cient matrix in the
system (22.19) of equations can easily seen to be an orthonormal matrix.

A matrix is unitary if and only if its columns (or its rows) form a n orthonormal system of vectors. The real unitary
matrix is an orthogonal matrix. Orthogonal matrices were de�ned i n Subsection 8.2.
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where the second equation was obtained by using (22.20). Asf 2 Vn = Vn +1 � Wn +1 , we can also
write

f =
1X

m = �1

cn +1 ;m � n +1 ;m +
1X

m = �1

dn +1 ;m  n +1 ;m :

Since this representation is unique, comparing the last twodisplayed equation, we obtain

cn +1 ;m =
1X

l = �1

cn;l h�
l � 2m ;(22.21)

dn +1 ;m =
1X

l = �1

cn;l g�
l � 2m :(22.22)

Let

f 0(x) =
1X

k= �1

c0;k � 0;k (x):

As in Subsection 22.6, start with a �nite sequence of the coe�cients c0;k ; these are perhaps the
sampled value of a continuous time series (the coe�cients outside the sampled range can taken to
be zero). Using (22.21) and (22.22) we can calculate the coe�cients for n > 0. Assuming only a
�nite number of the coe�cients hk and gk are nonzero, at for eachn the number of coe�cients gets
approximately halved. Hence we will �nd an N 2 Z such that all coe�cients cn;k and dn;k will be
zero for n > N . The coe�cients dm;k for m > 0 and z 2 Z will be the coe�cients of the wavelet
expansion off 0:

f 0 =
1X

m =1

1X

k= �1

dm;k  m;k :

In the language of electric engineering, equation (22.21) represents a low-pass �lter, i.e., �ltering out
(discarding) high frequencies, that is, the �ner features of the signal (those represented by elements
of the spaceWn +1 ), and equation (22.22) represents a high-pass �lter, i.e.,�ltering out (discarding)
low frequencies, that is, the cruder features of the signal (those represented by elements of the space
Vn +1 ).

The Haar wavelets �t into this pattern as follows. Comparing equations (22.5), (22.6), and
(22.19), we can see that

h� 1 = h0 =
1

p
2

; g� 1 =
1

p
2

; g0 = �
1

p
2

;

and hk = gk = 0 for k 2 Z with k 6= � 1; 0. It is easy to check, that with this choice for hk and gk ,
equations (22.21) and (22.22) will become identical to equations (22.12).

22.9 Non-orthogonal wavelets

Often, the condition of orthogonality of wavelets is is abandoned, but usually equations similar to
(22.21) (22.22) are still obtained to perform e�cient calcu lation. Usually, non-orthogonal wavelets
are also linearly dependent. One of the advantages of this isredundant representation of the coe�-
cients c0;k for error correction. For calculations, there is little need to get involved with theoretical
issues, and it is enough to know the high-pass and low-pass �lters used in calculations,22.22 but one
may need a somewhat closer understanding in order to see how these wavelets can be used.

22.22 Some wavelet schemes may involve several high-pass and low-pass �lters.
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22.10 Applications of wavelets in �nance

Frequency analysis has long been established in engineering and the sciences, but it has major limi-
tations in that it imposes major restrictions on the dynamics on the time series such as stationarity,
and information in the time domain is lost. While stationary time series are common in engineering,
they are rare in �nance.

Wavelets overcome these limitations, and they are capable of capturing information both in
the frequency domain and the time domain. The early development of wavelets took place in
image analysis. In the last two decades, their applicationsbecame wide-spread in the sciences,
but they were slow to emerge in �nance. This situation is now changing; the paper [22] gives a
simple introductions to wavelets, and discusses their applications in �nance. The paper argues
that the advantages of wavelet methods are that they combinetime-domain and frequency-domain
information, and, further, that they are very 
exible, and d o not make strong assumptions about
the data generating the time series under consideration. The paper [7] gives a tutorial of the
wavelet transform. The doctoral dissertation [28] uses wavelets for �nancial time series to discuss
the interaction between major equity markets, and discusses wavelet networks, a special class of
neural networks, in �nancial forecasting. The master's thesis [32] analyzes various �nancial model
experiments, and demonstrates that wavelet neural networks combined with statistical methods is
feasible for achieving accurate forecasting. The paper [31] uses wavelets to analyze the e�ects of
high-frequency trading on the stock market.

23 State-space models

23.1 A simple state-space model

Given a �eld F (in these notes mainly the �eld R of real numbers orC of complex numbers), write
Fm;n for the set (or algebra)23.1 over F of m � n matrices. A state-space model involves two vector
time series: f St g, the state of the system, andf Yt g, the observed time series; here for given positive
integers m and n we haveSt 2 Rn; 1 and Yt 2 Rm; 1 are column vectors.23.2 St is not assumed to be
known. The updating equations are

St = ASt � 1 + et ;(23.1)

Yt = HSt + � t :(23.2)

Here et 2 R n; 1 is the column vector of errors in the update equation (23.1),� t 2 Rm; 1 is the vector
of error in the observation equation (23.2). Further, A 2 R n;n , and H 2 R m;n are matrices.

Sometimes one also assumes that theet are identically distributed; similarly, one may assume
that the errors of � t are identically distributed. Further, one often also assumes that any collection
of the vectors et and � t for various values oft is independent. [17]

23.2 Representation of simple state-space models as ARMA mo dels

Let m, n, M , and N be positive integers, Let f Yt g be vector time series,Yt 2 Rm; 1, let E t 2 Rn; 1

be identically distributed error vectors such that any collection of them for di�erent values of t is

23.1 An algebra over a �eld F is a vector space over F also has a product operation with certain properties. In a
matrix algebra, the product operation is matrix multiplication .
23.2 What we did is somewhat of an abuse of notation. Namely, the entries o f the vector St are random variables and
not numbers; so saying that St 2 R n; 1 is technically incorrect. Similarly for Yt .
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independent. Let Ak 2 Rm;m (1 � k � M ) and B l 2 Rm;n (0 � l � N ) be matrices. Assume

(23.3) Yt =
MX

k=1

Ak Yt � k +
NX

l =0

B l E t � l

for all t. This equation is called a vector ARMA(M; N ) model of the time seriesf Yt g. If the matrices
Ak are scalar multiples of the identity matrix, we call the model a vector ARMA( M; N ) model with
scalar AR coe�cients. We have

Theorem 23.1. The vector Yt in equations (23.1) and (23.2) satis�es an ARMA(N,N) model wi th
scalar AR coe�cients for some N � m, where m is the dimension of the state vectorSt .

If the errors et in (23.1) are identically distributed, and also so are the errors � t in (23.2), then
the errors in the obtained ARMA model are also identically distributed. Similarly, if the error vectors
(� �

t ; e�
t ) � are independent,23.3 then so are the errors in the obtained ARMA model.

Proof. By repeated applications of equation (23.1), we can see thatfor any integer k � 0 we have

(23.4) St + k = Ak St +
k � 1X

j =0

A j et + k � j :

This is easy to verify by induction. Indeed, for k = 0 this says that St = St . Assuming the equation
is true with a certain value of k, by equation (23.1) we have

St + k+1 = ASt + k + et + k+1 = A
�

Ak St +
k � 1X

j =0

A j et + k � j

�
+ et + k+1

= Ak+1 St +
kX

j =0

A j et + k+1 � j ;

establishing equation (23.4). Let P(x) =
P N

k=0 � k xk (� N = 1) be the minimal polynomial of the
matrix A.23.4 Multiplying equation (23.4) by � k and adding the resulting equations for 0� k � N ,
we obtain

NX

k=0

� k St + k =
NX

k=0

� k Ak St +
NX

k=0

� k

k � 1X

j =0

A j et + k � j

= P(A)St +
NX

k=0

� k

kX

l =1

Ak � l et + l ;

in the last equation we replaced the summation variablej with l = k � j .23.5 Noting that P(A) = 0,

23.3 The repeated application of the Hermitian transpose cancel out, since for any number or matrix x we have
(x � ) � = x. We wrote out the right-hand side to illustrate this. The purpose of this notation is to avoid the use of
writing column vectors, which take up more space to print.
23.4 A monic polynomial is a polynomial with leading coe�cient 1. The minimal p olynomial P (x) of an n � n matrix
A is the the monic polynomial of the smallest degree such that P (A) = 0. It is known that the degree of the minimal
polynomial of A is � n. This is because we have Q(A) = 0 for the characteristic polynomial Q(x) of A by the
Cayley{Hamilton theorem. See [24, Subsections 3.1 and 8.8, and especial ly Theorem 6.1 on p. 14 in Section 6].
23.5 Even though A k for negative k occurs in the above equations, and A � 1 may not be de�ned, this is harmless, since
the coe�cient of A k for negative k is 0.
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and interchanging the order of summation on the right, we obtain

NX

k=0

� k St + k =
NX

l =1

NX

k= l

� k Ak � l et + l :

Multiplying this equation by the matrix H on the left and using equation (23.2) with t + k replacing
t, we obtain that

NX

k=0

� k (Yt + k � � t + k ) =
NX

l =1

NX

k= l

� k HA k � l et + l ;

Since� N = 1, this equation can be written as

Yt + N = �
N � 1X

k=0

� k Yt + k +
NX

l =0

� t + l +
NX

l =1

NX

k= l

�
� k HA k � l � et + l

= �
N � 1X

k=0

� k Yt + k +
NX

j =0

� t + N � j +
N � 1X

j =0

NX

k= N � j

�
� k HA k+ j � N �

et + N � j ;

where, to obtain the last equation, we put j = N � l in the summation. To make this equation �t
the form described in equation (23.3), take

E t = ( � �
t ; e�

t ) � =
�

� t

et

�
;

where we used Hermitian transpose in the middle member to save space. The matrix on the right is
an m + n dimensional column vectors (since� t is m-dimensional andet is n-dimensional). Further,

B j =
�

I m ;
NX

k= N � j

� k HA k+ j � N
�

for 0 � j � N � 1;

BN = ( I m ; 0m;n ) for j = N;

where I m is the m � m identity matrix and 0 m;n is the m � n zero matrix; sinceH is m � n and A
is n � n matrix this makes B j an n � (m + n) matrix. As for the comment about the independence
and identical distribution of the errors, this is clear from the equations for the error E t . The proof
is complete.

23.3 Representation of an ARMA model as a state-space model

Conversely, an ARMA(M; N ) model can also be represented as a state-space model described by
equations (23.1) and (23.2). We will only consider a scalar ARMA model of form

Yt =
MX

k=1

� k Yt � k +
NX

l =0

� l vt � l ;

where f Yt g is a scalar time series, and the errorsvt are scalar. To represent this as a state-space
model, we take the space as the vector

St = ( Y �
t ; Y �

t � 1; : : : ; Y �
t � M +1 ) � ;
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where the repeated application of the Hermitian transpose cancels out { see footnote 23.3 on p. 92.
Take A = ( aij ) be an M � M matrix with a1j = � k for 1 � j � M , aij = � i � 1;j for 2 � i � M and
1 � j � M , and et = 0 M; 1. Further, let H be the N -dimensional row vector

H = (1 ; 0; 0; : : : ; 0);

and let � t be the scalar

� t =
NX

l =0

� l vt � l :

With these choices, equations (23.1) and (23.2) are satis�ed. As it is seen from these equations, the
independence of the errors� t is not assured in this model.

23.4 Question whether the ARMA model of scalar time series wi th scalar
errors is appropriate

It seems that in a scalar ARMA model the presence of past errors is an artifact. It is reasonable to
assume that the past behavior of a system producing a time series is communicated via the current
state of a system. That is, the correct model of a time series would apparently be a state-space model,
and the ARMA behavior is only a mathematical consequence of the state-space model. However, as
we saw in Theorem 23.1, the errors in this ARMA model have matrix coe�cients, and an ARMA
model with scalar error coe�cients could produce only a relatively poor approximation of the actual
errors. For this reason, the description showing how past errors in the ARMA model seems more of
a mathematical artifact than some philosophical re
ection on the behavior a system.

The translation of an ARMA model into a state-space model is only a mathematical trick in that
we describe the state space as a vector of past outputs, and isnot based on a deeper understanding
of the system producing the signals. The fact that independent errors in the time series are not
re
ected in the independence of the state errors at di�erent times of the state-space model points
even more to the arti�cialness of this model.

24 The Kalman �lter

24.1 What is the Kalman �lter trying to do?

Imagine you are steering on ship through a narrow and dangerous straight. You can control the
steering and the engine power. However, the ship is slow to respond to any input. Furthermore, the
ship's response has a random element because of currents andwind. You have precise maps indicating
the route the ship is required to follow. You can monitor the ship's position and orientation (perhaps
by GPS and compass, or by features on land visible from the ship). The position of the ship, her
orientation, the position of the steering wheel, the enginecontrols, and the actual engine power is
monitored as the sampled values vector time series. It is also known how the ship is supposed to
respond to steering and engine controls. The problem to be solved is how to change the steering
and engine controls to keep the ship safe. The ship's response to these controls involves various
delays and random elements, so the exact state of the engine is not known; all information about
it comes from various sensors. A mathematical method to handle this situation was invented by
Rudolf E. Kalman. The mathematical model encompassing his method will be described next.
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24.2 A state-space model with control input

A time series model of the described situation can in generalbe described as follows; we will assume
in the rest of this section that all matrices are real. We are trying to estimate the state vector
X k 2 Rn � 1 (i.e., an n-dimensional column vector of reals) of a process at timek with measurements
Zk 2 Rm � 1, wherem and n are positive integers. HereZk is known but X k is not. These quantities
are governed by the following equations

X k = Fk X k � 1 + Bk uk + ek ;(24.1)

Zk = H k X k + � k :(24.2)

Here uk 2 Rp;1 is the control input at time k, wherep is an integer,Fk 2 Rn;n is the state transition
matrix applied to the previous state, Bk 2 Rn;p is the control-input model that is applied to the
control input uk , H k 2 Rm;n is the observation model,ek 2 Rn; 1 is the control error, and � k 2 Rm; 1

is the measurement error, all at time k. The errors ek and � k are assumed to follow multivariate
normal distribution 0 mean with covariance matrices Qk 2 Rn;n and Rk 2 Rp;p .24.1 We will assume
that the errors ek and � k are independent of each other and of anyX l , Z l el , and � l for l < k . We
further assume that � k is independent ofX k . It is not necessary to know the covariance matrices
Qk and Rk ; they can be estimated from prior observations (called the tuning of the process). In
equations (24.1) and (24.2), the matricesFk , Bk , and H k are assumed to be known.24.2

24.3 The Kalman �lter: prediction

The Kalman �lter works in two steps: a prediction step, and an update step. X̂ k jk � 1 denotes the
predicted estimate of X k before the measurementZk is taken into account, and X̂ k jk denotes the
corrected estimate after the measurementZk is known. We will assume that these estimates are
unbiased, that is, their mean isE(X k ).24.3 Note that X k is not observable. We put

(24.3) X̂ k jk � 1 = Fk X̂ k � 1jk � 1 + Bk uk :

We have

(24.4) X k � X̂ k jk � 1 = Fk (X k � 1 � X̂ k � 1jk � 1) + ek

according to (24.1). SinceE(ek ) = 0, it follows that if X k � 1jk � 1 is an unbiased estimator ofX k � 1,
then X k jk � 1 is an unbiased estimator ofX k . We will consider the covariance matricesP of the errors
of these estimators. That is,

Pk jk = Cov( X k � X̂ k jk ) = E
�
(X k � X̂ k jk )(X k � X̂ k jk )T �

;(24.5)

Pk jk � 1 = Cov( X k � X̂ k jk � 1) = E
�
(X k � X̂ k jk � 1)(X k � X̂ k jk � 1)T �

;(24.6)

24.1 In symbols, one can write that ek � N (0n; 1 ; Qk ) and � k � N (0p; 1 ; Rk ), where, given positive integers l and m,
0l;m 2 Rl;m denotes an l � m matrix with all zero entries. We will also write Qk = Cov( ek ) and Rk = Cov( � k ). This
notation for the covariance matrix was introduced in Subsection 2.3 .
24.2 The model we are describing is a linear model. The extended Kalman �lter i s a nonlinear model, in which these
matrices are Jacobian matrices of the variables at places of the varia bles X and Z known or estimated at time k. See
[34, p. 8].
24.3 This will be asymptotically true if the �lter converges. When the �lter is started, the value of X 0j 0 will be a
guess.
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The second equation on each line assumes that these estimators are unbiased. Using equations (24.4)
and (2.5), and noting that E(ek ) = 0 and Cov( ek ) = Qk , we obtain

(24.7)

Pk jk � 1 = E
� �

Fk (X k � 1 � X̂ k � 1jk � 1) + ek
��

(X k � 1 � X̂ k � 1jk � 1)T F T
k + eT

k

� �

= Fk E
�
(X k � 1 � X̂ k � 1jk � 1)(X k � 1 � X̂ k � 1jk � 1)T �

F T
k + E( ek eT

k )

= Fk Pk � 1jk � 1F T
k + Qk ;

the second equation here holds because the error vectorek is independent of earlier variables. The
third equation uses (24.5) and the equationQk = Cov( ek ).

The measurement residual is given by

(24.8) ~Yk
def
= Zk � H k X̂ k jk � 1:

According to equation (24.2), we would have ~Yk = 0 if X̂ k jk � 1 were accurate. That is, ~Yk is a
measure of the accuracy of the prediction. Note that

E( ~Yk ) = E( Zk ) � H k E(X̂ k jk � 1) = H k E(X k ) � H k E(X̂ k jk � 1) = 0 ;

where the second equation holds in view of (24.2); for the third equation, see (24.4). Hence, using
equation (24.2) once more, for the covariance matrix of~Yk we have

(24.9)

Sk
def
= Cov( ~Yk ) = E( ~Yk ~Y T

k ) = E
� �

H k (X k � X̂ k jk � 1) + � k
��

(X k � X̂ k jk � 1)T H T
k + � T

k

� �

= H k E
�
(X k � X̂ k jk � 1)(( X k � X̂ k jk � 1)T �

H T
k + E( � k � T

k )

= H k Pk jk � 1H T
k + Rk ;

the second equation here holds because� k is independent ofX k and X̂ k jk � 1, and the third equation
holds in view of (24.6) and sinceRk = Cov( � k ).

Before continuing, some re
ection can be helpful. While the qu antities X k , Zk , and ~Yk , and the estimators
X̂ k j k � 1 , X k , and X̂ k j k are random variables, these quantities are functions of the sample space. On the other
hand, the matrices Pk j k , Pk j k � 1 , Sk , and others are not. They are not functions on the sample space,
they are functions only of the expectations of various expressions of the random variables involved. On the
other hand, in an implementation of the Kalman �lter, these exp ectations may be approximated by random
variables.

24.4 The Kalman �lter: the correction

The residual ~Yk carries the information about the accuracy of the estimateX̂ k jk � 1. We de�ne the
corrected estimate

(24.10) X̂ k jk = X̂ k jk � 1 + K k ~Yk ;

where the matrix K k is so chosen that the mean square error

(24.11) E(kX k � X̂ k jk k2)

is the least possible. Noting that

E(X k � X̂ k jk ) = E( X k � X̂ k jk � 1) � K k E( ~Yk ) = 0 ;
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we have

(24.12) Pk jk
def
= Cov( X k � X̂ k jk ) = E

�
(X k � X̂ k jk )(X k � X̂ k jk )T �

;

this equation is in fact a restatement of equation (24.5), �rst stated in anticipation of the de�nition
of X̂ k jk . The trace24.4 of this matrix is E( kX k � X̂ k k2). That is K k is to be determined so as to
minimize the trace of Pk jk . Using equations (24.10), (24.9), and (24.6), we have

(24.13)

Pk jk = E
� �

(X k � X̂ k jk � 1) � K k ~Yk
��

(X k � X̂ k jk � 1)T � ~Y T
k K T

k

� �

= E
�
X k � X̂ k jk � 1))( X k � X̂ k jk � 1)T �

+ K k E( ~Yk ~Y T
k )K T

k

� E
�
(X k � X̂ k jk � 1) ~Y T

k

�
K T

k � K k E
� ~Yk (X k � X̂ k jk � 1)T �

= Pk jk � 1 + K k Sk K T
k � E

�
(X k � X̂ k jk � 1) ~Y T

k

�
K T

k � K k E
� ~Yk (X k � X̂ k jk � 1)T �

:

We need to simplify the last two terms. We �rst deal with the la st term. Using equations (24.8)
and (24.2), we obtain

E
� ~Yk (X k � X̂ k jk � 1)T �

= E
�
(Zk � H k X̂ k jk � 1)(X k � X̂ k jk � 1)T �

= E
�
(H k X k + � k � H k X̂ k jk � 1)(X k � X̂ k jk � 1)T �

= H k E
�
(X k � X̂ k jk � 1)(X k � X̂ k jk � 1)T �

= H k Pk jk � 1 ;

here, the penultimate24.5 equation follows since� k is independent ofX k and X̂ k jk � 1, and the last
equation holds in view of (24.6). Observing that the second term on the right of (24.13) is just the
transpose of the third term, using this (24.13) becomes

(24.14) Pk jk = Pk jk � 1 + K k Sk K T
k � Pk jk � 1H T

k K T
k � K k H k Pk jk � 1 ;

for the last term note that Pk jk � 1, being a covariance matrix, is symmetric, soPT
k jk � 1 = Pk jk � 1.

24.5 Optimization of the Kalman gain

In equation (24.14) all the matrices are known at this point except for the matrix K k . To determine
the optimal gain, we need to choose the matrix such that the trace ofPk jk is the smallest possible.
This problem is always solvable, since the trace of this matrix is a positive semi-de�nite quadratic
form, with the entries of K k being the variables. Indeed, this trace is the expression given in (24.11).
This problem can be solved as a simple problem of optimization in multivariate calculus; however,
to avoid technical complications, we need the right mathematical symbolism. There are several
mathematical approaches that could be used: we could write out the trace in question with sums of
products involving scalar variables and then take partial derivatives; to simplify the calculations, we
could use matrix di�erential calculus (see [38]), or we could use tensor calculus. We wish to avoid
these complications, since the same goal can be accomplished making an informal use of in�nitesimal
matrices.

The term in�nitesimal was introduced by Leibniz, and they formed the basis of Leibn iz's development of
calculus. They denote numbers very close to zero; sometimesin a contradictory way a positive in�nitesimal
is described as a positive number that is smaller than every \ usual" positive real numbers. There are various

24.4 The trace of a square matrix is the sum of its diagonal elements.
24.5 The one before the last.
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orders of in�nitesimals: if x and y are both in�nitesimal and x=y is also an in�nitesimal, then x is said to be
an in�nitesimal of higher order than y. Leibniz's idea was very fruitful, and they led to a fast deve lopment
of calculus. In the 19th century, in�nitesimals were exiled f rom mathematics, and replaced by \precise"
mathematical tools.

We put \precise" in quotes, since there are di�erent levels of precision acknowledged by mathematical
logic. In fact, Kurt G•odel in the 20th century showed the limit ations of formal approaches to mathemat-
ics; meanwhile, G•odel's ideas via Alan Turing and John von Neum ann led the way to modern computer
architecture (see [26]) The ideas of Skolem and G•odel led to models satisfying the axioms of arithmetic that
di�erent from the usual (standard) set of integers. Conside rations of such models inspired Abraham Robin-
son to invent nonstandard analysis, and which put in�nitesim als on a rigorous mathematical foundation; his
book [29] is still the best source the learn the subject from. He and Allen R. Bernstein did nonstandard
analysis to good use, and in 1966 solved a problem involving invariant subspaces of Hilbert spaces. Per-
haps to the misfortune of nonstandard analysis,24.6 but very much to the fortune of mathematics, in 1973,
V. I. Lomonosov of the Soviet Union, who later emigrated to the USA, gave a striking generalization of the
Bernstein{Robinson result { see [37]. The Wikipedia article [ 40] is a good overview of the subject. If you
happen to look also at the article Criticism of non-standard analysis also on Wikipedia [39], the criticism
is somewhat misguided. Its main role is not to establish a phi losophical basis for in�nitesimals; it is a
mathematical tool to simplify a number of argument, somewha t similar in the way general topology is such
a tool.

In �nding the optimal choice of K k in equation (24.14), we replaceK k with K k + hM , where
h is an in�nitesimal scalar, and M is an arbitrary matrix, and we write the resulting matrix on
the left-hand side asPk jk + � Pk jk ; that is, � Pk jk represents the change in the matrixPk jk by this
replacement:

Pk jk + � Pk jk

= Pk jk � 1 + ( K k + hM )Sk (K T
k + hM T ) � Pk jk � 1H T

k (K T
k + hM T ) � (hM + K k )H k Pk jk � 1

= Pk jk � 1 + K k Sk K T
k � Pk jk � 1H T

k K T
k � K k H k Pk jk � 1

+ h(MSk K T
k + K k Sk M T � Pk jk � 1H T

k M T � MH k Pk jk � 1) + h2MSk M T

= Pk jk + h(MSk K T
k + K k Sk M T � Pk jk � 1H T

k M T � MH k Pk jk � 1) + h2MSk M T ;

where the last equation holds in view of (24.14). That is,

� Pk jk = h(MSk K T
k + K k Sk M T � Pk jk � 1H T

k M T � MH k Pk jk � 1) + h2MSk M T :

Denoting by �P k jk what remains of � Pk jk after omitting the higher order in�nitesimals, i.e., term
multiplied by h2, we have�P k jk = hD ,24.7 where

D = MSk K T
k + K k Sk M T � Pk jk � 1H T

k M T � MH k Pk jk � 1 :

We are only interested in the trace of this matrix, since we want to minimize the trace of Pk jk .
Denote by Tr(A) of a matrix A, and note that Tr( A) = Tr( AT ), since taking transpose does not
change the diagonal elements of a matrix. Observing that in the expression on the right-hand side
of the equation for D the second term is the transpose of the �rst, and the third is the transpose of
the fourth, we can write that

Tr( D ) = 2 Tr( MSk K T
k � MH k Pk jk � 1) = 2 Tr

�
M (Sk K T

k � H k Pk jk � 1)
�
:

24.6 Not really. Nonstandard analysis is well and alive.
24.7 At the price of some minor additional circumlocution, the matrix D could be described as the directional derivative
of Pk j k with respect to K k in the direction of M .
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We want to make Tr( D) = 0, for all M . To this end it is su�cient to to make sure that

Sk K T
k � H k Pk jk � 1 = 0 :

In fact, this condition is also necessary, but we will not make use of this.24.8 Taking transpose, this
means that

(24.15) K k Sk � Pk jk � 1H T
k = 0 ;

note that Pk jk � 1 = PT
k jk � 1 and Sk = ST

k , since they are covariance matrices (cf. (24.6) and (24.9)),
and covariance matrices are symmetric. So, ifSk is invertible, we take

(24.16) K k = Pk jk � 1H T
k S� 1

k :

If Sk is singular, then equation (24.15) has multiple solutions for K k , and there are e�cient numerical
algorithms to produce such a solution, given that the matrix Sk is positive semide�nite.

24.6 Summary of the Kalman �lter steps

We summarize here how these equations are used to operate theKalman Filter. We start with initial
valuesX̂ 0j0 and P0j0. At the k step, we do the updating in two stages. The prediction stage performs
those calculations that can be performed before the measurement Zk comes in. The calculations in
the correction stage rely on the measurementZk .

The equations for the prediction stage rely on equations (24.3), (24.7), (24.9), (24.16), and (24.14)
in turn. They are

X̂ k jk � 1 = Fk X̂ k � 1jk � 1 + Bk uk ;

Pk jk � 1 = Fk Pk � 1jk � 1F T
k + Qk ;

Sk = H k Pk jk � 1H T
k + Rk ;

K k = Pk jk � 1H T
k S� 1

k ;

Pk jk = Pk jk � 1 + K k Sk K T
k � Pk jk � 1H T

k K T
k � K k H k Pk jk � 1:

The equations for the correction stage rely on equations (24.8) and (24.10), respectively. They are

~Yk = Zk � H k X̂ k jk � 1;

X̂ k jk = X̂ k jk � 1 + K k ~Yk :

The matrices Fk , Bk , Qk , and Rk in these equations are assumed to be known in advance, and are
not part of the update process.

24.8 The necessity of this condition can be seen as follows. If for a matrix M , the matrix MA has a nonzero element,
then pick one of the nonzero elements of MA , and change all elements of M to zero except those that are in the same
row as the element picked. This will make MA have a nonzero element only in the row with the element picked.
Then, for a permutation matrix P , i.e., a matrix that has exactly one 1 in each row and each column, and all other
entries are 0, the rows of P MA are a permutation of the rows of MA . By taking an appropriate permutation matrix,
a nonzero element of MA can be moved to the main diagonal. This matrix will have exactly on e nonzero element in
its main diagonal, so its trace will be nonzero.

Hence, if the trace of MA is zero for every matrix (of the appropriate size), then MA has to be the zero matrix. In
particular, IA has to be the zero matrix, where I is the identity matrix, and so we have to have A = 0.
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In a practical installation of the �lter, Qk and Rk can be estimated by the �lter itself. Starting
with initial estimates Q0 and R0 that may be little more than a guess, one estimatesek from
equation (24.1), replacingX k � 1 and X k with X̂ k � 1jk � 1 and X̂ k jk . There is no better choice, since
the values of X k � 1 and X k cannot be known. Similarly, � k is estimated from equation (24.2),
replacing X k with X k;k . The estimates for the covariance matrix Qk and Rk are then updated,
using the estimates for these error sequences. This processis called the tuning (the parameters of)
the Kalman �lter. This tuning of the Kalman �lter may itself i nvolve sophisticated algorithms.

25 The extended Kalman �lter

25.1 Fr�echet derivative

De�nition 25.1. Let V be a normed vector space overR. A subset B of V is called anopen ball
if B = f x 2 V : kx � ck < � g for somec 2 V and for some� > 0; c is called the center ofB and � ,
its radius. A set S � V is called open if for everyx 2 S there is an open ballB with center x such
that B � S.

De�nition 25.2. Let V and W be vector spaces overR, and � : V ! W be a mapping. � is called
a linear operator (or a linear transformation ) if �( �x + y) = � �( x) + �( y) for every x; y 2 V and
every � 2 R.

For a linear operator � and a vector x, one often writes � x instead of �( x).

De�nition 25.3. Let V and W be vector spaces overR, and and let � : V ! W be a linear
operator. � is called boundedif there is an � 2 R such that k� xkW � � kxkV for all x 2 V , where
k � kV and k � kW indicate the norms of the respective spaces. The least such� is called the norm of
�, or, more precisely, its norm induced by the vector norms in V and W .

It is easy to see that if an � is bounded then there exists a least such � , and, in fact,

k� k = supfk � xkW : x 2 V and kxkV = 1g:

Next, we will describe what is meant by the limit of a function.

De�nition 25.4. Let V and W be normed vector spaces overR, let S be a subset ofV , let
f : S ! W be a function. let x 2 V , let y run over elements ofV , and let w 2 W . We say that

lim
y! x; y 2 S

f (y) = w

if for every � > 0 there is a � > 0 such that we havekf (y) � wkW < � whenever 0< ky � xkV < �
and y 2 S; here k � kV and k � kW indicate the norms of the respective spaces.

In the de�nition, saying that 0 < ky � xk is just another way of saying that y 6= x, but it is more
concise to the inequality 0< ky � xkV < � instead of saying that ky � xkV < � and y 6= x. In case
S is an open set andx 2 S, we usually write limy! x f (y) instead of limy! x; y 2 S f (y), since in this
caseky � xkV < � implies y 2 S for small enough � . The above is the Cauchy de�nition of limit.
which is well known to be equivalent to the Heine de�nition, according to which

lim
y! x; y 2 S

f (y) = w
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if for any sequencef yn g of elements ofS such that

lim
n !1

kyn � xk = 0

we have
lim

n !1
kf (yn ) � wk = 0 :

De�nition 25.5. Let V and W be normed vector spaces overR, let S be a subset ofV , let f : S ! W
be a function. let x 2 S. We say that f is continuous at x in S if lim y! x; y 2 S f (y) = f (x). If there
is an open ballB � S with center x, then we simply say that f is continuous at x.

De�nition 25.6. Let V and W be normed vector spaces overR, let S � V be open, letf : S ! W
be a function. let x 2 S, and let � : V ! W be a bounded linear operator. � is called the Fr�echet
derivative of f at x 2 V if, with y running over elements ofV , we have

lim
y! x

kf (y) � f (x) � �( y � x)kW

ky � xkV
= 0 :

25.2 The Jacobian matrix

Let V be an n-dimensional real euclidean space. That is,V = Rn; 1 is the space ofn � 1 column
vectors with real entries, and for x = ( � 1; � 2; : : : ; � n )T 2 V , the norm of V is de�ned as

kxkV =
p

xT x =
� nX

k=1

� 2
k

� 1=2
:

If y = ( � 1; � 2; : : : � n )T is another element ofV , then the euclidean inner product is de�ned as

hx; yi V = xT y =
nX

k=1

� k � k :

Since thek�kV is the norm induced by the inner product h�; �i V , it follows that k�kV is indeed a norm;
in particular, it satis�es Minkowski's inequality; see Cla use (c) in De�nition 17.2 and Problem 17.2.

Given an m-dimensional real euclidean spaceW , a function f : V ! W can be described bym
functions of n variables: if f (x) = w for x = ( � 1; � 2; : : : ; � n )T 2 V , and w = ( ! 1; ! 2; : : : ; ! m )T 2 W ,
writing ! l = f l (� 1; � 2; : : : ; � n ) for l with 1 � l � m, these functions describe the functionf . In a
shortened notation, we may write that ! l = f l (x).

The matrix described in the next de�nition is called the Jacobian matrix, named after the German
mathematician Carl Gustav Jacob Jacobi.

De�nition 25.7. If V , W , f , f l , x, and w are as described, them � n matrix

(25.1)
@w
@x

=
@f(x)

@x
=

@(! 1; ! 2; : : : ; ! m )
@(� 1; � 2; : : : ; � n )

def
=

�
@fl (� 1; � 2; : : : ; � n )

@�k

�

1� l � m; 1� k � n

is called the Jacobian matrix of f at x = ( � 1; � 2; : : : ; � n )T , assuming that the partial derivatives
exist.

101



There is a problem with the notation used for partial derivat ives in describing the Jacobian in
equation (25.1). To introduce a better notation, we will wri te @k for the the partial derivative with
respect to the kth variable. With this notation, we will write

@fl (x)
@�k

= @k f l (x) (1 � l � m)

The problem with the notation used on the left-hand side is that it is associated with the point
x = ( � 1; � 2; : : : ; � n )T 2 V . For the point t = ( � 1; � 2; : : : ; � n )T 2 V , we would have to write @k f l (t) =
@fl (t)=@�k : Along the same line, for the Jacobian we can write@f. That is

@f(x)
def
=

@f(x)
@x

:

Lemma 25.1. Let V , W , f , f l , x, and w be as described. Assume that the partial derivatives
@fl (x)=@�k are continuous at x. Then the JacobianJ = @f(x)=@x, interpreted as the linear operator
J : V ! W with J (x) = Jx (the right-hand side indicating matrix multiplication) is the Fr�echet
derivative of f at x.

Proof. For the partial derivatives of f to be continuous at x there must be an open ball with centerx
in which these partial derivatives exist; let B be such an open ball, and lety = ( � 1; � 2; : : : ; � n )T 2 B
be di�erent from x. Let � k = � k � � k for k with 1 � k � n, and let hk 2 V be the vector all whose
components are 0 except that itskth component is � k . Let xk = x +

P k
j =1 hj for k with 0 � k � n.

Then we havex = x0 and y = xn . Furthermore, for any k and l with 1 � k � n and 1 � l � m, we
have

(25.2) f l (xk ) � f l (xk � 1) = � k @k f l (xk � 1 + � kl hk )

for some � k with 0 < � kl < 1 by the Mean-Value Theorem of Di�erentiation, as we will explain.
First note that, given that y 2 B , we havexk � 1; xk 2 B , and sof l (xk � 1 + �h k ) as a function of � is
di�erentiable in the interval [0 ; 1]; indeed,

df l (xk � 1 + �h k )
d�

= � k @k f l (xk � 1 + �h k ):

so we can use the Mean-Value Theorem.25.1 Noting that @k f l is continuous at x, equation (25.2),
can be written as

f l (xk ) � f l (xk � 1) = � k

�
@k f l (x) + � kl (y)

�
;

with some � kl (y) such that

(25.3) lim
y! x

� kl (y) = 0 ;

where the dependence of� kl (y) on x is not indicated, sincex is �xed throughout this argument; note
that on the left-hand side of equation (25.2),xk � 1 and xk are determined by y (and x). Hence, we

25.1 The Mean-Value Theorem says that if � is continuous in the interval [ a; b] where a < b and is di�erentiable in
(a; b), then there is a � 2 (a; b) such that

� (b) � � (a) = � 0(� )( b � a):

The Mean-Value Theorem is used in case hk 6= 0; the equation is obviously true also in case hk = 0 (note that hk = 0
is allowed, even though hk = 0 cannot be true for every k, since y 6= x).
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have

f l (y) � f l (x) =
nX

k=1

�
f l (xk ) � f l (xk � 1)

�
=

nX

k=1

� k
�
@k f l (x) + � kl (y)

�

=
nX

k=1

� k @k f l (x) +
nX

k=1

� k � kl (y) =
�
J (y � x)

�
l +

nX

k=1

� k � kl (y);

where
�
J (y � x)

�
l denotes thelth component of the vector J (y � x); the last equation follows from

the de�nition of the Jacobian J and by noting that y � x = ( � 1; � 2; : : : � n )T . That is, writing el 2 W
for the vector all whose components are 0 except that itsl th component is 1, we have

f (y) � f (x) = J (y � x) +
mX

l =1

nX

k=1

� k � kl (y) el :

Noting that

ky � xkV =
� nX

k=1

� 2
k )1=2;

we havej� k j � k y � xkV . Hence

kf (y) � f (x) � J (y � x)kW �
mX

l =1

nX

k=1

ky � xkV j� kl (y)j kel kW

= m
nX

k=1

ky � xkV j� kl (y)j;

the last equation follows sincekel kW = 1. Therefore, (25.3) implies that

lim
y! x

kf (y) � f (x) � J (y � x)kW

ky � xkV
= 0 ;

so J is indeed the Fr�echet derivative of f at x.

In case m = n = 1, the Jacobian is just the ordinary derivative of f , and the linear approximation to f
implied by the Fr�echet derivative described by the Jacobian is just the tangent line to the graph of f . In case
m = 1 and n = 2, the Jacobian describes the total di�erential of f , and the linear approximation implied by
the Fr�echet derivative is the tangent plane to the surface g iven by f . The casesm = 2 and n = 2 or m = 3
and n = 3 are occasionally discussed in introductory college courses in the context of changing variables in
multiple integrals; such an application was discussed in Subsection 2.4 on account of determining the density
function of a nondegenerate multivariate normal distribut ion.

25.3 The extended Kalman �lter

In the model for the extended Kalman �lter, the linear equati ons (24.1) and (24.2) are replaced by
nonlinear equations

X k = f (X k � 1; uk ; ek );(25.4)

Zk = h(X k ; � k ):(25.5)
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for given vector-valued functionsf and g. This can be handled by a modi�cation of equations (24.1)
and (24.2) of the linear Kalman �lter:

X k = Fk X k � 1 + Bk uk + Ek ek ;

Zk = H k X k + Gk � k :

In these equations, the coe�cient matrices Ek and Gk are new as compared to equations (24.1) and
(24.2). The coe�cient matrices Fk , Bk , Ek , H k , and Gk are taken to be the Jacobian matrices25.2

with respect to the variables associated with these coe�cient matrices of f and g, at the place
(X̂ k � 1; uk ; 0) for f , and at (X̂ k ; 0) for g, where X̂ k � 1 and X̂ k are the estimates forX k � 1 and X k ,
and the actual value of the vector uk . The best estimate for ek and � k is 0, that is why 0 is taken
for the arguments representing these errors.

25.4 Applications of the Kalman-�lter

The paper [17] describes the example of a train moving on a straight track, illustrating were the
matrices Fk , Bk , and H k can be obtained from equations of physics describing the system. The
Kalman �lter was used in aiding landing and return of the luna r module of the Apollo 11 mission,
the �rst human landing on the moon. Today, there are several Kalman �lters running on a common
cell phone. There is a good description, listing several applications, in the Wikipedia article [36].
The paper [8] lists many more applications; it also containsvery interesting details of of these
applications.

26 The GARCH model

In an ARMA or ARIMA model

(26.1) Yt =
pX

k=1

� k Yt � k + et �
qX

l =1

� k el � k ;

one often assumes that the errors (or residuals, or innovations) et are identically distributed, in
particular, they have the same standard deviation. This is often not appropriate for �nancial time
series, which often go through periods of volatility. In these cases, one may prefer to model the
errors in the form

(26.2) et = � t Z t ;

where the random variablesZ t are identically distributed independent variables, usually standard
normal variables, and the time seriesf � t g one models in various ways, most frequently as an AR
or ARMA or ARIMA process; one assumes that Z t is independent of � t .26.1 Such models are
called autoregressive conditional heteroskedastic, or ARCH, models, or GARCH (generalizedARCH)
models.26.2 Such models were introduced by Robert F. Engle in 1982 in the paper [16]; this paper

25.2 In other words, we take linear linear approximations to the functi ons f and g at the places indicated.
26.1 If one wants to interpret these speci�cations mathematically, � t must also be a random variable. In the model, � t
will be a function of random variables that assumed numerical values b efore time t , whereas Z t is a random variable
that assumes a value only at time t .
26.2 The word skedastic or scedastic means \related to the variance of statistical errors." Hence homoskedastic means
having the same �nite variance, and heteroskedastic means not having the same variance (of errors of a time series).
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earned him the Nobel Memorial Prize in Economic Sciences in 2003. Since then, many such models
have beed described; a glossary to such models is given by TimBellerslev in the paper [3].

To build a GARCH model, on �rst builds an ARMA or ARIMA model as in formula (26.1), then
one estimates the errorset in the model; this can be done in the way described in Subsections 9.5
or 10.1. Then one models the variances� t of these errors by a linear model:

(26.3) � 2
t = ! +

q0
X

k=1

� k e2
t � k +

p0
X

l =1

� l � 2
t � l

Note that this is not an ARMA model for the time series of � t , since the residualset come from
the original time series modeled in equation (26.1) rather than from the sequence of variances� 2

t .
The coe�cients ! , � k , and � k can be estimated by least square methods or by maximum likelihood
methods (the latter give better results according to Engle [16, p. 998]).

26.1 Maximum likelihood for estimate for the coe�cients in a GARCH
model

We will outline how the maximum likelihood method can be usedto determine the model parameters
in equation (26.3). Given a time seriesf Yt g. write  t for the information available at time t. This
includes all the values ofYt 0 for t0 � t , and given the model described by formula (26.1), also the
values ofet 0 for t0 � t . At time t before observingYt , the information available is  t � 1. We have

E(Yt j t � 1) =
pX

k=1

� k Yt � k �
qX

k=1

� k et � k ;

since
E(et j t � 1) = E( � t Z t j t � 1) = E( � t j t � 1) E(Z t j t � 1) = E( � t j t � 1) E(Z t ) = 0;

the second equation holds here sinceZ t is independent of� t , and the third equation holds sinceZ t

is also independent of t � 1.
In the GARCH model, et = � t Z t is assumed to be a normal variable with mean 0 and variance

� 2
t ; this variance depends on the information t � 1. The variance of Yt conditional on  t � 1 is the

same:
Var( Yt j t � 1) = Var( et j t � 1) = � 2

t :

Thus, the density function of et conditional on  t � 1 is

f et j � t � 1 (x) =
1

p
2� � t

exp
�

�
x2

2� 2
t

�
:

This is also the conditional likelihood function:

L t (� t ; êt ) =
1

p
2� � t

exp
�

�
ê2

t

2� 2
t

�
;

where we wrote the observed value of ^et of the error in place of x. The likelihood function is the
product of all conditional likelihood functions for the series of observations ofYn . The values of ên

are not directly observable; they are calculated from the values ofYn and the model parameters� k

and � l in equation (26.1); the values of� n are expressed in terms of the model parameters� k and � l

in equation equation (26.3). The likelihood function is considered as a function of the parameters! ,
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and � k and � l occurring in equation (26.3); these are the parameters to bedetermined. The model
parameters � k and � l in equation (26.1) are assumed to be known at these points. Assuming that
observationsYn were made for timesn for 1 � n � t, we have

L(!; � ; � ; Y ) =
tY

n =1

1
p

2� � n
exp

�
�

ê2
n

2� 2
n

�
:

In this equation, � = h� 1; � 2; : : : ; � q0i , � = h� 1; � 2; : : : ; � p0i , and Y = hY1; Y2; : : : ; Yt i , the values
for � n should be expressed in terms of! , � , and and � using equation (26.3), where, at this point,
the values of the parameters! , � , and and � are yet to be determined. After this, the values of
these parameters can be estimating by maximizing the likelihood functions. In doing to, one �rst
takes the logarithm of the likelihood function.

27 The generalized least squares method

For a complex random column vectorY , de�ne the variance of Y = ( Y1; Y2; : : : ; Yn )T as

Var( Y )
def
= E

� �
Y � E(Y )

� � �
Y � E(Y )

� �
=

nX

k=1

E
� �

�Yk � E(Yk j
� 2

�
:

This is a scalar; compare this with the de�nition of the covariance matrix of Y , which is an n � n
matrix:

Cov(Y )
def
= E

� �
Y � E(Y )

��
Y � E(Y )

� �
�

In fact, the variance of Y is the trace of its covariance matrix, where the trace of a square matrix is
de�ned as the sum of its diagonal elements.

27.1 Ordinary least squares

The ordinary least squares method was discussed above, on account of the innovations algorithm
in Section 7, especially in the proof of Lemma 7.1. In this subsection we give a description from a
di�erent point of view.

Let m and n be a positive integer, A and m � n matrix with known entries entries and let
x = ( x1; x2; : : : ; xn )T be a column vector with unkown real entries. We want to determine the
unknown entries of x by measuring the entries of the column vectorAx, but these measurements
have errors. A mathematical formulation of the problem is the following:

Let � = ( � 1; � 2; : : : ; � m )T and Y = ( Y1; Y2; : : : ; Ym )T be a column vectors of random variables.
Assume that E(� k ) = 0 and E( � k � l ) = � kl � 2 for all k and l with 1 � k; l � m for some �nite � > 0.
Assume we have the the system of equations

(27.1) Ax + � = Y :

Find the best estimate x̂ of the column vector x. A linear estimator for x is a random column vector
x̂ = ( x̂1; x̂2; : : : ; x̂n )T = B Y , where B is an n � m matrix of reals; the entries of the matrix may
depend on the entries of the known matrixA, but they must not depend on the components of the
unknown vector x or on the components of the random vectorY . Such an estimator isunbiased if
E(x̂ ) = x.

We have
E(x̂ ) = E( B Y ) = E

�
B (Ax + � )

�
= BA x;
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the last equation holds since since E(� ) = 0. So, the condition for the estimate x̂ = BY to be
unbiased is that

(27.2) BA x = x:

Writing �̂ = Y � Ax̂ , the method of ordinary least squares seeks to minimize the quantity

(27.3) �̂ T �̂ = ( � �̂ T )( � �̂ ) = ( Ax̂ � Y )T (Ax̂ � Y ):

If the matrix AT A is invertible, then the the choice x̂ = ( AT A) � 1AT Y minimizes this ex-
pression. First note that this is an unbiased linear estimate with B = ( AT A) � 1AT . Indeed
BA x = ( AT A) � 1AT Ax = x, so (27.2) is satis�ed.

The row rank of a matrix is the maximum number of its linearly independent r ows, and the column rank
of a matrix is the maximum number of its linearly independent c olumns. By a standard theorem of linear
algebra, the row rank and the column rank of a matrix are equal, and it is called the rank of a matrix. The
row rank of an m � n matrix is at most m, its column rank is at most n, so its rank is at most the smaller
of these two, i.e., min(m; n ).

If A and B are matrices such that the number of columns of A is the same as the number of rows ofB ,
so that the product AB can be formed, then the rows of AB are linear combinations of the rows of B , and
its columns are linear combinations of the columns of A. Hence the rank of AB is at most the column rank
of A and the row rank of B .

Note that AT A is an n � n matrix. For it to be invertible, it has to have rank n. On the other hand,
A is an m � n matrix, and so its rank is � min( m; n ). Hence the rank of AT A is also � min( m; n ). Hence,
the matrix AT A can be nonsingular27.1 only in case m � n, i.e., if the number of scalar equations given
by (27.1) is at least the number of unknown. 27.2

Next we show that it minimizes �̂ T �̂ :

Proof of minimization. Writing D = ( AT A) � 1, assume that x̂ = ( DA T + C)Y for some m � n
matrix C. Then, with I being the m � m identity matrix, we have

�̂ T �̂ = ( � �̂ T )( � �̂ ) = ( Ax̂ � Y )T (Ax̂ � Y )

= Y T �
A(DA T + C) � I

� T �
A(DA T + C) � I

�
Y

= Y T �
(ADA T � I ) + AC

� T �
(ADA T � I ) + AC

�
Y

= Y T (ADA T � I )T (ADA T � I )Y

+ Y T (CT AT ADA T � CT AT + ADA T AC � AC + CT AT AC )Y ;

in the last equation, we made use of the fact thatD T = D; this is becauseD = ( AT A) � 1 and
so D T =

�
(AT A)T

� � 1
= ( AT A) � 1 = D. Making use of the fact that D = ( AT A) � 1, there are

cancelations in the second term on the right-hand side, and we obtain that this right-hand side is
equal to

Y T (ADA T � I )T (ADA T � I )Y + Y T CT AT AC Y

= Y T ((ADA T � I )T (ADA T � I )Y + ( AC Y )T AC Y ;

27.1 iNonsingular for a matrix means the same as invertible.
27.2 The exact condition for the matrix A T A is that the rank of A be n; this is clear from the discussion above. This
means that the system of scalar equations given by (27.1) should contain n independent equations (which equations
are then uniquely solvable for x without errors, i.e., such that � = 0). The solution of these n equations may contradict
other equations present in the system, so, usually the whole system of equati ons are not solvable without errors.
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As (AC Y )T AC Y � 0 if follows that the right-hand side is the minimum when C = 0. It is not
guaranteed that this is the only minimum, since it is possible that CY = 0 even if Y 6= 0 (on the
other hand, AC Y = 0 only if CY = 0, since if AC Y = 0 then AT AC Y = 0, and the matrix AT A
is nonsingular).

The least squares method is attributed to Gauss; he used it todetermine the orbit of the dwarf
planet Ceres; the method he used is described at the website.The method was �rst published by
Legendre.

Given a vector random variableZ = ( Z1; Z2; : : : ; Zn )T , we de�ne its variance as

Var( Z)
def
=

nX

k=1

Var( Zk ):

It is easy to see that Var(Z) is the trace of the matrix Cov(Z)
def
= E

� �
Z � E(Z)

�
(
�
Z � E(Z)

� T
�

.

The linear estimator x̂ is called the best linear unbiased estimatorif in addition to being unbiased,
x̂ = B Y is such that for any other n � m matrix B 0 we have Var(B Y ) � Var( B 0Y ). According to the
Gauss{Markov theorem, if the matrix AT A is nonsingular, then the best linear unbiased estimator
for x is x̂ = ( AT A) � 1AT Y .

Proof of the Gauss{Markov theorem. Let B 0 be any n � m matrix. B 0 we have

E(B 0Y ) = E( B 0Ax + � ) = B 0Ax:

Furthermore,

Cov(B 0Y ) = E
�
(B 0� )(B 0� )T �

= E
�

B 0� (� )T B 0T
�

= B 0E
�
� (� )T �

B 0T = B 0� 2IB 0T = � 2B 0B 0T ;
(27.4)

where I is the m � m identity matrix. Writing D = ( AT A) � 1 as before, assumeB 0 = DA T + C for
somem � n matrix C. In order for the estimate B 0Y to be unbiased, according to equation (27.2)
we need to haveCAx = 0, since we have seen thatDA x = x. Since the entriesC cannot depend on
x, this means that we must haveCAx = 0 for any x, that is CA = 0. Using equation (27.4), and
noting that D T = D as we pointed out before, we have

1
� 2 Cov(B 0Y ) = B 0B 0T = ( DA T + C)(DA T + C)T = ( DA T + C)(AD + CT )

= DA T AD + DA T CT + CAD + CCT = ( DA T )(DA T )T + CCT ;

the last equation holds sinceCA = 0, and AT CT = ( CA)T = 0. Incidentally, DA T AD = D since
D = ( AT A) � 1, but we did not need to use this. The matrix CCT is positive semide�nite, and so its
trace is nonnegative. Hence, writing Tr(G) for the trace of a square matrix G, we have

Var( B 0Y ) = � 2 Tr
�
Cov(B 0Y )

�
= � 2 Tr

�
DA T (DA T )T + CCT �

= � 2 Tr
�
DA T (DA T )T �

+ Tr
�
CCT �

� � 2 Tr
�
DA T (DA T )T �

= Var( DA T Y );

showing that DA T Y is indeed a best linear unbiased estimate forx.

The form (AT A) � 1AT x of the solution given ty the least squares method is of theoretical interest,
and it is not useful for practical calculations. For practical calculations, a factorization of the matrix
A into the product of an orthogonal matrix and an upper triangu lar matrix is used; for details, see
[23], in the section on overdetermined systems of linear equations (currently Section 38, pp. 174{184).
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27.2 The generalized least squares method

In the generalized least squares method, one wants to �nd thebest estimatex̂ for x in equation (27.1),
where now one drops the assumption that the components of theerror vector E(� k � l ) = � kl � 2 are
uncorrelated and have the same variance; instead one assumes that the covariance matrix � = Cov( � )
is known and is positive de�nite, i.e., that cT � c > 0 for any m � 1 nonzero column vectorc. 27.3

It is still assumed that the m � n matrix A has rank n. The generalized least squares method was
invented by Alexander Aitken.

The generalized least squares problem can be reduced to the ordinary least squares problem.
To see how this can be done, �rst note that the matrix Cov(� ) = � being positive de�nite and
symmetric, there is a lower triangular matrix L such that LL T = �. The factorization LL T is
called the Cholesky decompositionor Cholesky factorization of the matrix �; for a discussion of the
Cholesky decomposition, see [23], the section on positive de�nite matrices (p. 163 in Section 35).
Since � is positive de�nite, it is invertible, and so the matr ices L and L T are also invertible.27.4

Multiply equation (27.1) by L � 1 on the left to obtain

(27.5) L � 1Ax + L � 1� = L � 1Y :

Noting that ( L � 1)T = ( L T ) � 1, we have

Cov(L � 1� ) = E
�
L � 1�� T (L T ) � 1�

= L � 1 E(�� T )(L T ) � 1 = L � 1�( L T ) � 1 = L � 1LL T (L T ) � 1 = I:

Thus, equation (27.5) represents an ordinary least squaresproblem, showing how to reduce the
generalized least squares problem can be reduced to an ordinary least squares problem.

27.3 Linear regression models and generalized least square s

A linear regression model of a time seriesf Yt g is an equation of the form

Yt = � 0 +
mX

k=1

� k uk;t + Z t ;

where � i for k with 0 � k � m are parameters of the model,uk;t are explanatory variables measured
at time t, and f Z t g is the residual time series that is not predicted by the model. When �tting a
linear regression model to a time series, the residuals willusually be correlated. In this situation,
a better model can be obtained by using the generalized leastsquares method to �t the model
parameters instead of using ordinary least squares. This isdiscussed in [11,x5.4, p. 98] and in [4,
x9.4.2, p. 363].

28 Long memory processes

In order to discuss the convergence of a certain series below, we need a convergence criterion not
routinely treated in calculus courses.

27.3 We assume that � is real, so we do not need to use complex conjugation. We have seen above tha t the covariance
matrix is always positive semide�nite, i.e., that cT � c � 0 (see Problem 2.1). The assumption that it is positive
de�nite amounts to the same as assuming that it is also nonsingular.
27.4 Indeed, if for two n � n matrices the matrix AB is invertible, then both A and B must also be invertible. This is
because rank(AB ) � min(rank A; rank B ), as we pointed out in the small letter passage in Subsection 27.1.
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28.1 The Dirichlet convergence criterion

Theorem 28.1 (Dirichlet convergence criterion). Let ak and bk for k � 1 be complex numbers such
that

(28.1) lim
k !1

bk = 0

and

(28.2)
1X

k=1

jbk � bk+1 j < 1 :

Assume that there is a real numberB such that

(28.3)

�
�
�
�
�

NX

k=1

ak

�
�
�
�
�

< B

for all N � 1. Then the series

(28.4)
1X

k=1

ak bk

converges.

This result is the Generalized Dirichlet Convergence Test.In the original version of the Dirichlet
Test, instead of (28.2) one assumes thatbk is real and bk � bk+1 > 0 for all k � 1. The Alternating
Series Test is a consequence of the original version of the Dirichlet Test. Indeed, one obtains the
Alternating Series Test if one takesak = ( � 1)k+1 , and one obtains the result stated in the problem
if one takes thebk = 1=k. We will comment on the role of the Generalized Dirichlet Test in number
theory below.

Proof. To show the above result, write

cn =
nX

k=1

ak (n � 0):

Then an = cn � cn � 1, so, given integersM and N with 0 � M < N we have

NX

n = M +1

an bn =
NX

n = M +1

(cn � cn � 1)bn

= cN bN +1 � cM bM +1 +
NX

n = M +1

cn (bn � bn +1 );

the last equation can be easily checked by noting that each term in the middle member is matched
by exactly one member on the right-hand side. An equation of this type is called partial summation,
or Abel rearrangement, named after the Norwegian mathematician Niels Henrik Abel.28.1

28.1 Abel rearrangement was also discussed above in Theorem 15.2, on account of in tegration by parts for Stieltjes
integrals.
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Therefore

�
�
�

NX

n = M +1

an bn

�
�
� � j cN bN +1 j + jcM bM +1 j +

NX

n = M +1

jcn jjbn � bn +1 j

� B
�

jbN +1 j + jbM +1 j +
NX

n = M +1

jbn � bn +1 j
�

(0 � M < N );

(28.5)

the second inequality follows in view of (28.3). MakingM ! 1 , the limit of the right-hand side is
0 in view of (28.1) and (28.2). This shows that the series in (28.4) indeed converges.

A Dirichlet series is a sum

(28.6)
1X

n =1

an n � s ;

where the coe�cients an for n � 1 are given complex numbers. Johann Peter Gustav Lejeune Dirichlet used
these eponymous28.2 series to establish his famous result that if an arithmetic p rogression with integer terms
contains two relatively prime integers then it contains in� nitely many prime numbers. Dirichlet considered
these series only for reals; somewhat later, Georg Friedrich Bernhard Riemann used them with complex s
in his study of prime numbers. The basic convergence result for Dirichlet series is the following:

Theorem 28.2 (Region of convergence of Dirichlet series). If (28.6) converges for s = s0 with some complex
s0 , then it also converges for all complexs with < s > < s0 .

This is a direct convergence of the Generalized Dirichlet Test. Indeed, assume that

1X

n =1

an n � s0

converges. Then
1X

n =1

an n � s =
1X

n =1

an n � s0 n � ( s� s0 ) :

Assuming < (s � s0) > 0, we have

jn � ( s� s0 ) � (n + 1) � ( s� s0 ) j =

�
�
�
�

Z n +1

n
(s � s0)t � ( s� s0 ) � 1 dt

�
�
�
�

�
�
� (s � s0)n � ( s� s0 ) � 1 �

� = js � s0 jn �< ( s� s0 ) � 1 :

Since the series
1X

n =1

n �< ( s� s0 ) � 1

is convergent (e.g., by the Integral Test), the Generalized D irichlet Test implies that the series in (28.6) is
also convergent. If we assume that s and s0 are real, the same conclusion follows also from the original
Dirichlet Test.

28.2 I.e., series named after him (later, by others), that is, Dirichlet series.
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28.2 The spectrum revisited

Let yt be observations of the a time for 0� t < N , and, as in equation (16.1), we describe the series
of observations with a trigonometric polynomial:

(28.7) yt =
N � 1X

k=0

ck e2ikt�=N (0 � t < N ):

To simplify the considerations, we will de�ne yt for all integers t by putting yt + kN = yt for all k 2 Z;
then equation (28.7) will be valid for all integers t. As in equation (16.2), we have

(28.8) ck =
1
N

N � 1X

t =0

yt e� 2ikt�=N :

This equation is needed only for 0� k < N , but we will take it to be valid for all integers k, since
instead of the range of summation 0� k < N , we can take any range ofN consecutive integers in
equation (28.7); cf. equations (14.7) and (14.9).

The spectrum of this time series will be de�ned analogously to the periodogram de�ned in
equation (16.3) except that we take frequencies in the range(�1 ; 1 ), and do not identify frequencies
f and 1� f :

(28.9) S
�

k
N

�
= N jck j2:

28.3 Di�erencing and the spectrum

If we write zt = yt � yt � 1 for the di�erentiated series, we have

zt = yt � yt � 1 =
N � 1X

k=0

ck (e2ikt�=N � e2ik ( t � 1) �=N ) =
N � 1X

k=0

ck (1 � e� 2ik�=N ) e2ikt�=N ;

note that the �rst equation for k = 0 makes use of our stipulation above according to which
y� 1 = yN � 1; without this stipulation, y� 1 would make no sense. Writing ck (z) = ck (r y) for

the interpolation coe�cients in this equation, and also wri ting ck (y)
def
= ck , this equation shows that

ck (r y) = (1 � e� 2ik�=N )ck (y):

Noting that

j1 � e� 2ik�=N j2 = (1 � e� 2ik�=N )(1 � e2ik�=N ) = 1 � e� 2ik�=N � e2ik�=N + 1

= 2
�

1 � cos
2k�
N

�
;

we obtain for the spectrums with frequency� = k=N that that

(28.10) S(�; fr yt g) = 2(1 � cos 2�� )S(�; f yt g)
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Note that for � approaching zero, 1� cos 2�� has order of magnitude� 2;28.3 On the other hand,
on the basis of equation (16.7), one does not even expect thatS(� ) ! 0 when � ! 0.28.4 The
expectation is that S(� ) ! c with some c 6= 0, If S(� ) ! 1 , then equation (28.10) suggests that
one would need to di�erence the time series to remedy this situation.

In trying to estimate the amount di�erencing needed in a time series, one can try to estimate
the order of magnitude of S(� ) as � ! 0; call this order 2d, meaning that the size ofS(� ) is some
bounded multiple of � � 2d. In this case the time series needs to be di�erencedd times. The case
0 < d < 1 is especially interesting, and it leads to fractional di�erencing.28.5

28.4 Fractional di�erencing

The binomial coe�cient
� d

n

�
is de�ned for any real d and for every integern � 0 by the equation

�
d
n

�
def
=

n � 1Y

k=0

d � k
n � k

(n � 0):

Here, for n = 0 we have the empty product, which is interpreted as 1. If d is a positive integer and
n � d, then this is the usual binomial coe�cient; if d is a positive integer andn > 0, then

� d
n

�
= 0,

since then the factord� k for n = k is 0. For any real d and for any complexz with jzj < 1, we have

(1 + z)d =
1X

n =0

�
d
n

�
zn :

The radius of convergence of this series is 1. Di�erencingd times for noninteger d can be interpreted
as replacing the observed time seriesf yt g with

(I � B )dyt =
1X

n =0

�
d
n

�
(� 1)n B n yt =

1X

n =0

�
d
n

�
(� 1)n yt � n ;

of course, in practice, one cannot take an in�nite series here, so one needs to truncate this series at
some point, perhaps atn = 40.

28.5 Slow decay of autocorrelation

In most stationary processes the autocorrelation decays exponentially; that is one expects that that
j
 k j = O

�
e� �k

�
for some positive� .28.6 A slower decay, such as
 k � cn� � for � with 0 < � < 1

and c > 0 implies that the spectrum is singular (i.e., tends to in�ni ty at frequency 0). In fact,
taking c = 1 for the sake of simplicity, the spectrum of a stationary time series with autocorrelation
coe�cients 
 (n) = n� � for all n � 0 and � with 0 < � < 1 can be written as

(28.11) S(� ) = 1 + 2
1X

n =1

n� � cos(2n�� )

28.3 Indeed,

lim
x ! 0

1 � cosx

x2
=

1

2
:

28.4 For an observed time series, the frequency � = k=N can assume only discrete values, so, strictly speaking, � ! 0
does not make sense. In a practical sense, however, saying that S(� ) approaches 0 when � approaches 0 make sense,
since N is expected to be a large integer.
28.5 Calculating the spectrum of an observed time series is fairly inexpensive w ith the fast Fourier transform discussed
in Section 29.
28.6 See footnote 21.3 on p. 82 for the de�nition of the O(�) notation.
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according to equation (16.7), First note that the series on the right-hand side is convergent unless�
is an integer. Indeed, given any positive integerK , we have

KX

n =1

cos(2n�� ) =
1
2

�
DK (2�� ) � 1

�
=

1
2

�
sin(2K + 1) ��

sin ��
� 1

�

according to (13.7), showing that the absolute values of these sums stay under a bound independent
of K . Hence the Dirichlet convergence criterion (Theorem 28.1)implies that the series on the
right-hand side of equation (28.11) converges unless� is an integer.

We will see that

(28.12) lim
� & 0

� 1� � S(� ) = 2
Z 1

0
x � � cos(2�x ) dx:

Indeed, let A be a large positive integer, and consider this integral on the interval [0; A]. It is
important to recall the de�nition of the Riemann integral fo r this. The Riemann integral

Z b

a
f (x) dx

is de�ned exactly as the Stieltjes integral

Z b

a
f (x) dg(x)

for g(x) = x. This de�nition was given in detail in Section 15, so we will not restate the de�nition
here.

Note that the integral

(28.13)
Z A

0
x � � cos(2�x ) dx

is a convergent improper integral with a singularity at x = 0, so it not Riemann integrable. It is
Riemann integrable on the interval [�; A ] for any � > 0. Yet it will be convenient to approximate it
with Riemann sums. Noting that the integrand is decreasing on [0; 1], the Riemann sums will still
converge to the integral if for � with 0 < � < 1 we take the tags� n at the right endpoints of the
partition intervals that intersect [0 ; � ].28.7 This can be justi�ed as follows.

On the interval [0; � ], the Riemann sum with tags at the right end points of the partition intervals
will be less than the integral. The part of the Riemann sum on the interval [�; A ] will approximate
the integral on this part, since the Riemann integral exists there. Making � & 0 we can see that
the part of the Riemann sum on [0; � ] will tend to zero, and so Riemann sum on the whole interval
[0; A] will approximate the integral.

Let � be a positive real. Writing N = bA=� c + 1, divide the interval [0 ; A] into intervals N
intervals of length � , except that the last interval may be shorter, so that xn = n� for n with
0 � n < N , and xN = A. Pick the tags � n 2 [xn � 1; xn ] for n with 1 � n � N such that � n = xn .
The norm of the partition

P : 0 = x0 < x 1 < x 2 < : : : x N = A
28.7 All but the last of these partition intervals will entirely be includ ed in [0; � ].
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is � . The Riemann sum
NX

n =1

� � �
n cos(2�� n ) (xn � xn � 1)

=
N � 1X

n =1

N (n� ) � � cos(2�n� ) � + A � � cos(2�A ) (A � xN � 1)

= � 1� �
N � 1X

n =1

n� � cos(2�n� ) + A � � cos(2�A )(A � xN � 1)

(28.14)

converges to the integral in (28.13) as� & 0 Since the 0� A � xN � 1 < � , the term after the sum on
the right-hand side tends to 0. Making A ! 1 , one is tempted to conclude that equation (28.12)
follows.

This argument is, however, not correct. Heuristically, onemight be tempted to make this con-
clusion, but a rigorous proof is somewhat delicate. Cauchy might have been forgiven for accepting
such an argument as correct,28.8 We will present a rigorous proof next.

28.6 A rigorous proof of convergence

The conclusion that can be reached by the argument at the end of the last subsection is that

lim
A !1

lim
� & 0

� 1� �
bA=� cX

n =1

n� � cos(2�n� ) = 2
Z 1

0
x � � cos(2�x ) dx;

whereas what we need to show in order to establish (28.12)

(28.15) lim
� & 0

lim
A !1

� 1� �
bA=� cX

n =1

n� � cos(2�n� ) = 2
Z 1

0
x � � cos(2�x ) dx:

In order to establish the second version, some kind of uniform convergence is needed; it is certainly
not true that the convergence in (28.11) is uniform in � . What is in fact true is that the inside
limit in (28.15) is uniform. This can be shown by following through the proof of the Dirichlet
convergence criterion (Theorem 28.1), so as to obtain a uniform bound in inequality (28.5). The
fact that we already know by the Dirichlet test that the series (28.11) converges somewhat simpli�es
the argument. Using the Dirichlet kernel de�ned in formula ( 13.7), we have

(28.16) Dn (2�� ) = 1 + 2
nX

k=1

cos 2k�� =
sin(2n + 1) ��

sin ��
;

where the second equation holds if� is not an integer (so that the denominator is not zero). Hence,
for any M � 1 we obtain

1X

n = M

n� � cos(2n�� ) =
1
2

1X

n = M

n� � �
Dn (2�� ) � Dn � 1(2�� )

�

= �
M � �

2
DM � 1(2�� ) +

1
2

1X

n = M

�
n� � � (n + 1) � � �

Dn (2�� ):

28.8 Cauchy struggled with understanding the limits of continuous fun ctions. While he played a key role in putting
analysis on solid foundations, he published three articles \proving " that the limit of continuous functions is continuous
{ a statement that turns out to be incorrect. See the posting for a discussio n.
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Noting that jDn (2�� )j � j 1=sin �� j for any � (with � not an integer), it follows that
�
�
�
�
�

1X

n = M

n� � cos(2n�� )

�
�
�
�
�

�
1

2 sin��

�
M � � +

1X

n = M

�
n� � � (n + 1) � � � �

:

=
M � �

sin ��
(0 < � < 1)

Hence
�
�
�
�
�
�
� 1� �

1X

n = bA=� c+1

n� � cos(2n�� )

�
�
�
�
�
�

� � 1� �

�
bA=� c + 1

� � �

sin ��

� � 1� � (A=� ) � �

sin ��
� A � � (0 < � < 1=2);

the third inequality uses the fact that sin x=x � 2=� for x with 0 � x � �= 2 (the minimum is reached
for x = �= 2, and so�= sin �� � 1=2 for � with 0 � � < 1=2. This is su�cient to establish (28.12).

Indeed, to �nish the proof of this, let � > 0 be arbitrary, and let A0 be such that for A � A0 and
for � with 0 < � < 1=2 we have

�
�
�
�
�
�
� 1� �

1X

n = bA=� c+1

n� � cos(2n�� )

�
�
�
�
�
�

�
�
3

:

Let A1 � A0 be such that
�
�
�
�
�

Z 1

0
x � � cos(2�x ) dx �

Z A 1

0
x � � cos(2�x ) dx

�
�
�
�
�

�
�
3

;

where A1 may of course depend on� ; and, given A1, let � 0 > 0 be such that for � with 0 < � < � 0,
for the Riemann sums in (28.14) (note that N = bA=� c + 1 in these sums) we have

�
�
�
�
�
�

Z A 1

0
x � � cos(2�x ) dx � � 1� �

bA 1 =� cX

n =1

n� � cos(2�n� )

�
�
�
�
�
�

<
�
3

:

Putting all these together, for � with 0 < � � � 0 we have
�
�
�
�
�

Z 1

0
x � � cos(2�x ) dx � � 1� �

1X

n =1

n� � cos(2�n� )

�
�
�
�
�

<

�

�
�
�
�
�

Z 1

0
x � � cos(2�x ) dx �

Z A 1

0
x � � cos(2�x ) dx

�
�
�
�
�

+

�
�
�
�
�
�

Z A 1

0
x � � cos(2�x ) dx � � 1� �

bA 1 =� cX

n =1

n� � cos(2�n� )

�
�
�
�
�
�

+

�
�
�
�
�
�
� 1� �

bA 1 =� cX

n =1

n� � cos(2n�� ) � � 1� �
1X

n =1

n� � cos(2n�� )

�
�
�
�
�
�

<
�
3

+
�
3

+
�
3

= �:

Since� > 0 was arbitrary, equation (28.12) follows.
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28.7 Positivity of the limiting integral

Finally, we will show that the integral on the right-hand sid e of equation (28.12) is positive. We
have

Z 1

0
x � � cos(2�x ) dx =

1X

n =0

Z n +1

n
x � � cos(2�x ) dx:

=
1X

n =0

Z 1

0
(x + n) � � cos(2�x ) dx:

We will show that each of the integrals after the sum is positive; hence the sum is positive. Writing
f (x) = ( x + n) � � , the function f (x) � f (x + 1=2) is decreasing, since its derivative

� �
�
x � � � 1 � (x + 1=2)� � � 1�

is negative. Hence
�
f (x) � f (1=2 + x)

�
�

�
f (1=2 � x) � f (1 � x)

�
> 0 (0 < x < 1=4):

Noting that for any x we have

cos 2�x = � cos 2� (1=2 + x) = � cos 2� (1=2 � x) = cos 2� (1 � x);

we have
Z 1

0
(x + n) � � cos(2�x ) dx =

Z 1

0
f (x) cos(2�x ) dx

=
Z 1=4

0

� �
f (x) � f (1=2 + x)

�
�

�
f (1=2 � x) � f (1 � x)

� �
cos(2�x ) dx > 0;

since both factors in the integrand on the right-hand side are positive, except for being zero at
�nitely many points. This shows that the integral in (28.12) is indeed positive.

To conclude, the above considerations show that the time series described at the beginning of
Section 28.5 needs to be di�erenced fractionally at (1� � )=2 times.

28.8 Absolute integrability

When approximating the integral on the right-hand side of equation (28.12) we had to deal with
the singularities at 0 and +1 , but we dealt with them in very di�erent ways. When using Riem ann
sums to approximate the integrals, we could almost totally ignore the singularity at 0 in that the
only thing we needed to do is to take the tag at the minimum of the function in the partition
interval. On the other hand, we had to exclude the singularity at + 1 by cutting o� a neighborhood
of in�nity from the interval of integration. The reason for t his is the very di�erent nature of the
singularities. At zero, the absolute value of the integrandis integrable (in fact, the integrand near
0 is positive, so it is its own absolute value), while near in�nity, the absolute value of the integrand
is not integrable. This makes a big di�erence in how the integral can be handled; the situation is
similar to the di�erence between absolutely and conditionally convergent series: it is much easier to
work with an absolutely convergent series than with a conditionally convergent series. For example,
an absolutely convergent series can be rearranged and stillhave the same sum, while a conditionally
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convergent series of reals can be made to diverge to +1 and to �1 , or given any real numberc, it
can be rearranged so as to converge tor (this is a theorem of Dirichlet).

As we discussed above, the Riemann integral have certain disadvantages, and these disadvantages
have been remedied by the Lebesgue integral, discussed above on p. 46 in Subsection 13.4. Lebesgue
integrable functions are such that their absolute values are also integrable in the Lebesgue sense.
Lebesgue integration extends Riemann integration in a way that simpli�es the way one works with
integrals, but such a simpli�cation does not seem possible for conditionally convergent integrals such
as the one on the right hand side of equation (28.12).

29 The fast Fourier transform

29.1 The discrete Fourier transform

Given a positive integer N , and a sequencehyn : 0 � n < N i of complex number, we de�ne its
discrete Fourier transform as the sequenceĥyl : 0 � l < N i , where

(29.1) ŷl =
N � 1X

n =0

yn e� 2iln�=N :

According to the discussion in Subsection 14.3, we then have

(29.2) yn =
1
N

N � 1X

l =0

ŷl e2iln�=N ;

see formulas (14.2) and (14.5) especially. The latter formula is also called the inverse discrete
Fourier transform . It is often convenient to extend these sequences to all integers integers by putting
yn + kN = yn and ŷn + kN = ŷn for all n; k 2 Z; with this extension, the above formulas remain true
for all l and n. These formulas are in complete analogy with the continuousFourier transform and
its inverse described in equations (20.1) and (20.2).

29.2 The fast Fourier transform

The fast Fourier transform is a group of algorithms that speeds up the calculation on thediscrete
Fourier transform by rearranging the order of operations in equation (29.1). As described by this
equation, the number of multiplications is about N 2, sinceŷl needs to be computed for all values ofl
with 0 � l < N ; in the rearranged version, the number of multiplications is of the order of magnitude
N logN .29.1 This makes the calculation of the discrete Fourier transform fairly inexpensive in most
situations.

In the old days, the time needed to perform a computer algorith ms was estimated by the number of
multiplications needed to perform the algorithm, since at t he time multiplications were fairly time consuming,
whereas additions were much faster. Perhaps this is still a reasonable way to estimate the time needed for
performing an algorithms, but many things changed in comput er technology since then that make this way of
estimating computer time fairly inaccurate: pipelining (t he di�erent parts of the processor performing several
multiplications at the same time, each part of the processor working on di�erent stages of the multiplication;
other complex operations can similarly be pipelined), caching (storing frequently used data in a fast and

29.1 As always in these notes, log indicates natural logarithm, though i t makes no di�erence in the present context
except that the base of logarithm needs to be greater than 1. This is becau se of the base conversion formula for
logarithms: we have log a x = log b x= logb a (a; b > 0, a; b 6= 1, and x > 0).
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relatively expensive memory before transferring it to the ma in memory, and parallel processing (several
di�erent processors { or cores as they are often called) working on di�erent parts of the problem. Often, the
assessment of an algorithm involves suitability for e�cien t processing using the methods described. For this
reason, it is quite a complicated task to write an e�cient line ar algebra program; they are packages that can
adapt to di�erent processors; see e.g. BLAS (Basic Linear Al gebra Subprograms).

In its simplest incarnation of the fast Fourier transform, t he Cooley{Tukey fast Fourier transform
algorithm described James Cooley and John Tukey in 1965,29.2 assumes thatN is a power of 2 and
splits up the calculation in equation (29.1) into two parts according as the subscriptn is even or
odd:

ŷl =
N= 2� 1X

n =0

y2n e� 2il (2n ) �=N + e� 2il�=N
N= 2� 1X

n =0

y2n +1 e� 2il (2n ) �=N

= ŷl; even + e� 2il�=N ŷl; odd :

(29.3)

The calculation uses recursion, calculating ^yl by �rst calculating ŷl; even and ŷl; odd in a similar way.
Note that these need to be calculated only forl with 0 � l < N= 2 since

ŷl; even = ŷl + N= 2;even and ŷl; odd = ŷl + N= 2;odd :

If N is not a power of 2, one can use 0-padding, i.e., extending thesequenceĥyl : 0 � l < N i
by adding 0s at the end so as to make its length a power of 2. There are variants of the algorithm
that work of sequences for any compositeN , and other versions that work when N is prime. In
most cases, the algorithm runs in timecN logN for some positive constantc, but if one completely
wants to avoid 0-padding, there are some exceptional prime values ofN , unlikely to be encountered
in practice, for which the algorithm requires N 2 multiplications. In most applications, 0-padding
causes no harm.

The inverse discrete Fourier transform described by formula (29.2) can be speeded up the same
way by a slight modi�cationof the fast Fourier transform; on ly a sign change (from� to + in the
exponents) is involved.

29.3 The number of multiplications needed

Assuming N is a power of 2, we will show that the number of multiplications needed to perform the
fast Fourier transform on a sequence of lengthN so as to calculate all values of ^yl (0 � l < N ) is
N log2 N . Using induction, assume this is true for everyM < N replacing N , where M is a power
of 2. On the right-hand side of (29.3) there is one new multiplication for each value ofl (0 � l < N )
amounting to N multiplications. at most ( N=2) log2(N=2) multiplications to calculate all values
ŷl; even and at most (N=2) log2(N=2) multiplications to calculate all values of ŷl; odd . Thus, the total
number of multiplications needed is

N + 2( N=2) log2(N=2) = N + 2( N=2)(log2 N � 1)

= N + N (log2 N � 1) = N log2 N:

For N = 1 no multiplications are needed since in that case the only value of y is y0, and we have
ŷ0 = y0.

29.2 The algorithm was also described by Gauss in an unpublished manuscript d ating back to around 1805.
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30 Representation of band-limited functions

Let f be a square integrable function continuous function such that its Fourier transform f̂ is zero
outside a the interval (� �; � ).30.1 In the discussion below, we will omit a rigorous discussion of
convergence issues.

In electronic technology, such functions whose Fourier transforms are restricted to a �nite interval
are called band-limited. They are very important in signal processing, since, as we will see, they can
be reproduced exactly by sampling at regular time intervals. Band-limited signals can be produced
by analog electronic �lters before digital processing (when they can be further �ltered). By the
Fourier inversion formula (20.2

(30.1) f (x) =
1

p
2�

Z �

� �
f̂ (y)eixy dy:

Note that f̂ is also square integrable, since the Fourier transform is anisometry according to Sub-
section 20.2. Represent̂f as a Fourier series on (� �; � ) as

(30.2) f̂ (x) =
1X

n = �1

cn einx ;

where

(30.3) cn =
1

2�

Z �

� �
f̂ (x)e� inx dx =

1
p

2�
f (� n) ( �1 < n < 1 );

where the last equation follows from (30.1). Substituting this into equation (30.2), and then into
equation (30.1) we obtain

f (x) =
1

p
2�

Z �

� �

1X

n = �1

1
p

2�
f (� n) einy eixy dy

=
1

2�

1X

n = �1

f (� n)
Z �

� �
ei (x + n )y dy:

(30.4)

By making the substitution t = i (x + k)y, where t and y are the variables andx is a parameter, we
have

Z �

� �
ei (x + n )y dy =

1
i (x + n)

Z �i (x + n )

� �i (x + n )
et dt

=
ei� (x + n ) � e� i� (x + n )

i (x + n)
=

2 sin� (x + n)
x + n

;

(30.5)

where the last equation follows from the Euler formula (13.10); for x = 0, we take sinx=x = 1 (this
makes the right-hand side 2� in casex + n = 0; in this case, the integrand on the left-hand side is
1, so this indeed gives the correct result). Substituting this into the above formula, we arrive at

f (x) =
1
�

1X

n = �1

f (� n)
sin � (x + n)

x + n
:

30.1 We could take any other �nite interval want to consider only the simpl est case.
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Replacing n by � n, one may also write

(30.6) f (x) =
1
�

1X

n = �1

f (n)
sin � (x � n)

x � n
:

This formula is called the Whittaker{Shannon interpolatio n formula30.2

30.1 The Nyquist{Shannon sampling theorem

We can interpret formula (30.6) as follows. In the formula

f̂ (x) =
1

p
2�

Z 1

�1
f (y)e� ixy dy;

the bandwidth limit � � corresponds to the valuex = � � , then the exponential ei�x or e� i�y as a
function of y has has a period of 2. Thinking ofy as time, this corresponds to the frequency 1=2
per unit time. Then formula formula (30.6) says that if the maximum frequency is 1=2, then the
function f can be perfectly reconstructed by sampling it once at integer times. This explains the
Nyquist frequency described in Subsection 16.2 from a mathematical point of view.

30.2 The Poisson summation formula

Assumejf j is integrable on (�1 ; 1 ), and let

(30.7) g(x) =
1X

k= �1

f (x + 2k� )

The Fourier series ofg is

g(x) =
1X

n = �1

cn einx ;

where

cn =
1

2�

Z �

� �
g(t)e� int dt (�1 < n < 1 )

according to equations (13.11) and (13.15). Forx = 0 these give

g(0) =
1X

n = �1

cn =
1

2�

1X

n = �1

Z �

� �
g(t)e� int dt

=
1

2�

1X

n = �1

Z �

� �

1X

k= �1

f (t + 2k� )e� int dt

=
1

2�

1X

n = �1

1X

k= �1

Z �

� �
f (t + 2k� )e� in ( t +2 k� ) dt;

30.2 The formula occurs in the works of Whittaker in 1915, in those of Cl aude Shannon in 1949, but it occurs even
earlier in the works of E. Borel in 1898 G. H. Hardy also discovered the fo rmula in 1911.
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in the last step, we interchanged the integration and the sum, and used the equatione� int =
e� int e2k� = e� in ( t +2 k� ) (becausee2k�i = 1). In the last integral we can substitute x = t + 2k� :

g(0) =
1

2�

1X

n = �1

1X

k= �1

Z (2k+1) �

(2k � 1) �
f (x)e� inx dx

=
1

2�

1X

n = �1

Z 1

�1
f (x)e� inx dx =

1
p

2�

1X

n = �1

f̂ (n):

Taking equation (30.7) into account, this gives

(30.8)
1X

n = �1

f (2�n ) =
1

p
2�

1X

n = �1

f̂ (n):

This is called the Poisson summation formula. The formula is widely used in number theory, and it
has several important modern generalizations.

30.3 Simple properties of the Fourier transform

In order to extend the Poisson summation formula to more general situations, we need the following
simple properties of the Fourier transform:

Lemma 30.1. Let f be a complex-valued integrable function onR, and let � be a real number. If
g(x) = f (x)ei�x , then ĝ(x) = f̂ (x � � ), and if h(x) = f (x + � ) then ĥ(x) = f̂ (x)ei�x . Further, if
k(x) = f (x=� ) with some � > 0, then k̂(x) = � f̂ (�x ).

Proof. The proof of these statements consists in simple substitutions in formula (20.1). We have

ĝ(x) =
1

p
2�

Z 1

�1
g(y)e� ixy dy =

1
p

2�

Z 1

�1
f (y)ei�y e� ixy dy

=
1

p
2�

Z 1

�1
f (y)e� i (x � � )y dy = f̂ (x � � );

and

ĥ(x) =
1

p
2�

Z 1

�1
h(y)e� ixy dy =

1
p

2�

Z 1

�1
f (y + � )e� ixy dy

=
1

p
2�

Z 1

�1
f (t)e� ix ( t � � ) dt = ei�x 1

p
2�

Z 1

�1
f (t)e� ixt dt = ei�x f̂ (x);

here, for the third equation, we used the substitution t = y + � . Finally

k̂(x) =
1

p
2�

Z 1

�1
f (y=� )e� ixy dy =

1
p

2�

Z 1

�1
f (t)e� ix�t � dt = � f̂ (�x );

where the second equation was obtained by making the substitution t = y=� .

Using this Lemma with t replacing � , we can restate the Poisson summation formula (30.8) as

1X

n = �1

f (2�n )e2i�nt =
1

p
2�

1X

n = �1

f̂ (n � t);
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and as
1X

n = �1

f (2�n + t) =
1

p
2�

1X

n = �1

f̂ (n)eint

for any real t. Using the part of the lemma for the Fourier transform of k(x), we can also make
a scale change in these formulas; for example, with� = 2 � , the former of these formulas can be
rewritten as

1X

n = �1

f (n)e2�int =
p

2�
1X

n = �1

f̂ (2� (n � t)) :

Restating this with x = � 2�t , we obtain

(30.9)
1X

n = �1

f (n)e� inx =
p

2�
1X

n = �1

f̂ (2�n + x):

30.4 Aliasing

Equation (30.9) can also be written as

(30.10)
1X

n = �1

f̂ (x + 2 �n ) =
1

p
2�

1X

n = �1

f (n)e� inx =
1X

n = �1

1
p

2�
f (� n)einx

If we assume thatf̂ (x) = 0 for jxj � � , then this equation becomes identical to what is expressed by
equations (30.2) and (30.3) together.30.3 Recall that in those equations this assumption was indeed
make. Our aim here is to study how f can be reconstructed from its sampled values at integer
arguments, i.e., from the valuesf (n) for n 2 Z.

From this point on, we can mimic the derivation of formula (30.6), but the result we obtain will
be di�erent. Write

(30.11) G(x) =
1X

n = �1

f̂ (x + 2 �n )

and write

(30.12) F (x) =
1

p
2�

Z �

� �
G(y)eixy dy:

Note that if f̂ (x) = 0 for jxj � � then F (x) = f (x) according to equation (30.1). Proceeding
similarly as in equation (30.4), we now replaceG(y) in equation (30.12) with the right-hand side of
equation (30.10) (with y replacing x). We obtain

F (x) =
1

p
2�

Z �

� �

1X

n = �1

1
p

2�
f (� n) einy eixy dy

=
1

2�

1X

n = �1

f (� n)
Z �

� �
ei (x + n )y dy =

1
�

1X

n = �1

f (� n)
sin � (x + n)

x + n
;

30.3 In the former of these two equations, we assumed that x is in the interval ( � �; � ). It is unnecessary to make this
assumption here, since both sides of equation (30.10) are periodic with period 2� .
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where the last equation used formula (30.5). Replacingn by � n in the summation on the right-hand
side, we obtain an equation similar to (30.6):

F (x) =
1
�

1X

n = �1

f (n)
sin � (x � n)

x � n
:

The problem is that F (x) is usually di�erent from f (x).
Indeed, according to formulas (30.11) and (30.12) we have

F (x) =
1

p
2�

Z �

� �

1X

n = �1

f̂ (y + 2 �n )eixy dy:

According to the Fourier inversion formula (20.2) we have

f (x) =
1

p
2�

Z 1

�1
f̂ (t)eixt dt =

1
p

2�

1X

n = �1

Z � +2 n�

� � +2 n�
f̂ (t)eixt dt

=
1

p
2�

1X

n = �1

Z �

� �
f̂ (y + 2 �n )eix (y+2 �n ) dy =

1
p

2�

Z �

� �

1X

n = �1

f̂ (y + 2 �n )eix (y+2 �n ) dy;

to obtain the third equation, we made the substitution y = t � 2n� . Hence

F (x) � f (x) =
1

p
2�

1X

n = �1

(1 � e2i�xn )
Z �

� �
f̂ (y + 2 �n )eixy dy:

Here the term for n = 0 is 0, but the other terms are not, and they represent the distortions added
to the original signal

30.5 Anti-aliasing �lter

Aliasing is a real engineering both in image and in audio processing. Anti-aliasing �lters are used to
eliminate frequencies exceeding the Nyquist frequency. Inaudio processing, an analog �lter may be
applied to the incoming audio signal before analog-to-digital conversion; another �lter may be used
to prevent the distortions in the out-of-band frequencies to enter the analog signal. Digital cameras
also use anti-aliasing �lters. These can use various techniques, such asbirefringent 30.4 materials
that spread out the image of a single point to several (usually four) nearby points, thereby cutting
down on high spacial frequencies. Other techniques involvevibrating the optical sensor so as to
blur features of the image exceeding the Nyquist frequency (image processing is similar to audio
processing, but the image is represented in two spacial directions).

31 Solutions to problems

Solution of Problem 2.1. Let X = ( X 1; X 2; : : : X n )T a random column vector; without loss of
generality, we may assume that E(X k ) = 0 for each k with 1 � k � n. Writing A = ( aij ) for its
covariance matrix, we have

aij = E( X i X j ):

30.4 As in by-refringent, i.e., doubly refracting materials. These are mat erials that have refractive index depending on
the polarization and the direction of the incoming light.
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Now let x = ( x1; x2; : : : ; xn )T be an arbitrary n-dimensional column vector. We have

xT Ax =
nX

i =1

nX

j =1

x i aij x j =
nX

i =1

nX

j =1

x i E(X i X j ) x j = E
� nX

i =1

nX

j =1

x i X i x j X j

�

= E

 
� nX

i =1

x i X i

� 2
!

� 0:

This shows that A is indeed positive semide�nite.

Note. One can formulate this argument also in matrix form. Assuming, as before, that E(X ) =
0, the covariance matrix of X is A = E( XX T ). Hence, given an arbitrary n-dimensional column
vector x, we have

xT Ax = xT E(XX T )x = E( xT XX T x) = E
�
(xT X )(X T x)

�
= E

�
(X T x)T (X T x)

�
:

Note that X T x is the product of a 1� n matrix and an n � 1 matrix, so it is a 1 � 1 matrix, i.e., it
is a scalar. Hence it is its own transpose; that is (X T x)T = X T x. Thus,

xT Ax = E
�
(X T x)T (X T x)

�
= E

�
(X T x)(X T x)

�
= E

�
(X T x)2�

� 0;

as we wanted to show.

Solution of Problem 4.1. The characteristic equation of the recurrence equationyt = yt � 1 + yt � 2

is 1 = � + � 2, i.e., is � 2 + � � 1 = 0. The solutions of this equation are

� 1 =
� 1 +

p
5

2
=

 
1 +

p
5

2

! � 1

and � 2 =
� 1 �

p
5

2
=

 
1 �

p
5

2

! � 1

;

the easiest way to see these equations is by noting that� 1� 2 = � 1. Thus, the general solution of the
above recurrence equation is

yt = C1

 
1 +

p
5

2

! t

+ C2

 
1 �

p
5

2

! t

:

The initial conditions y0 = 0 and y1 = 1 lead to the equations

C1 + C2 = 0

and

C1
1 +

p
5

2
+ C2

1 �
p

5
2

= 1 :

It is easy to solve these equations. Multiplying the �rst equation by 1=2 and subtracting it from the
second equation, we obtain p

5
2

(C1 � C2) = 1 ;

that is
C1 � C2 =

2
p

5
;
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Adding the �rst equation to this, we obtain 2 C1 = 2=
p

5, or elseC1 = 1=
p

5. Substituting this into
the �rst equation, we obtain C2 = � 1=

p
5. With these values forC1 and C2, the formula for yt gives

yt =
1

p
5

 
1 +

p
5

2

! t

�
1

p
5

 
1 �

p
5

2

! t

:

Solution of Problem 4.2. The di�erence operator

(B � 3)3

will lower the degree of the polynomial in the �rst term to 0 (i .e., it will change the term into c� 3� t

with a nonzero c), while it will not change the degrees of the other polynomials. The di�erence
operator

(B � 2)5

will annihilate the second term, while it will not change the degrees of the polynomials in the other
terms. Finally, the di�erence operator

(B � 5)3

will annihilate the third term, while it will not change the d egrees of the polynomials Hence the
product of these di�erential operators,

(B � 3)3(B � 2)5(B � 5)3

will change the �rst term into c � 3� t with a nonzero c, while it will annihilate the second and the
third terms.

This argument can be used to show that if

c1t3 � 3� t + c2t4 � 2� t + c3t2 � 5� t � 0;

then we must havec1 = 0. Similar arguments can be used to show that we must also have c2 = 0
and c3 = 0; hence the terms t3 � 3� t , t4 � 2� t , and t2 � 5� t are linearly independent.

Solution of Problem 5.1. Let the events A be de�ned as A be the event A = ( X 6= 0); further,
let A1 = ( X � 1), and for n > 1 let An =

�
1=(n � 1) > X � 1=n

�
. We have

A =
1[

n =1

An :

As the eventsAm \ An = 0 if m 6= n, this implies that

P(A) =
1X

n =1

P(An ):

As P(A) > 0, there is ann � 1 such that P(An ) > 0. With this n we have

E(X 2) � P(An ) �
1
n2 > 0:
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Solution of Problem 5.2. We may assume that P(X 6= 0) > 0, since otherwise E(XY ) = 0, so
the inequality to be proved clearly holds. Then, according to Problem 5.1, E(X 2) > 0. Let � be an
arbitrary real number. Then, again by Problem 5.1, the equation

E
�
(�X + Y)2�

= 0

can hold only if �X + Y = 0 almost surely. As X 6= 0 with positive probability, this equation can
only hold for a single value of� .

Now,
E

�
(�X + Y)2�

= � 2 E(X 2) + 2 � E(XY ) + E( Y 2):

Considering
� 2 E(X 2) + 2 � E(XY ) + E( Y 2) = 0

as a quadratic equation for � with the various expectation as coe�cients,31.1 this equation has at
most one real solution, Hence its discriminant cannot be positive. That is,

�
2 E(XY )

� 2
� 4 E(X 2) E(Y 2) � 0:

Rearranging this, we obtain the inequality to be proved.

Solution of Problem 5.3. We have

Corr(X; Y ) =
E

� �
X � E(X )

��
Y � E(Y )

� �

r

E
� �

X � E (X )
� 2

�
E

� �
Y � E (Y )

� 2
� :

This is between� 1 and 1 in view of Schwarz's inquality (cf. Problem 5.2). The assertion is true also
when X and Y are complex-valued random variables, since Schwarz's inequality is also true in the
complex case (cf. Problem 17.1).

Solution of Problem 7.1. These equations, properly arranged, give us a way to evaluate the
coe�cients  n;t and the moments E(e2

t ). Let t � 0 and n with 0 � n � t be integers, and assume
 n 0;t 0 have been calculated for all pairs (n0; t0) such that 0 � t0 < t and 0 � n0 � t0 or t0 = t and
n < n 0 � t ; also assume that E(e2

k ) has been calculated for allk with 0 � k < t .
We can start out this calculation in case t = 0 by noting that

E(e2
0) = E(Y 2

0 )

according to equation (7.10) with t = 0. If t > 0 then  t;t can be calculated from equation (7.11)
with n = t, since the only term on the right-hand side involvesl = 0, and � n � l;n = � 0;0 = 1 in this
case according to equation (7.7). That is,

 t;t = E( Yt Y0)=E(e2
0):

If 0 < n < t then  n;t can be calculated from the same equation (7.11), since for all the coe�cients
all the quantities on the right-hand side are known except for the  n;t , which occurs for l = t � n as
part of the term

 0;t � n  n;t E(e2
t � n ) =  n;t E(e2

t � n );

31.1 This equation is a genuine quadratic equation, since E( X 2 ) 6= 0, that is, the coe�cient of � 2 is not zero, according
to what we said above.

127



the equation here holds in view of equation (7.7).31.2 That is,

 n;t =
�
E(e2

t � n )
� � 1

�
E(Yt Yt � n ) �

t � n � 1X

l =0

 t � n � l;t � n  t � l;t E(e2
l ):

�

Finally, for n = 0 we have  n;t = 1 according to equation (7.7).
As the �nal step, we can use equation (7.8) to evaluate E(e2

t ):

E(e2
t ) = E( Y 2

t ) �
t � 1X

l =0

 2
t � l;t E(e2

l ):

Solution of Problem 13.1. We have

Dn (t) sin
1
2

t = sin
1
2

t +
nX

k=1

2 coskt sin
1
2

t

= sin
1
2

t +
nX

k=1

 

sin
�

k +
1
2

�
t � sin

�
k �

1
2

�
t

!

= sin
�

n +
1
2

�
t ;

the second equation uses the fourth equation in (13.3), and the third equation results by cancela-
tions.31.3

Solution of Problem 13.2. According to equations (13.4) we have

(31.1) an =
1
�

Z �

� �
x cosnx dx = 0

for n � 0. The equation here holds since the integrand is an odd function31.4 so the integral on
[� �; 0] cancels the integral on [0; � ]. Further, by integration by parts we obtain

(31.2)
bn =

1
�

Z �

� �
x sinnx dx = �

1
�

x
cosnx

n

�
�
�
x = �

x = � �
+

1
�

Z �

� �

cosnx
n

dx

= �
1
�

x
cosnx

n

�
�
�
x = �

x = � �
+

1
�

sinnx
n2

�
�
�
x = �

x = � �
= �

2(� 1)n

n
;

the last equation holds because cosn� = ( � 1)n and sinn� = 0 for integer n. Hence the Fourier
series off (x) is

�
1X

n =1

2(� 1)n

n
sinnx:

31.2 For calculating  n;t we need to assume that E( e2
t � n ) 6= 0. However, in the case of E( et � n ) = 0 we do not need

to do any calculations, since in this case et � n = 0 almost surely according to Problem 5.1, and so  n;t occurs with
coe�cient 0 or almost surely 0 in the above equations, and so we can take  n;t to be anything (the best is to take
 n;t = 0 in this case.
31.3 That is, the sum telescopes, or collapses. A telescoping or collapsing sum is a sum of the type

nX

k =1

(ak +1 � ak ) = ( a2 � a1 ) + ( a3 � a2 ) + ( a4 � a3 ) + : : : + ( an +1 � an ) = an +1 � a1 :

31.4 The function f is odd if f (� x) = � f (x).
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Solution of Problem 13.3. With f (x) as in Problem 13.2, we have

1
�

Z �

� �

�
f (x)

� 2
dx =

1
�

Z �

� �
x2 dx =

1
�

2� 3

3
=

2� 2

3
:

Further, in Problem 13.2 an and bn are given by equations (31.1) and (31.2); using these equations,
we have

ja0j2 +
1X

n =1

�
jan j2 + jbn j2

�
=

1X

n =1

4
n2 :

According to equation (13.17), the right-hand sides of the last two displayed equations are equal,
establishing equation (13.18).

Solution of Problem 14.1. Assume the polynomialsP1(z) and P2(z) are di�erent. Then

P(z)
def
= P2(z) � P1(z)

is a nonzero polynomial of degree less thanN such that P(zk ) = 0 for all k with 1 � k � N . Since
the numberszk are distinct, this is a contradiction, since a nonzero polynomial of degree less thanN
cannot haveN zeros.

Solution of Problem 15.1. Let

P : � 1 = x0 < x 1 < x 2 < : : : < x n = 1

be a partition and let � i 2 [x i � 1; x i ] be a tag for eachi with 1 � i � n. Let k = k(P) with 1 � k � n
be such that x i < 0 for i < k and x i � 0 for i � k; clearly, k depends on the partition P. Then

g(x i ) � g(x i � 1) =

(
1 if i = k;
0 if i 6= k:

(1 � i � n):

Hence

S(P) =
nX

i =1

f (� i )
�
g(x i ) � g(x i � 1)

�
= f (� k ) = f (� k (P ) );

S(P) depends on also on the tags, not just onP, but this dependence is not indicated. Making
kPk ! 0, we have� k (P ) ! 0. Sincef is continuous at 0, we have

Z 1

� 1
f (x) dg(x) = lim

kP k! 0
S(P) = lim

kP k! 0
f (� k (P ) ) = f (0):

Solution of Problem 15.2. Formula (15.3) can be written with a sum instead of a Stieltjes
integral as

(31.3) ~f (x) =
1
N

N � 1X

k=0

f (xk )DM (x � xk ):

Solution of Problem 15.3. Instead of substituting the coe�cients an and bn from equations
(13.4) into equation (13.5), we now substitute equations (14.13) into (14.14), the calculations given
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in formula (13.8) can be repeated with only minor changes:

(31.4)

f (xn ) =
1

2�

Z �

� �
f (y) d! N (y) +

1
�

MX

k=1

Z �

� �
f (y)(cosky coskxn + sin ky sinkxn ) d! N (y)

=
1

2�

Z �

� �
f (y)

�
1 + 2

MX

k=1

cosk(y � xn )
�

d! N (y) =
1

2�

Z �

� �
f (y)DM (y � xn ) d! N (y):

It is probably best to stop at this point, and not pursue the rest of the calculations in formula (13.8)
since the next step is a change of variable in the integral, and to do this, we would need to use
Theorem 15.3, and the expression we obtain that way would result in some complications. Since
D(x) = D(� x) for all x, the above equation can also be written as

f (xn ) =
1

2�

Z �

� �
f (y)DM (xn � y) d! N (y):

This establishes equation (15.4).

Solution of Problem 15.4. Let N = 2M , and de�ne bM in analogy with the second equation as

bM
def
=

2
N

N � 1X

n =0

f (xn ) sin M (xn � x0)

According to equation (14.1), we haveM (xn � x0) = n� , and so equation (14.9) implies

bM =
2
N

N � 1X

n =0

f (xn ) sin n� = 0

since sinn� = 0 for all integers n, we can rewrite formula (14.18) as

f (xn ) =
a0

2
+

M � 1X

k=1

(ak coskxn + bk sinkxn )

+
1
2

�
aM cos

�
M (xn � x0)

�
+ bM sin

�
M (xn � x0)

� �
(0 � n < N ):

Then, similarly as in equation (31.4) we have

f (xn ) =
1

2�

Z �

� �
f (y) d! N (y) +

1
�

M � 1X

k=1

Z �

� �
f (y)(cosky coskxn + sin ky sinkxn ) d! N (y)

+
1

2�

Z �

� �
f (y)

�
cos

�
M (y � x0)

�
cosM (xn � x0)

+ sin M (y � x0) sin
�
M (xn � x0)

� �
d! N (y)

=
1

2�

Z �

� �
f (y)

�
1 + 2

M � 1X

k=1

cosk(y � xn ) + cos M (y � xn )
�

d! N (y)

This formula can be written as

f (xn ) =
1

2�

Z �

� �
f (y)D mod

M (y � xn ) d! N (y);
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where

D mod
M (t)

def
= 1 + 2

M � 1X

k=1

coskt + cos Mt = DM � 1(t) + cos Mt

is the modi�ed Dirichlet kernel. 31.5

Solution of Problem 17.1. We will only consider the case whenV is an inner product space
over C, since the proof for that case also works whenV is an inner product space overR, except
that in this latter case complex conjugation has no e�ect. The proof is similar to the one given
in the solution of Problem 5.2, except that taking complex inner products causes minor additional
complications.

We may assume thathx; yi 6= 0, since otherwise the inequality to be proved clearly holds; then
we also havex 6= 0. Let � be a complex number. Then, by Clause (a) of De�nition 17.1 of inner
product, we have

h�x + y; �x + yi � 0;

and equation here holds only if�x + y = 0. Since we assumed thatx 6= 0, this equation can only
hold for a single value of� if at all. Hence

(31.5)

0 � h �x + y; �x + yi = h�x; �x i + h�x; y i + hy; �x i + hy; yi

= � � � hx; x i + � � hx; yi + � hy; xi + hy; yi

= j� j2hx; x i + 2<
�
� hx; yi � �

+ hy; yi ;

the third equation holds since � � � = j� j2, and, with z = � hy; xi = � hx; yi � , we havez� = � � hx; yi
according to Clause (b) of De�nition 17.1, and z� + z = 2<z, where the <z denotes the real part
of z. Let

� 0 =
jhx; yij
hx; yi � ;

and put � = �� 0, where� is an arbitrary real (recall that we assumed that hx; yi 6= 0). Then j� 0j = 1
and soj� j2 = � 2. Further, the expression

� hx; yi � = �� 0hx; yi � = � jhx; yij

is real, and so<
�
� hx; yi �

�
= � jhx; yij . Thus, inequality (31.5) becomes

(31.6) � 2hx; x i + 2 � jhx; yij + hy; yi � 0:

According to what we said about the former inequality, we have equality here for at most one real
value of � .31.6 Hence the equation

� 2hx; x i + 2 � jhx; yij + hy; yi = 0 :

is a quadratic equation for � with real coe�cients (recall that hx; x i 6= 0 by Clause (a) of De�nition
17.1 of inner product, sincex 6= 0). that has at most one real solution. Hence its discriminant
cannot be positive. That is, �

2hx; yi
� 2

� 4hx; x ihy; yi � 0:

31.5 The modi�ed Dirichlet kernel is often denoted as D �
M (t ); we avoided this notation, since we use the asterisk to

denote complex conjugate.
31.6 Saying that � is real is important here, since this inequality does not even have to ho ld if � is not real. This
inequality is a consequence of inequality (31.5) only for real � . This is because the equation < � hx; y i � = � jhx; y ij
holds only for real � .
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Rearranging this, we obtain the inequality to be proved.

This solution can be greatly shortened by taking

� = �
jhx; y ij 2

hx; x ihx; y i �
= �

hx; y ihx; y i �

hx; x ihx; y i �
= �

hx; y i
hx; x i

in inequality (31.5). Indeed, this choice corresponds to the choice

� = �
jhx; y ij
hx; x i

;

which is the value of � for which the left-hand side of inequality (31.6) assumes its minimum. Such a
shortening is, however, no real simpli�cation, since it is a chieved by skipping the explanation why this
choice of � is taken.

Solution of Problem 17.2. As in the solution of Problem 17.1, we assume thatV is an inner
product space overC. We have

(kxk + kyk)2 = kxk2 + 2kxkkyk + kyk2 � h x; x i + 2 jhx; yij + hy; yi

� h x; x i + 2< (hx; yi ) + hy; yi = hx; x i + hx; yi + hx; yi � + hy; yi

= hx; x i + hx; yi + hy; xi + hy; yi = hx + y; x + yi = kx + yk2;

here the �rst inequality follows from Schwarz's inequality, established in the solution of Problem 17.1.

Solution of Problem 17.3. We have

lim
n !1

�
�hg; f n � f i

�
� � j lim

n !1
(kgk kf n � f k)1=2

according to Schwarz's inequality. The limit on the right is 0 in view of our assumptions. This
establishes the assertion to be proved.

Solution of Problem 17.4. We need to show that h�; �i satis�es Clause (b) in De�nition 17.1,
and that it satis�es Clause (c) also for complex � in the same de�nition. We can see the former as
follows:

hg; f i = hg; f i R + ihig; f i R = hf; g i R + ihf; ig i R

= hf; g i R + ihif; i 2gi R = hf; g i R + ihif; � gi R

= hf; g i R � i hif; g i R =
�
hf; g i R + ihif; g i R

� �
= hf; f i � ;

where the third equation holds according to equation (17.12). To see the latter, it is enough to show
that

hf; ig i = ihf; g i :

Indeed, we have

hf; ig i = hf; ig i R + ihif; ig i R = hif; i 2gi R + ihi 2f; i 2gi R

= hif; � gi R + ih� f; � gi R = �h if; g i R + ihf; g i R

= i
�
ihif; g i R + hf; g i R

�
= ihf; g i ;

where the second equation holds according to equation (17.12).
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Solution of Problem 17.5. According to Minkowski's inequality (Clause (c) of De�niti on 17.2)
we have

kf k = k(f � g) + gk � k f � gk + kgk;

and so
kf k � k gk � k f � gk:

Similarly,
kgk � k f k � k g � f k = kf � gk:

Putting the last two inequalities together, inequality (17 .14) follows.

Solution of Problem 17.6. According to equation (17.14), we have

jkf n k � k f kj � k f n � f k ! 0;

which is what we wanted to show.

Solution of Problem 20.1. We have

(31.7)

jf + gj2 � j f � gj2 = ( f + g) � (f + g) � (f � g) � (f � g)

= ( f � + g� )( f + g) � (f � � g� )( f � g)

= ( f � f + f � g + g� f + g� g) � (f � f � f � g � g� f + g� g) = 2 f � g + 2g� f:

Using this with if replacing f we obtain

jif + gj2 � j if � gj2 = � 2if � g + 2g� if:

Multiplying the second equation by i and adding the resulting equations, we obtain equation (20.9).

Solution of Problem 20.2. Similarly to equation (31.7), we have

kf + gk2 � k f � gk2 = hf + g; f + gi � h f � g; f � gi

=
�
hf; f i + hf; g i + hg; f i + hg; gi

�
�

�
hf; f i � h f; g i � h g; f i + hg; gi

�

= 2hf; g i + 2hg; f i :

Using this with if replacing f , we obtain

kif + gk2 � k if � gk2 = 2hif; g i + 2hg; if i = � 2ihf; g i + 2 ihg; f i :

Multiplying the second equation by i and adding the resulting equations, we obtain equation (20.12).

Solution of Problem 20.3. The necessity of equation (20.13) for the normk � k to be a norm
induced by a real- or complex-valued inner product on a vector spaceV over R or C can be easily
established. Indeed, assuming that

kf k2 = hf; f i for all f 2 V

for a real- or complex-valued inner product, for all f; g 2 V we have

kf + gk2 + kf � gk2 = hf + g; g+ f i � h f � g; g� f i

=
�
hf; f i + hf; g i + hg; f i + hg; gi

�
+

�
hf; f i � h f; g i � h g; f i + hg; gi

�

= 2hf; f i + 2hg; gi = 2kf k2 + 2kgk2:
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To show that equation (20.13) is su�cient for k:k to be induced by an inner product in caseV
is a normed vector space overR, de�ne a putative inner product as

(31.8) hf; g i
def
=

1
4

�
kf + gk2 � k f � gk2�

for all f; g 2 V:

It is easy to see that we then havehf; f i = kf k2, so if h�; �i is an inner product, then it induces the
norm k � k. We need to show that h�; �i is indeed an inner product, i.e., that it satis�es the clauses
in De�nition 17.1. This is clear for Clauses (a) and (b), the latter since h�; �i is real valued and
symmetric. Next, we will establish Clause (d).

To this end, we will �rst show that

(31.9) hf; g i + hf; h i =
1
2

h2f; g + hi :

We have

hf; g i + hf; h i =
1
4

�
kf + gk2 � k f � gk2�

�
1
4

�
kf + hk2 � k f � hk2�

=
1
4

�
kf + gk2 + kf + hk2�

+
1
4

�
kf � gk2 + kf � hk2�

Using equation (20.13), the right-hand side becomes

1
8

�
k(f + g) + ( f + h)k2 + k(f + g) � (f + h)j2

�

�
1
8

�
k(f � g) + ( f � h)k2 + k(f � g) � (f � h)j2

�

=
1
8

�
k2f + g + hk2 + kg � hk2�

�
1
8

�
k2f � g � hk2 + k � (g � h)k2�

=
1
8

�
k2f + ( g + h)k2 � k 2f � (g � h)k2�

=
1
2

h2f; g + hi ;

where the last equation follows from equation (31.8). This veri�es equation (31.9).
Now, it is easy to see from equation (31.8) thathf; 0i = 0. Hence

hf; g i = hf; g i + hf; 0i =
1
2

h2f; g i ;

where the last equality holds by equation (31.9). Putting this together with equation (31.9), we
obtain

(31.10) hf; g i + hf; h i = hf; g + hi ;

which establishes Clause (d) in De�nition 17.1.
By repeated addition, equation (31.10) implies that

(31.11) hf; �g i = � hf; g i :

for every positive integer � . As

hf; g i + hf; � gi = hf; 0i = 0 ;
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this equation also follows for all negative integersn. Hence we can conclude that

hf; g i =
1
�

�
f;

1
�

g
�

for all nonzero integers� by replacing g with (1 =� )g in equation (31.11). Therefore, we can conclude
equation (31.11) for all rational � .

To verify equation (31.11) for a given irrational � , let � n be a sequence of rationals such that
� n ! � . Then we have

lim
n !1

k(� n � � )gk = lim
n !1

j� n � � j kgk = 0 :

Hence, using equation (31.11) for rational� n replacing � , we have

� hf; g i = lim
n !1

� n hf; g i = lim
n !1

hf; � n gi = lim
n !1

1
4

�
kf + � n gk2 � k f � � n gk2�

=
1
4

�
kf + �g k2 � k f � �g k2�

= hf; �g i ;

here the third and �fth equations hold according to equation (31.8), and the fourth equation holds
according to equation (17.15). Thus equation (31.11) follows also for irrational � . This establishes
Clause (c) of De�nition 17.1, completing the proof that h�; �i is a real-valued inner product on V
over R.

Solution of Problem 20.4. The necessity of equation (20.13) was already established in the
solution of Problem 20.3. Assuming that this equation is satis�ed and considering V as a normed
vector space overR, it also follows from (the solution of) Problem 20.3. that there is an inner
product h�; �i R satisfying equation (31.8). That is,

hf; g i R =
1
4

�
kf + gk2 � k f � gk2�

for all f; g 2 V:

As kif k = ji jkf k = kf k for all f 2 V , this equation implies that

hf; g i R = hif; ig i R for all f; g 2 V:

Henceh�; �i R can be extended to a complex-valued inner product accordingto Problem 17.4.

Solution of Problem 20.5 Using equation (20.1), we have

f̂ (x) =
1

p
2�

Z 1

�1
f (y)e� ixy dy;=

1
p

2�

Z 1

�1
e� � 2 y2

e� ixy dy

=
1

p
2�

Z 1

�1
e� � 2 y2 � ixy dy =

1
p

2�

Z 1

�1
e�

�
�y � ix= (2 � )

� 2
� x 2 =(2 � )2

dy

= e� x 2 =(2 � )2 1
p

2�

Z 1

�1
e�

�
�y � ix= (2 � )

� 2

dy =
1
�

e� x 2 =(2 � )2 1
p

2�

Z 1

�1
e� t 2

dt;

one can think of the last step here as using the substitutiont = �y � ix=(2� ) where y and t are the
variables andx and � are parameters, but for a rigorous justi�cation one needs touse line integrals
in the complex plane. The integral on the right-hand side is

p
� according to equation (2.3); hence

f̂ (x) =
1

�
p

2
e� x 2 =(2 � )2

:
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