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1 Introduction

In these notes we present some aspects of time series, mainly mathematical rather than statistical.
There are many important mathematical issues that are often not discussed in time series text-
books. One needs a basic understanding of complex Taylor series and the behavior of solutions of
homogeneous linear difference equations to see the reason why certain models of stationary time
series assume that the polynomials involved have all their zeros outside the unit circle. Frequency
analysis demands some basic familiarity of Fourier series, the Fourier transform and trigonometric
interpolation. This is provided without getting involved with convergence issues, even though occa-
sionally we point out the presence of such issues. For example, at times we indicate that Riemann
integration theory is inadequate to deal with certain of the subtleties, and one needs Lebesgue in-
tegration theory; we, however, try to keep such discussions non-technical, so as to make it available
for advanced undergraduates. Wavelets are extremely important for time series, and, after a late
start, they are exerting an increasing influence in applications for finance, yet introductory tex-
books almost never discuss wavelets. Here we give the basic mathematical background, and not just
calculational algorithms. The Kalman filter is ubiquitous in its application; we provide the basic
mathematical background. An everyday cell phone uses wavelets for image representation, and it is
running several Kalman filters. The notes are written with advanced undergraduates in mind, and
issues of mathematical precision are often treated lightly. No applications are mentioned, and in
general we underemphasized aspects of time series that are adequately represented in introductory
texts. In particular, the book [11] gives an excellent coverage to these aspects. The book also gives
numerous examples as to how to use the R programming language to build practical models of time
series.

There are many footnotes in these notes, to provide additional insight where including these
comments in the main text would have interrupted the main flow of reasoning. In old times, printers
used to complain about footnotes, since it was hard to typeset them and to make sure that the page
had the correct size. This is no longer an issue with computerized typesetting, and the quantity
of footnotes is simply a matter of writing style. These notes were written in LaTeX running under
Debian Linux.
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2 The multivariate normal distribution

2.1 The single variable normal distribution

Let σ and µ be reals, and assume that σ > 0. The random variable X is said to have a normal
distribution with mean µ and standard deviation σ if its density function fX is

(2.1) fX(x) =
1√
2π σ

exp

(

− (x− µ)2

2σ2

)

.

The factor before the exponential ensures that

(2.2)

∫ ∞

−∞

fX(x) dx = 1.

This is easy to see, since

(∫ ∞

0

e−x2

dx

)2

=

∫ ∞

0

e−x2

dx

∫ ∞

0

e−y2

dy =

∫ ∞

0

∫ ∞

0

e−x2

e−y2

dy dx

=

∫∫

{(x,y): x≥0, y≥0}

e−x2−y2

dy dx =

∫∫

{(r,θ): r≥0, 0≤θ≤π/2}

e−r2r dr dθ.

The last integral was obtained by transforming the double integral in Cartesian coordinates to polar
coordinates. This last integral is easily evaluated by iterated integration; it equals

∫ π/2

0

∫ ∞

0

e−r2r dr dθ =

∫ π/2

0

∫ ∞

0

e−t 1

2
dt dθ =

∫ π/2

0

1

2
dθ =

π

4
;

the inner integral was evaluated by the substitution t = r2. This implies that

(2.3)

∫ ∞

−∞

e−x2

dx = 2

∫ ∞

0

e−x2

dx = 2

√

π

4
=

√
π.

As we said, From here (2.2) follows by a simple change of variable. The single variable normal
distribution with mean µ and standard deviation σ, i.e., variance σ2 is denoted as N (µ, σ2).

2.2 The multivariate normal distribution

Writing AT for the transpose of the matrix A, consider the random column vector X = (X1, X2,
. . ., Xn)

T . X is said to have a multivariate normal distribution if there is a random column vector
Z = (Z1, Z2, . . ., Zk)

T for some integer k with 0 ≤ k ≤ n whose components are independent
random variables2.1 each with distribution N (0, 1), an n×k matrix A of reals, and an n-dimensional
column vector µ such that

(2.4) X = AZ+ µ.

2.1What we mean here is that the whole collection of of these random variables is independent, which is a stronger
condition than saying that they are pairwise independent; the latter means that any two of them are independent. In
case we are given an infinite number of random variables, by their independence we mean that any finite subcollection
is independent. We will always use independence in this sense; when we mean pairwise independence, we will explicitly
say so.
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If k = n and A is a nonsingular matrix, then X is said to have a nondegenerate multivariate normal
distribution; if k < n or k = n and A is a singular n×n matrix, then X is said to have a degenerate
multivariate normal distribution.2.2 While the degenerate case is important for statistics, since it can
happen that the residuals in case of a least-squares fitting have a degenerate multivariate normal
distribution, discussing the degenerate case is more complicated with the means at our disposal,
since the joint density function does not exist in the degenerate case (this causes no difficulty with
more advanced tools from measure theory).

2.3 The covariance matrix

Write A = (aij)1≤i≤k 1≤j≤k, and µ = (µ1, µ2, . . . , µn)
T . Let p, q be integers with 1 ≤ p, j ≤ n. We

have Xp =
∑k

i=1 apiZi + µp and Xq =
∑k

j=1 aqjZj + µq. Let δij be Kronecker’s delta, that is

δij =

{

1 if i = j,

0 if i 6= j.

Using the independence of the Zi, we obtain

Cov(Xp, Xq) = E
(

(Xp − µp)(Xq − µq)
)

= E
(

k
∑

i=1

apiZi

k
∑

j=1

aqjZj

)

=
k
∑

i=1

k
∑

j=1

apiaqj E(ZiZj) =
k
∑

i=1

k
∑

j=1

apiaqjδij =
k
∑

i=1

apiaqi

Putting Σ = AAT , the right-hand side is the entry in the pth row and the qth column of Σ. For this
reason, Σ is called the covariance matrix of the random vector X. For a random vector X, we will
write Cov(X) for its covariance matrix.2.3 Note that if X is a random column vector and E(X) = µ

then

(2.5) Cov(X) = E
(

(X− µ)(X− µ)T
)

.

Indeed, if X = (X1, X2, . . . , Xn) and µ = (µ1, µ2, . . . , µn), then

(X− µ)(X− µ)T

is an n×n matrix with the entry (Xp−µp)(Xq−µq) in the pth row and qth column. Given a matrix
(Zpq) of random variables, its expectation is taken entry-wise, that is E

(

(Zpq)
)

=
(

E(Zpq)
)

.

2.4 The density function of a nondegenerate multivariate normal distri-

bution

While the degenerate case is important for statistics, since it can happen that the residuals in case of
a least-squares fitting have a degenerate multivariate normal distribution, discussing the degenerate
case is more complicated with the means at our disposal, since the joint density function does not

2.2We may require A to be an n × n matrix. If A is an n × k matrix, we can replace it with the n × n matrix A′

whose first k columns agree with those of A, and the remaining columns are zero.
2.3Note that there is no cause for confusion between the notation Cov(X,Y ), with two arguments, denoting the

covariance of two random variables and Cov(X), with a single argument, denoting the covariance matrix of the
random vector X.
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exist in the degenerate case (this causes no difficulty with more advanced tools from measure theory).
Hence, for discussing the density function, we assume that k = n and the matrix A is nonsingular.

Writing z = (z1, z2, . . ., zk)
T , the joint density function of Z is

(2.6) fZ(z
T ) = fZ(z1, z2, . . . , zn) = (2π)−n/2 exp

(

−1

2

n
∑

i=1

z2i

)

= (2π)−n/2 exp
(

−1

2
zT z

)

.

Assuming A is nonsingular, for x = Az + µ, writing we have z = A−1(x − µ). The Jacobian
matrix ∂z/∂x equals A−1. Let Σ = AAT be the covariance matrix discussed above. Then we have
detΣ = det(AAT ) = detAdetAT = (detA)2. Hence

(2.7)

∣

∣

∣

∣

det
∂z

∂x

∣

∣

∣

∣

= | det(A−1)| = (detΣ)−1/2.

Furthermore

(2.8) zT z = (x− µ)T (A−1)TA−1(x− µ) = (x− µ)TΣ−1(x− µ);

the last equation holds since Σ−1 = (AAT )−1 = (AT )−1A−1. Note that zT z =
∑n

i=1 z
2
i ≥ 0 unless

z = 0. Thus, the above equation with y = x − µ shows that yΣy > 0 unless y = 0 (note that
y = A−1z = 0 only if z = 0). Hence, the matrix Σ is positive definite – see [23, §35, pp. 159–]. We
cannot recover the matrix A from Σ, there is, however, a unique positive definite matrix A′ such that
(A′)2 = Σ. We call A′ as the square root of Σ. and we write

√
Σ for this matrix,

√
Σ is symmetric

and it commutes with Σ – see [24, Subsection 9.5, p. 27]. For the density function fX we have

fZ(z
T )

n
∏

i=1

dzi = fZ(z
T )

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

n
∏

i=1

dxi = fX(x)
n
∏

i=1

dxi.

Thus, by equations (2.6) (2.7), and (2.8), we have

(2.9) fX(xT ) = (2π)−n/2(detΣ)−1/2 exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

.

According to this formula, if we take A′ =
√
Σ, and X′ = AZ+ µ, then X and X′ have exactly the

same density functions, and so X = X′. So, in our considerations, we may, without loss of generality,
assume that A is a positive definite symmetric matrix.2.4

2.5 Marginal distributions of the multivariate normal distribution

Given a positive definite symmetric matrix Σ, the matrix Σ−1 is also positive definite. This is
because, given any nonzero column vector x, with A =

√
Σ, put u = A−1x, we have

xTΣ−1x = (Au)TΣ−1(Au) = uTATΣ−1Au = uTΣ−1AAu = uTΣ−1Σu = uTu > 0;

For the third equation, note that A is symmetric and it commutes with Σ, and therefore also
with Σ−1; namely multiplying the equation AΣ = ΣA by Σ−1 from both left and right, we obtain
Σ−1A = AΣ−1.

2.4That is, it is positive definite if it is nonsingular. In the singular case we can only assume that it is positive
semidefinite. We will comment on the case of singular A at the end.
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Writing y = x− µ, y = (y1, y2, . . . , yn)
T , and P = (pij) = Σ−1 we have

(2.10)

(x− µ)TΣ−1(x− µ) = yTPy =

n
∑

i=1

n
∑

j=1

yipijyj

= p11y
2
1 + 2y1

n
∑

i=2

p1iyi +
n
∑

i=2

n
∑

j=2

yipijyj

= p11

(

y1 +

n
∑

i=2

p1i
p11

yi

)2

−
n
∑

i=2

p21i
p11

y2i +

n
∑

i=2

n
∑

j=2

yipijyj

= p11

(

y1 +

n
∑

i=2

p1i
p11

yi

)2

+

n
∑

i=2

n
∑

j=2

yi

(

pij − δij
p21i
p11

)

yj

where in the third equation we made use of the fact that pij = pji.
Substitute this into (2.9) and integrate with respect to dx1. Noting that dx1 = dy1, we will use

the substitution

t =
1√
2

√
p11

(

y1 +

n
∑

i=2

p1i
p11

yi

)

;

observe that p11 > 0 since p is positive definite; – see [23, §35, pp. 159–]. Writing y2 = (y2, y3, . . . , yn)
T ,

equation (2.3) gives that the marginal density of X2 = (X2, X3, . . . , Xn)
T equals

fX2
(y2)

T ) =

∫ ∞

−∞

fX(y)T ) dx1 = (2π)−n/2(detΣ)−1/2
√
π
√
2(p11)

−1/2

exp



−1

2

n
∑

i=2

n
∑

j=2

yi

(

pij − δij
p21i
p11

)

yj





= (2π)−(n−1)/2(detΣ)−1/2(p11)
−1/2 exp



−1

2

n
∑

i=2

n
∑

j=2

yi

(

pij − δij
p21i
p11

)

yj



 .

This has the form of the density function of a multivariate normal distribution. To make sure that
it is indeed represents multivariate normal distribution, we only need to ascertain that the matrix
with entries

(

pij − δij
p21i
p11

)

(2 ≤ i, j ≤ n)

is positive definite, i.e., that
n
∑

i=2

n
∑

j=2

yi

(

pij − δij
p21i
p11

)

yj > 0

unless y2 = y3 = . . . = yn = 0. This is however immediate, since the the expression is identical to the
right-hand side of (2.10) for the choice of y1 that makes the expression under the square in the first
term there zero, since we know that his right-hand side is positive unless y1 = y2 = . . . = yn = 0.

Once we know that the marginal density of X2 is a multivariate normal distribution, we can write
this density function in a simpler form since the covariance matrix of X2 is the matrix obtained by
deleting the first row and the first column of Σ (since the covariances of Xi and Xj are the entries
of Σ).

9



2.6 The degenerate normal distribution

If the matrix A in equation (2.4) is singular, we are led to a degenerate normal distribution, and
the discussion in Subsection 2.4 breaks down because the matrix Σ is singular; in this case Σ is only
positive semidefinite (that is xΣx ≥ 0 always, but it can equal 0 even if x 6= 0). However, if ǫ > 0
and I is the n×n identity matrix, then the matrix Σ+ ǫI is nonsingular. This is because a matrix is
singular if and only if 0 is one of its eigenvalues. As Σ is positive semidefinite, all its eigenvalues are
nonnegative real numbers, and all the eigenvalue of Σ + ǫI are of form λ+ ǫ with λ and eigenvalue
of Σ. The singular case then can be handled with replacing Σ by Σ + ǫI, and making ǫ ց 0. The
density function will exist for all ǫ > 0, and so does the joint distribution function. The limit of the
joint distribution when ǫ ց 0 will define the joint distribution function for ǫ = 0, while the joint
density function will remain undefined. One needs some machinery from measure theory to define
the density function (or, rather, more properly, the density measure) in case ǫ = 0.

2.7 Independence and no correlation

We have the following

Theorem 2.1. Assume the random variables X and Y have a joint normal distribution. If Cov(X,Y ) =
0 then X and Y are independent.

Proof. Assume Cov(X,Y ) = 0; then the covariance matrix Σ of (X,Y ) has form

Σ =

(

σ2
X 0
0 σ2

Y

)

.

If σX = 0 then X is constant with probability 1, in which case X and Y are independent; similarly,
if σY = 0. If σX 6= 0 and σY 6= 0, then Σ is nonsingular, and we have

Σ−1 =

(

σ−2
X 0
0 σ−2

Y

)

.

The joint density function of X and Y is given by

fX,Y (x, y) =
1

2πρXρY
exp

(

− (x− µ1)
2

2σ2
X

− (y − µ2)

2σ2
Y

)

according to (2.9), and so fX,Y (x, y) = fX(x)fY (y), since fX and fY is given by (2.1) with appro-
priate modifications.

This result naturally extend to two vector variables X and Y having a joint normal distributions.
If in the joint covariance matrix, each entry involving an X component and a Y component is zero,2.5

then X, and Y are independent as vector variables, that is that is, for joint the density function we
have

fX,Y(x,y) = fX(x)fY(y).

The proof of this is similar to that of the above theorem; we omit the details.

2.8 Problem

Problem 2.1. Given a positive integer n, an n × n matrix A with real entries is called positive
semidefinite if xTAx ≥ 0 for every n-dimensional column vector x with real components. Assume X
is a random column vector with real entries. Show that its covariance matrix is positive semidefinite.
2.5In this case, one says that X and Y are uncorrelated.
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3 Some background from complex function theory

The theory of complex functions of a single variable is an extension of single variable calculus, in that
the functions are defined in a part of the complex plane, and the values are also complex numbers.
Such a function f defined on a disk D = {z ∈ C : |z − a| < r}, where a is a complex number, r is
a positive real, and C denotes the set of complex numbers, is called differentiable in D if for any
z ∈ D the limit

lim
ζ→z

f(ζ)− f(z)

ζ − z

exists, and this limit is denoted as f ′(z) and is called the derivative of f at z. So far this is the
same definition as given in real variable calculus, but the requirement for differentiability much more
stringent. To explain this, note that is z = x+ iy where x and y are real, then f(z) can be written
as

f(z) = u(x, y) + iv(x, y),

where u and v are real functions of two real variables. The existence of the limit above means, in
particular, that, for real h the limits

lim
h→0

f
(

(x+ h) + iy
)

− f(x+ iy)

h

and

lim
h→0

f
(

x+ i(y + h)
)

− f(x+ iy)

ih

are equal. The equation of these limits can be written in terms of the functions u and v as

∂

∂x
u(x, y) =

∂

∂y
v(x, y) and − ∂

∂y
u(x, y) =

∂

∂x
v(x, y).

These equations are called the Cauchy–Riemann equations. We will have no use for them in what
follows, we mention them only to underline the differences between real and complex analysis.

The rules of differentiation (differentiation of sums, products, fractions, and composition of
functions) are the same in complex variables as in real variables, but there are some features in
complex analysis that are very different from what we know in real analysis. In particular, if f is
differentiable in D then f ′ is also differentiable in D – nothing like this is true for real variables.
Furthermore, if f is differentiable in D, then the Taylor series

∞
∑

k=0

f(k)(a)

k!
(z − a)k

absolutely converges to f in D.
The above facts have the following consequence, important for time series: if P (z) and Q(z)

are polynomials, and Q(z) has no zeros in D, then the Taylor series of P (z)/Q(z) at a absolutely
converges in D. We will need this result with a = 0. If P (z) and Q(z) have real coefficients and a
is real, then the Taylor series is P (z)/Q(z) at a will have real coefficients, since the whole Taylor
series can be determined by staying within the realm of real numbers. Determining the coefficients
by repeated differentiation is usually to time-consuming, and it is easier to use polynomial division
to do this in case a = 0, the main case of interest to us. The usual method of dividing polynomials
can be used, but the polynomials need to be arranged in increasing powers, and the terms with the
lowest power need to be divided at each step.

11

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
https://en.wikipedia.org/wiki/Bernhard_Riemann


3.1 The natural exponential function with a complex argument

There are several ways to extend the natural exponential function expx = ex for complex values of
x. One is to use the Taylor series

ex =
∞
∑

n=0

xn

n!
,

another one is using the limit

ex = lim
n→∞

(

1 +
x

n

)n

;

the latter approach has more intuitive appeal – see [25]. In the quoted note, one can find a proof of
Euler’s equation

(3.1) eix = cosx+ i sinx,

where i is the imaginary unit. This equation is true for real and complex values of x; in [25], the
proof given only for real x.3.1

4 Homogeneous linear recurrence equations

An equation of form

(4.1)

m
∑

k=0

akyt−k = 0 (a0 6= 0, am 6= 0, m > 0, −∞ < t < +∞)

is called a recurrence equation, more precisely, a homogeneous linear recurrence equation. (If the
right-hand side is replaced with some function of t that is not identically zero, then what he get
is called an inhomogeneous recurrence equation. In this section, we will only discuss homogeneous
recurrence equations.) Here ak for integers k with 0 ≤ k ≤ m are given numbers, and we seek
solutions yn such that these equations are satisfied for all nonnegative integers n. m is called the
order of this equation. The assumptions a0 6= 0 and am 6= 0 are reasonable in the sense that if
either of these assumptions fail, the equation can be replaced with a lower order equation. It will
be advantageous to work with complex numbers; i.e., the numbers ak and yn will be allowed to be
complex. It is convenient to consider a solution of this equation as a vector

y = 〈. . . , y−2, y−1, y0, y1, y2, . . .〉

with two-way infinitely many components. These vectors can be added componentwise, that is

〈. . . , y−2, y−1, y0, y1, y2, . . .〉+ 〈. . . , z−2, z−1, z0, z1, z2, . . .〉
= 〈. . . , y−2 + z−2, y−1 + z−1, y0 + z0, y1 + z1, y2 + z2, . . .〉,

and can be multiplied by scalars, that is

α〈. . . , y−2, y−1, y0, y1, y2, . . .〉 = 〈. . . , αy−2, αy−1, αy0, αy1, αy2, . . .〉.
3.1Euler’s equation has an appealing intuitive content for real x if one considers the extension of expx for complex
x using the limit above. The equation is easy to prove for complex x if one uses the Taylor series of expx, cosx, and
sinx, but such a proof has no intuitive content.
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The solution vectors form an m-dimensional vector space. First, they form a vector space, since if y
and z are solutions then αy+ βz is also a solution. It is also clear that the dimension of this vector
space is m since each solution is determined if we specify the number yi for m consecutive integer,
for example, for each each integer i with 0 ≤ i ≤ m − 1 (indeed, yt for j ≥ m is then determined
by the recurrence equation, as a0 6= 0 and am 6= 0), and the numbers yi for these m consecutive
integers can be specified arbitrarily.

Write

(4.2) P (ζ) =

m
∑

k=0

akζ
k.

The polynomial P (ζ) is called the characteristic polynomial of the recurrence equation (4.1), and the
polynomial equation P (ζ) = 0 is called its characteristic equation. Here ζ is a complex variable.4.1

4.1 The forward and backward shift operators

The backward shift operator B on functions of defined on the set of all integers Z is given by writing
Bf(t) = f(t − 1);4.2 The powers of the operator B can be defined by Bnf(t) = B

(

Bn−1f)f(t)
)

in addition, we can also use the identity operator I. Polynomials of the operator B will be called
difference operators.4.3 yt will be considered as a function of n, and the operator B on yt will act
according to the equation Byt = yt−1.

4.4 The recurrence equation (4.1) can be written in terms of
the operator B as

(4.3)
(

m
∑

k=0

akB
k
)

yt = 0 (t ∈ Z).

The forward shift operator on function defined on the set of all integers Z given by writing Ef(t) =
f(t+1). We have B = E−1, so equation (4.3) can also be written as P (E−1)yt = 0. Multiplying both sides
by Em (the degree of P (ζ)) makes no difference, since this equation is supposed to hold for all t ∈ Z, so this
equation is more conveniently written as

EmP (E−1)yt = 0.

Observe that Q(ζ)
def
= ζmP (ζ−1) is also polynomial, and this is called the characteristic polynomial of

equation (4.1) when the equation is written in terms of the forward shift operator. When discussing difference

equations, usually the forward shift operator is used, but in the theory of time series it is more common to

use the backward shift operator. The solutions of equation (4.2) will be discussed in terms of the zeros of

4.1Or an indeterminate, from an alternative viewpoint. An indeterminate is a symbolic variable used in defining a
polynomial ring, and is not to be interpreted as representing a number.
4.2The backward shift operator is always associated with a variable; if more than one variable were associated with

backward shift operators, the notation should indicate the variable in question as well, for example Et would shift
the variable t forward, while Es would shift the variable s, etc.

In a more rigorous treatment, however, B always acts on the function, and not the variable. That is, Bf is the
function such that (Bf)(t) = f(t− 1) for all t. It is, however, useful to maintain the fiction that B acts on a variable
in order not to complicate the notation too much.
4.3A basic difference operation is the backward difference operator ∇ = I−B. Since we have B = I−∇, a recurrence

equation can also be written in terms of the backward difference operator. For this reason, a recurrence equation is
also called a difference equation.
4.4It would be formally more correct, but less convenient, to say that B acts on vectors y〈. . . , y−2, y−1, y0, y1, y2, . . .〉.

In fact, properly, the vector y can be considered a function on the set of integers Z, where yt stands for y(t).
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the equation P (ζ) = 0. Since P (ρ) = 0 if and only if Q(1/ρ) = 0.4.5 Hence, results stated in terms of the

zeros of P (ζ) can easily be also described in terms of the zeros of Q(ζ); in fact, the latter description is more

common – except when discussing time series.

By solving the characteristic equation, the characteristic polynomial can be factored as the
product of m linear factors; assuming that λj is a zero4.6 of multiplicity mj of the characteristic
polynomial for j with 1 ≤ j ≤ N (the λj ’s are assumed to be pairwise distinct), we have

m
∑

k=0

akζ
k = am

N
∏

j=1

(ζ − λj)
mj , where

N
∑

j=1

mj = m;

the second equation here just says that the above polynomial equation (of degree m) has m roots,
counting multiplicities. The difference operator in recurrence equation (4.3) has a corresponding
factorization:

m
∑

k=0

akB
k = am

N
∏

j=1

(B − λj)
mj ;

here B − λj could also have been written as B − λjI, but the identity operator is often omitted
when is has a number coefficient. This is because the rules of algebra involving polynomials of the
variable ζ and polynomials of the forward shift operator B are the same.4.7

The degree of a polynomial P (t) of t will be denoted by degP (t); the constant polynomial that
is not identically zero will have degree zero, and the identically zero polynomial will have degree −1.
Then we have

Lemma 4.1. Let λ and η be nonzero complex numbers, and let P (t) be a polynomial of t that is not
identically zero. Then

(B − λ)P (t)η−t = Q(t)η−t,

where Q(t) is another polynomial of t such that degQ(t) = degP (t) if λ 6= η and degQ(t) =
degP (t)− 1 if λ = η.

Proof. Given an integer k ≥ 0, we have

(B − λ)tkη−t = (t− 1)kη−(t−1) − λtkη−t =
k
∑

j=0

(

k

j

)

tj(−1)k−jη−t+1 − λtkη−t

=



(η − λ)tk + η

k−1
∑

j=0

(

k

j

)

tj(−1)k−j



 η−t;

the second equality was obtained by using the Binomial Theorem. This equation says it all; if λ = η
then the term involving tk will cancel, and if λ 6= η then this term will not cancel. In the former
case, the operator lowers the degree of tk in the term tkη−t by one. (In this case, if tk is the term
of the highest degree of the polynomial P (t), then the resulting term −η

(

k
1

)

tk−1η−t will not cancel
against the terms resulting from lower degree terms of P (t), since the degrees of those terms will
also be lowered.) The proof is complete.
4.5ρ = 0 cannot happen here, since P (0) = a0 6= 0 by our assumptions. Similarly, Q(0) = am 6= 0.
4.6A zero of a polynomial is a root of the equation obtained by equating the polynomial to zero.
4.7In particular, given complex numbers λ and η the operators B − λ and B − η commute; that is

(B − λ)(B − η) = (B − η)(B − λ).

Note that B does not commute with expressions involving t. For example, tBt2 = t(t− 1)2, and t2Bt = t2(t− 1).
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4.2 Linear independence of certain functions

Functions here mean functions on Z; instead of the word “function” we could have used the phrase
“two-way infinite sequence.” The lemma just established has several important corollaries.

Corollary 4.1 (Linear Independence). Let r ≥ 1 be an integer. Let fk(t) = Pk(t)λ
−t
k be functions

of t for k with 1 ≤ k ≤ r, where Pk(t) is a polynomial of t that is not identically zero, and λk is
a nonzero complex number, such that if 1 ≤ k < l ≤ r then either λk 6= λl, or if λk = λl then
degPk(t) 6= degPl(t). Then the functions fk are linearly independent.

Proof. Assume, on the contrary, that we have

r
∑

k=1

ckPk(t)λ
−t
k ≡ 0,

where not all the complex coefficients ck are zero (≡ here means that equality holds identically; in
the present case this means that equality holds for every integer t). We will show that this equation
cannot hold. To this end, without loss of generality, we may assume that none of the coefficients
are zero, since the terms with zero coefficients can simply be discarded. Further, we may assume
that among the terms Pk(t)λ

−t
k the polynomial P1(t) is the one that has the highest degree (other

polynomials Pk(t) with nonzero ck for λk 6= λ1 may have the same degree, but not higher). Let d
be the degree of P1(t). Then

(B − λ1)
d
(

∏

k:2≤k≤r,

λk 6=λ1

(B − λk)
d+1
)

r
∑

k=1

ckPk(t)λ
−t
k = cλ−t

1 ,

with a nonzero c. The product is taken for all k for which λk is different from λ1.
4.8 The reason

for this equation is that the difference operator (B − λk)
d+1 annihilates the term Pk(t)λ

−t
k when

λk 6= λ1 according to the Lemma 4.1 above, (since degPk(t) ≤ d). These operators will not
change the degree of the polynomial in the term P1(t)λ

−t
1 according to the same Lemma (because

λk 6= λ1). The operator (B−λ1)d will annihilate the term Pk(t)λ
−t
k in case λk = λ1 and k 6= 1 (since

degPk(t) < d in this case, according to our assumptions). Finally, the operator (B − λ1)
d lowers

the degree of P1(t) by d in the term P1(t)λ
−t
1 according to the Lemma (while none of the other

operators change the degree of P1(t) in this term, as we mentioned). Hence, after the application
of the above difference operators, the resulting function will be cλ−t

1 with c 6= 0; this confirms the
above equation. So, applying the difference operator to both sides of the equation expressing linear
dependency, we obtain that

cλ−t
1 ≡ 0,

while c 6= 0. This is a contradiction since λ1 6= 0 according to assumptions, showing that the
functions in question are linearly independent.

4.3 The solution of the recurrence equation

Corollary 4.2 (Solution of the Homogeneous Equation). Assuming

m
∑

k=0

akζ
k = am

N
∏

j=1

(ζ − λj)
mj , where

N
∑

j=1

mj = m,

4.8This arrangement is of course highly redundant, because if λk = λl, there is no need to take both of the factors
(B − λk)

d+1 and (B − λl)
d+1, but such redundancy is harmless and it serves to simplify the notation.
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and the λj’s are pairwise distinct, the functions trλ−t
j for r and j with 0 ≤ r < mj and 1 ≤ j ≤ N

represent m linearly independent solutions of the difference equation

(

m
∑

k=0

akB
k
)

yt = 0.

Proof. The linear independence of the functions claimed to be representing the solutions have been
established in Corollary 4.1. Since a recurrence equation of order m can have at most m linearly
independent solutions, these functions will represent a complete set of linearly independent solutions.
To see that each of these functions is a solution, it is enough to note according to the equation

m
∑

k=0

akB
k = an

N
∏

j=1

(B − λj)
mj

that, in view of Lemma 4.1, the difference operator

(B − λj)
mj

annihilates the function trλ−t
j for r < mj .

Thus we exhibited m linearly independent solutions of equation (4.1). If follows that any solution
of (4.1) is a linear combination of these solutions.

4.4 The inhomogeneous linear recurrence equation

Given bt for all t ∈ Z, the equation

(4.4)

m
∑

k=0

akyt−k = bt (t ∈ Z)

is called an inhomogeneous recurrence equation, with (4.1) as the corresponding homogeneous equa-
tion. If the vectors

y1 = 〈. . . , y(1)−2 , y
(1)
−1 , y

(1)
0 , y

(1)
1 , y

(1)
2 , . . .〉 and y2 = 〈. . . , y(2)−2 , y

(2)
−1 , y

(2)
0 , y

(2)
1 , y

(2)
2 , . . .〉

are solutions of the inhomogeneous equation, then, clearly, y2−y1 is a solution of the homogeneous
equation. Stated in another way, if we find a solution yp of the inhomogeneous equation, then every
solution of the inhomogeneous equation can be obtain as yp + yh, where yh is a solution of the
homogeneous equation. The solution yp is often called a particular solution.

4.5 Problems

Problem 4.1. The Fibonacci numbers yt, t = 0, 1, 2, . . . are defined by the equations y0 = 0,
y1 = 1 and yt = yt−1 + yt−2 for every integer t ≥ 2. Write a formula expressing yt.

Problem 4.2. Write a difference operator that annihilates all but the first term in the expression

c1t
3 · 3−t + c2t

4 · 2−t + c3t
2 · 5−t,

while it reduces the first term to c · 3−t, where c is a nonzero constant (it is assumed that c1 6= 0).

16



5 Differencing and other transformations of time series

5.1 Stationary time series

A sequence
{Yt} = 〈Yt : t ∈ Z〉

of random variables Yt is called a time series. Considering two-way infinite time series is an idealiza-
tion. A time series is usually observed in a finite interval. {Yt} is called strictly stationary if given
any n ≥ 0, the joint distribution of the sequence of random variables 〈Yt+k : 0 ≤ k ≤ n〉 does not
depend on t ∈ Z. It is called stationary if E(|Yt|2) <∞ for all t, E(Yt) does not depend on t,5.1 and
for any n ∈ Z, the covariance Cov(Yt, Yt+n) does not depend on t.5.2

5.2 Time series and recurrence equations

Let P (x) be a polynomial with constant term 1, and assume the time series {Yt} satisfies the equation

(5.1) P (B)Yt = Et (t ≥ 0),

where Et is the error at time t; at this point, we do not assume anything about Et;
5.3 in fact, we

would treat the whole question as involving a numerical series, except that our concern is to turn
the time series {Yt} into a stationary series. Normally, equations of the type (5.1) are considered in
autoregressive models of time series. Here, we are not concerned with modeling; in fact, we are not
assuming that our time series is stationary, and autoregressive modeling is usually considered for
stationary time series. So, before modeling, one wants to turn the time series into a stationary time
series. The main tools for this is differencing and seasonal differencing, and other transformations.

One might ask, why would a time series satisfy an equation such as (5.1). In fact, Section 23, especially

Subsection 23.2 gives an answer. State space models describe how the random variable Yt produced at time

t is produced by the state of the system. Such states may be natural for all time series; however, in most

situations, not much if anything can be known about the state. Only in models of engineering processes

would be a more or less clear understanding of states. Usually, the only choice one has is to try to model

the time series, whatever mechanism produces it.

We do not assume that the polynomial P (x) is known to the person analyzing the time series {Yt};
in fact, we assume that it is not known. The only use we are making of equation (5.1) is to explain
certain patterns of behavior of the time series that is observed by analyst, without knowing anything
about this equation. All the actions described below to remedy the undesirable patterns of behavior
are to be taken without any knowledge of this equation. On the other hand, the effects of these
actions can be best explained with this equation in sight.

5.3 Differencing

Differencing means applying the operator ∇ def
= I −B to Yt, and considering the time series {∇Yt},

and considering what equation the latter time series satisfies. We can analyze the effects of such a
transformation in terms Lemma 4.1 and Corollary 4.2.

5.1The assumption E(|Yt|2) <∞ implies that E(Yt) exists.
5.2Note that the assumption E(|Yt|2) <∞ implies that |E(Yt)| <∞, we have

|E(X)| ≤ E(|X|) = E(|X|) · E(1) ≤ E(|X|2) · E(12) = E(X2),

where the second inequality holds by the Schwarz inequality (see 5.2).
5.3If the degree of P (x) = m, then Yt needs to be defined for all t ≥ −m for the above equation to make sense.

17

https://en.wikipedia.org/wiki/Hermann_Schwarz


First note that equation (5.1) is an inhomogeneous recurrence equation, and, according to Sub-
section 4.4 its solution is a particular solution of this equation and a solution of the homogeneous
equation. In Corollary 4.2 we described the basic solution of the homogeneous equation; the general
solution of the homogeneous equation is a linear combination of these basic solutions. The coeffi-
cients of this linear combination are determined by the initial conditions, i.e., the initial observations
of the time series {Yt}. Because of the random nature of these observations, all basic solutions of
the homogeneous equation are likely to occur with nonzero coefficients.

According to Corollary 4.2, the solutions of the homogeneous equation involve terms of form
tkλ−t, where λ is a zero of the polynomial P (x) with multiplicity greater than k (k ≥ 0). If |λ| > 1
then limt→∞ tkλ−t = 0, so such terms cause no trouble in the long run, i.e., they do not prevent the
time series from being stationary, at least asymptotically. On the other hand, if |λ| < 1 or if |λ| = 1
and k ≥ 1 limt→∞ tkλ−t = ∞, so in this case the time series {Yt} will not be stationary. In view of
Lemma 4.1, the operator ∇ = −(I −B) has essentially no effect on the term tkλ−t, more precisely,
it will not change its degree k unless λ = 1. So differencing is of no use unless P (1) = 0.

On the other hand, if 1 is a p-fold zero of P (x), then p successive differencing will help. This can
be seen as follows. In this case, we have P (x) = R(x)(x− 1)p, where R(x) is a polynomial such that
R(1) 6= 0. Then we have P (x) = (−1)pR(x)(1 − x)p and so P (B) = (−1)pR(B)∇, and equation
(5.1) can also be written as

R(B)∇pYt = (−1)pEt (t ≥ 0).

This is an equation for ∇pYt where the characteristic polynomial R(x) no longer has a zero at 1.
But the other zeros have not been dealt with, and the remaining zeros λ with |λ| < 1 will cause
trouble.

If λ is a zero of P (x) with |λ| > 1, the terms involving λ−t in the solution of the homogeneous equation

associated with equation (5.1) will tend to∞ in absolute value as t→ −∞; so how come we are not concerned

about these zeros. One answer might be that we are concerned about the future of the time series, and not

its past; but there is another answer. What ever happened in the past, the errors Et in equation (5.1) were

such that they accommodated whatever values the time series assumed in the past. So the coefficients of

the various terms involving λ−t were such that Yt remained within certain bounds in the past (if it indeed

did). On the other hand, we have no such control over the future, especially since the future errors Et are

random, so we very much need to be concerned with the troublesome terms λ−t with |λ| < 1, since these

term will tend to ∞ when t→ ∞.

5.3.1 Inverting differencing (integrating)

Having obtained the time series {Xt} by differencing {Yt}, we build a model for model for {Xt}.
Then we can apply this model to analyze {Yt} by restoring it from the modeled time series. Assuming

(5.2) Xt = ∇Yt = Yt − Yt−1 (t ∈ Z),

we have
Yt = Yt−1 +Xt,

so, given the sequence {Xt} and an initial value for {Yt}, we can easily restore the whole sequence.
For example

Yt = Y0 +

t
∑

k=1

Xk (t > 0).
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Given Y0, restoration for Yt for t < 0 is also possible, given equation (5.2), but usually is of no
interest in the context of time series. If we have performed several differencing, we need to perform
inverting the same number of times.

5.4 Seasonal differencing

If the time series {Yt} shows a periodic behavior of a period d for some d, such a periodicity is called
seasonality. The origin of the term is that certain time series sampled once a month often naturally
show seasonality of period 12, since often such time series are affected by the seasons of the year.

In this case, one usually applies the seasonal differencing operator ∇d
def
= I −Bd. The effect of this

can also be analyzed in terms of equation (5.1). In terms of solutions of the homogeneous equation
corresponding to this equation can be explained by the presence of a term λ−t among the solutions
of the of the homogeneous equation that is periodic with period d; this in possible only if λ = e2πil/d

for some integer l. This means that P (e2ıil/d) = 0. For simplicity, assume that e2πil/d is a simple
zero (a zero of multiplicity 1) of P (x). In fact, assume all the terms λ−t for λ = e2πil/d for any
integer l with 1 ≤ l < d causing periodicity of period d are present. Then P (e2πil/d) = 0 for l with
1 ≤ l < d. The zeros of the equation xd − 1 = 0 are e2πil/d for l with 0 ≤ l < d. We have

xd − 1 =

d−1
∏

l=0

(x− e2πil/d),

and so, putting

(5.3) Q(x) =

d−1
∏

l=1

(x− e2πil/d) =
xd − 1

x− 1
=

d−1
∑

l=0

xl,

the polynomial Q(x) must be a divisor of P (x); i.e., P (x) = R(x)Q(x) holds for some polyno-
mial R(x). Assuming, for the sake of simplicity, that each e2πil/d (1 ≤ l < d) is a simple zero (i.e., a
zero of multiplicity 1) of P (x), the numbers e2πil/d are no longer zeros of R(x). Now, equation (5.1)
can be written as

R(B) Q(B)Yt = Et (t ≥ 0).

This is an inhomogeneous equation for Q(B)Yt. The corresponding homogeneous equation no longer
has the seasonality terms e2πil/d (1 ≤ l < d). Thus, considering

Q(B)Yt =

d−1
∑

l=0

BlYt

instead of Yt, we successfully removed seasonality. If eil/d is a multiple zero of P (x), then we have
to repeat this process in order to remove seasonality.

However, often this is not what is done in practice. One takes

∇dYt = (I −Bd)Yt = (I −B) Q(B)Yt = ∇ Q(B)Yt.

The time series Q(B)Yt no longer has seasonality. Assuming that Q(B)Yt is stationary, the differ-
encing with ∇ on the left is unnecessary, and in our opinion it should not be done, since it amounts
to overdifferencing; that is, applying a difference operator to a time series where such application
is not necessary. The paper [9], or a shorter blog [10] by the same author, discusses the danger
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of overdifferencing. The article [2] notes problem of the overdifferencing with seasonal models, and
compares the overdifferenced model with another model that avoids overdifferencing, but it does
not seem to state the simple mathematical reason that causes overdifferencing in our opinion. The
lecture note [33, p. 6 of lec4-08.pdf] also points out that the polynomial Q(B) rather than 1 − Bd

should be used to remove seasonality.

5.4.1 Inverting seasonal differencing

Having obtained the time series {Xt} by seasonal differencing and building a model for it, we want
this model adapted for the original time series. Assuming

Xt = Q(B)Yt (t ∈ Z),

with Q(x) given in equation (5.3), we have

(5.4) (I −B)Xt = (I −Bd)Yt.

That is, writing Zt = (I −B)Xt = ∇Xt, we have

Zt = Yt − Yt−d.

That is, if Ym is given for m with 0 ≤ m < d and the time series {Xt}, we can restore the time series
{Yt}. Indeed, given Xt for all t ∈ Z, we can calculate Zt, and then, for n > 0 and

Ym+nd = Ym +

n
∑

k=1

Zm+kd (t > 0).

If we have done several seasonal differencing, we need to repeat above steps step of inverting seasonal
differencing.

In equation (5.4), we did a differencing by ∇, and, as the right-hand side shows, this amounts
to calculate ∇dYt, in spite of having said above that this may amount to overdifferencing; this
observation, however, misses the main point. We model the time series {Xt}, and we use this model
to build a model for {Yt}. That is, we calculate ∇Xt only after we modeled Xt, and calculating it is
only used as a step to express Yt in terms of Xt. The problem with overdifferencing is that it tries
to build a model for ∇Xt instead of building it for Xt.

5.5 Logarithmic and other transformations

If the polynomial P (x) in equation (5.1) has a zero λ with |λ| < 1 then, as we pointed out above,
this zero will cause trouble, and differencing or seasonal differencing will not help. In this case, one
might consider a logarithmic transformation, that is, instead of {Yt} one might one to study the
time series {log Yt}.5.4, assuming Yt > 0 (if not, one might take log(cYt + d) with an appropriate
constants c and d. There may be other reasons to consider a logarithmic transformation. For
example, in stock prices, one is usually concerned with percentage gains, i.e., multiplicative gains,
and taking logarithms converts these to additive gains, which are technically easier to handle. Other
transformations one may consider is to take

Xt =
Y λ
t − 1

λ
5.4We use log x to denote the natural logarithm of x. This is common mathematical practice, and lnx is rarely used

in mathematical writing.
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for some fixed λ > 0. if Yt > 0. Incidentally, note that

lim
λց0

xλ − 1

λ
= log x

for all x > 0, as one can easily verify by l’Hospital’s rule.

5.6 Convolutions and linear filters

Given two functions f and g on R, their convolution f ∗ g is defined as

(5.5) (f ∗ g)(x) def
=

∫ ∞

−∞

f(x− t)g(t) dt =

∫ ∞

−∞

f(τ)g(x− τ) dτ

provided the integral on the right exists; the second equation is obtained by the substitution τ =
x− t.5.5 For two two-way infinite sequences (i.e., functions on Z) we define5.6

(5.6) (f ∗ g)(n) def
=

∞
∑

k=−∞

f(n− k)g(k) =
∞
∑

l=−∞

f(l)g(n− l).

These equations show that convolution is a commutative operation, that is, f ∗ g = g ∗ f both for
functions and for sequences.

If one thinks of two-way infinite sequences as functions on Z, then one can think of a (one-way) infinite

sequence as a function f on Z
+, the set of positive integers. Then a subsequence g of f can be thought of

as the function f ◦ h, where h : Z+ → Z
+ is a strictly increasing function.

In time series analysis, a convolution is usually called a linear filter. If {Yt} is a time series, then
one can take a (usually fixed) number sequence {ht}, and define the filtered time series {Xt} as the
convolution

(5.7) Xt =

∞
∑

k=−∞

Yt−khk.

If one wants to analyze the time series {Yt} in real time, then one also needs to assume that the
filter has no future dependence, that is, hk = 0 for k < 0.

5.6.1 Moving average

Given a positive integer n, the following filter is called amoving average filter of length n: in equation
(5.7) put

ht =

{

1/n if 0 ≤ t < n,

0 otherwise.

For example, stock analysts often talk about moving averages of a stock price, such as, say, a 50 day
moving average, to even out fluctuations.

5.5We have dτ = −dt, but when we perform the substitution, we also have to interchange the limits of the integral,
canceling the negative sign.
5.6Sometimes it helps clear conceptual understanding to note that two-way infinite sequences are just functions on

Z.
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5.7 Problems

Problem 5.1. LetX ≥ 0 be a real-valued random variable such that E(X) exists and P(X 6= 0) > 0.
Show that E(X) 6= 0.

Problem 5.2. Given two real-valued random variables X and Y , show that

(

E(XY )
)2 ≤ E(X2) E(Y 2).

(This inequality is Schwarz’s inequality for random variables).

Problem 5.3. Given two real-valued random variables X and Y with nonzero variances, show that

−1 ≤ Corr(X,Y ) ≤ 1.

The assumption that the variances of X and Y differ from zero is necessary in order that their
correlation be defined.

6 Estimating time series parameters

Given a stationary time series {Yt}, assume made observations yk at times k with 1 ≤ k ≤ n. It is
natural to estimate E(Yt), which, under the assumption of stationarity, is independent of t, as

E(Yt) ≈ ȳ =
1

n

n
∑

k=1

yk.

Such a procedure is not justified without further assumptions. Namely, we only made a single
observation at time t, and estimating Yt by observations made at different times does not necessarily
give the correct result.

6.1 Convergence of random variables

Let 〈Xn : 1 ≤ n < ∞〉 be a sequence of random variables, and let X be a random variable. We say
that Xn converges to X in the squared mean if

lim
n→∞

E
(

|X −Xn|2
)

= 0.

The absolute value is not needed if X and Xn are real valued. There are many other ways for a
sequence of random variables to converge; for example, we say that Xn converges to X in the mean
if

lim
n→∞

E
(

|X −Xn|
)

= 0;

however, convergence in the squared mean is technically easier to handle.

6.2 Ergodicity

A stationary time series {Yt} is called mean ergodic when the above procedure is justified, that is,
when

E(Yt) = lim
n→∞

1

n

n−1
∑

m=0

Yt−m.
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Here, usually convergence in the squared mean is considered, in which case the process is called
autocovariance ergodic in the squared mean.6.1

A stationary time series {Yt} is called autocovariance ergodic when

Cov(Yt, Yt−k) = lim
n→∞

1

n

n−1
∑

m=0

(

Yt−m − E(Yt−m))
)(

Yt−m−k − E(Yt−m−k)
)

for all k ∈ Z.

Here, usually convergence in the squared mean is considered, in which case the process is called
mean ergodic or autocovariance ergodic in the squared mean.6.2

7 The innovations algorithm

Let k ∈ Z, and for each integer r ≥ k let Yn be a random variable; for the sake of simplicity, assume
Yn is real valued, but these ideas can easily be modified so as to apply to complex-valued random
variables. Assume, further, that E(Y 2

n ) <∞ for each n ≥ k. Let

(7.1) Ŷt =

t−1
∑

n=k

αntYn.

for some coefficients αnt. We say that Ŷt is the best linear estimate for Yt in terms of 〈Yn : k ≤ n < t〉
if for all choices of the coefficients αn for n with k ≤ n < t, with

(7.2) Ỹt =
t−1
∑

n=k

αnYn,

the expectation

(7.3) E
(

(Yt − Ỹt)
2
)

is minimal if αn = αnt. We have7.1

Lemma 7.1. Assume Ŷt is the best linear estimate for Yt in terms of 〈Yn : k ≤ n < t〉. Then we
have

E
(

(Yt − Ŷt)Ym
)

= 0

for all m with k ≤ m < t.

6.1The term ergodic was introduced by Ludwig Boltzmann. Boltzman deduced the distribution of the speeds of
molecules in a gas in equilibrium by studying the behavior of a small part of the gas through time. To make such
a deduction possible, he had to assume that the time series associated with the behavior of a small part of the gas
reflects the behavior of the whole volume of gas.
6.2Since {Yt} is assumed to be stationary here, the t on the right-hand side in the last two equations can be replaced

with an arbitrary t′. One does not do this in a practical calculation, however, since the time series may only be
approximately stationary in practice, so out of prudence one would use the same t on both sides of this equation.
7.1The geometric content of the lemma is that the shortest distance to a line or plane from an outside point is found

by dropping a perpendicular on it. The quantity E(XY ) is an inner product on the space of real-valued random
variables on a given probability space, and this inner product creates a linear geometry. See Subsection 17.1 for a
discussion of inner product spaces.
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Proof. Let Ỹt be given by equation (7.2). We have

E
(

(Yt − Ỹt)
2
)

= E
(

Y 2
t −

t−1
∑

n=k

2αnYtYn +

t−1
∑

l=k

t−1
∑

n=k

αlYlαnYn

)

= E
(

Y 2
t

)

−
t−1
∑

n=k

2αn E(YtYn) +

t−1
∑

l=k

t−1
∑

n=k

αlαn E(YlYn).

To find the minimum of this, we take partial derivatives ∂/∂αm (k ≤ m < t):

∂

∂αm

(

E(Yt − Yt)
2
)

= −2E(YtYm) +

t−1
∑

l=k

t−1
∑

n=k

(δmlαn + αlδmn) E(YlYn)

= −2E(YtYm) + 2

t−1
∑

n=k

αn E(YmYn)

The minimum is assumed when the right-hand side is zero, i.e., exactly when αn for n with k ≤ n < t
is such that

E
(

(Yt − Ỹt)Ym
)

= 0

for all m with k ≤ m < t. This completes the proof.7.2

It follows from the above proof that for Ŷt to be the best linear estimate the coefficients on the
right-hand side of (7.1) must satisfy the equations

(7.4)

t−1
∑

n=k

αnt E(YmYn) = E(YtYm) (k ≤ m < t).

7.1 Expressing the time series in terms of innovations

With the notation introduced above, write

et = Yt − Ŷt

for t ≥ k; to simplify the notation, we will assume k = 0 from now on. We call et the innovation at
time t. Observe that we have

(7.5) et = Yt −
t−1
∑

n=0

αntYn (t ≥ 0)

according to equation (7.1) with k = 0. It is easy in principle to solve these equations for Yt in terms
of en for 0 ≤ n ≤ t; that is, we have

(7.6) Yt =

t
∑

l=0

ψl,tet−l =

t
∑

l=0

ψt−l,tel (t ≥ 0)

7.2It is clear that the expression in (7.3) is a positive semidefinite form in the variables αn, so it must have a
minimum. So the equations we found describe the place of minimum.
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with appropriate coefficients. It is also easy to see that for t ≥ 0 in these equations we have

(7.7) ψ0,t = 1.

Further, note that Lemma 7.1 implies that

(7.8) E(eten) = 0 if 0 ≤ n < t.

The innovations algorithm expresses the coefficients here in terms of the expectations E(YlYm). For
the sake of simplicity, we assume that for each et 6= 0 with positive probability for all t ≥ 0; this
implies that E(e2t ) > 0 – see Problem 5.1.7.3

Multiplying equation (7.6) by en (0 ≤ n ≤ t) and taking expectations, and using (7.8), we obtain

(7.9) E(Yten) = ψt−n,t E(e
2
n) (t ≥ 0).

To evaluate the coefficients ψt−m,t, we need to evaluate E(Yten) and E(e2n). This is fairly simple
to do. Multiplying equation (7.6) by itself and taking expectations and taking (7.7) and (7.8) into
account, we obtain that

(7.10) E(Y 2
t ) = E(e2t ) +

t−1
∑

l=0

ψ2
t−l,t E(e

2
l ).

Finally, replacing t by m (0 ≤ m ≤ t) in equation (7.6), multiplying by Yt, and taking expectations,
using equation (7.7) we obtain

E(YtYm) =

m
∑

l=0

ψm−l,m E(Ytel) =

m
∑

l=0

ψm−l,mψt−l,t E(e
2
l ). (0 ≤ m ≤ t).

Taking n = t−m and omitting the middle member, this gives

(7.11) E(YtYt−n) =

t−n
∑

l=0

ψt−n−l,t−nψt−l,t E(e
2
l ). (0 ≤ n ≤ t).

Assuming the mixed moments E(YtYn) are known for all t, n ≥ 0, equations (7.7), (7.10),
and (7.11) can be used to evaluate the coefficients ψl,t for 0 ≤ l ≤ t recursively. Equation (7.11)
(with some help from equation (7.7)) is used to calculate ψn,t, and equation (7.11) is used to cal-
culate E(e2t ). To be more specific, assume that ψn′,t′ have been calculated for all pairs (n′, t′) such
that 0 ≤ t′ < t and 0 ≤ n′ ≤ t′ or t′ = t and n < n′ ≤ t; also assume that E(e2t′) has been calculated
for all t′ with 0 ≤ t′ < t. Then we can calculate ψn,t from the values calculated earlier, and in case
n = 0 we can go on to calculate E(e2t ).

That is, we do the calculations in the following order: ψ0,0, E(e
2
0), ψ1,1, ψ0,1, E(e

2
1), ψ2,2, ψ1,2,

ψ0,2, E(e
2
2), ψ3,3, ψ2,3, ψ1,3, ψ0,3, E(e

2
3), ψ4,4, . . . . See Problem 7.1 for details.

There is a cautionary note about the above formulas for calculating the coefficients φt,l. They should be
taken only as a theoretical description as to how to calculate these coefficients, and the formulas should not

7.3The algorithm that follows is essentially an adaptation of the Gram–Schmidt orthogonalization, discussed in
Subsubsection 17.2.1. The additional complication here is that we do not normalize et here, i.e., we do not make the
norm 1 in this case; that is, at present we usually do not have E(e2t ) = 1. As for the requirement that E(e2t ) > 0,
it helps us to write the formulas in a simple way, but it is not essential. Gram–Schmidt orthogonalization has no
difficulty with coping with occasional zero vectors – it simple skips them; see Subsection 17.2.1.
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be used as a basis for writing numerical algorithms to calculate these coefficients. The problem is that the
Gram–Schmidt orthogonalization, on which the above approach to calculate the coefficients φt,l is based, is
numerically unstable. That is, small numerical errors committed initially (by rounding infinite decimals to a
value representable on a computer) cause large errors later in the calculation. There are numerical methods
avoiding these problem, and so there is no real impediment to calculate the coefficients φt,l accurately. This
should be taken as a general comment for programming theoretical algorithms on computers: numerical
analysis is a separate art, and theoretically correct algorithms may have to be modified when writing a
computer implementation.

The recursive equations describing the innovations algorithm are discussed in [5, Proposition
5.2.2 on p. 165].

7.2 Zero means

In the discussion above, we did not assume that E(Yt) = 0, since there was no mathematical need
to do so. When discussing time series, if it is possible to estimate the means of Yt, it is natural
to replace Yt with Yt − E(Yt) as the first step in analyzing the time series. We will now make the
assumption that

E(Yt) = 0 for all t ∈ Z.

Then an immediate consequence of equation (7.5) is that

E(et) = 0 for all t ∈ Z.

In this case, one usually calls the innovation et at time as the error (committed by the mechanism
producing the time series) at time t. One often also assumes that the variables et are independent
normal variables for all t. Often there may be no rational reason to make this assumption other
than the resulting ease of mathematical handling of the problem.

7.3 The partial autocorrelation function

Let {Yt} be a time series and let Xt = Yt − E(Yt). For a given t and k ≥ 0, let X̂t+k be the best
linear estimate of Xt+k in terms of Xi with t < i < t + k and let X̂t be the best linear estimate of
Xt in terms of the same Xi with t < i < t+ k.

The definition of X̂t+k is easy to understand in view of Lemma 7.1, and the innovations algorithm

described in Subsection 7.1, and one can think of X̂t+k as the value of Xt+k predicted in terms of Xi with

t < i < t + k. The definition of X̂t is somewhat less natural, since since Xt is known before one finds out

the values of Xi with t < i < t + k. Nevertheless, the mathematics for this postdiction, i.e., “backward

prediction,” is the same, one merely needs to replace t by N − t in the equations (for an arbitrarily chosen

integer N – which can be 0 if one does not mind the fact that −t may be a negative integer).7.4

The partial autocorrelation function of the time series {Yt} is defined as

αt,t+k = Corr(Xt − X̂t, Xt+k − X̂t+k).

If Yt is a stationary time series, αt,t+k depends only on k, and not on t, and one may write α(k)
instead of αt,t+k. Intuitively, αt,t+k indicates the degree of relatedness between Yt and Yt+k with
the intervening values of Yi with t ≤ i ≤ t+ k removed.

7.4Replacing t by −t (or by N − t) is called time reversal, discussed also below in Section 10.

26



7.4 Moving average models

Given a stationary process {Yt} we write

γ(n) = Cov(Yt, Yt−n);

the definition of stationarity given in Subsection 5.1 implies that the right-hand side here does not
depend on t. It is also easy to see that γ(n) = γ(−n). One also usually writes that

ρ(n) = Corr(Yt, Yt−n);

Note that ρ(n) is defined unless γ(0) = 0, and the case γ(0) = 0 is of no interest.7.5

For t ∈ Z let et be uncorrelated random variables with zero means.7.6 Let q be a positive integer.
A moving average process {Yt} is a process of order q is a process satisfying the equations

(7.12) Yt = et −
q
∑

n=1

θnet−n

with some coefficients θn for n with 1 ≤ n ≤ q. Here et is called the error in the process at time t.
If {Yt} is a stationary process such that E(Yt) = 0, then the innovation algorithm can be used to
determine the coefficients θn. Writing

θ(x) = 1−
q
∑

n=1

θnx
n,

we can write
Yt = θ(B)et.

Corollary 4.2 requires that for all zeros λ of θ(x) we have |λ| ≥ 1. Indeed, the random nature of
the errors et will ensure that all basic of the solutions of the homogeneous equation θ(B)et will be
represented in the solutions of the inhomogeneous equation θ(B)et = Yt (considering this to be an
equation of et for q initial values of Yt, where q is the degree of θ(x). The solution corresponding to
|λ| < 1 would imply that limt→∞ et = ±∞. This would also imply that limt→∞ Yt = ±∞, and this
would contradict that stationarity of Yt.

7.5 Problem

Problem 7.1. Explain how equations (7.7), (7.9), (7.10), and (7.11) can be used to evaluate the
moments E(e2t ) and the coefficients ψt,l for 0 ≤ l ≤ t. assuming that the mixed moments E(YtYn)
are known for all t, n ≥ 0.

8 Autoregressive processes and the Yule–Walker equations

Assume E(Yt) = 0 for all t. The process {Yt} is said to be autoregressive of order p if the following
conditions are satisfied. The

(8.1) Yt =

p
∑

k=1

φkYt−k + et (t ∈ Z)

7.5γ(0) = 0, i.e., Var(Yt) = 0 means that Yt is almost surely constant (see Problem 5.1. Since E(Yt) does not depend
on t for stationary series, this means that the whole series {Yt} almost surely assumes the same value.
7.6One often assumes that the variables et are independent normal variables; their variances do not have to be the

same.
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holds, where et is the error at time t; it is assumed that the random variables et are uncorrelated,
and E(et) = 0 and σ(et) <∞ for all t; the variable et is unobservable. Further, we assume that for
all t′ < t, the variable Yt′ is uncorrelated with et.

Writing

(8.2) φ(x) = 1−
p
∑

k=1

φkx
k

and using the backshift operator, we have

φ(B)Yt = et.

Assuming {Yt} is a stationary process, given an arbitrary integer (positive, negative, or zero), the

covariance γt,t−k = Cov(Yt, Yt−k) does not depend on k, so we can write γ(k)
def
= γt,t+k. This

assumption allows us to derive a system of equations for the coefficients φk in equation (8.1). Hence,
for k > 0 we have

γ(k) = Cov(Yt, Yt−k) = Cov
(

p
∑

i=1

φiYt−i + et, Yt−k

)

=

p
∑

k=1

φi Cov(Yt−i, Yt−k) + Cov(et, Yt−k) =

p
∑

i=1

φiγ(k − i);

the last equation holds since Cov(et, Yt−k) = 0 for k > 0 (the assumption k > 0 is essential here,
since the error et at time t certainly influences the value of Yt). That is

(8.3) γ(k) =

p
∑

i=1

φiγ(k − i)

for any integer k > 0. Noting that with ρt,t−k
def
= Corr(Yt, Yt−k), ρ(k) = ρt,t−k does not depend on

t, and ρ(k) = γ(k)/γ(0), and we can divide the above equation with γ(0). Taking these equations
only for k with 1 ≤ k ≤ p, we obtain.

(8.4) ρ(k) =

p
∑

i=1

φiρ(k − i) (1 ≤ k ≤ p).

These equations are the equivalent equations (8.3) are called the Yule–Walker equations.
While the derivation shows that these equations should also be satisfied for k > p, but then we

may have more equations than unknowns, and the equations may be contradictory. For the optimal
choice of p, taking a p′ > p, in the analogous equations

ρ(k) =

p′

∑

i=1

φ′iρ(k − i) (1 ≤ k ≤ p′),

φ′i should not be significantly different from φi for k with 1 ≤ i ≤ p and φ′i should not be significantly
different from 0 for i > p.
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8.1 Best linear prediction for stationary processes

Given a stationary time series {Yt}, we want to predict Yt in terms of the previous p observa-
tions {yt−n}1≤n≤p, and write

Ŷt−1(1) =

p
∑

n=1

φ̂nyt−n;

the symbol on the left-hand side denotes the one-step ahead prediction of Yt made at time t− 1.8.1

That is, writing

Yt−1(1) =

p
∑

n=1

φ̂nYt−n,

Ŷt−1(t) is the value obtained for the random variable Yt−1(1) by substituting the observed values of
{Yt−n}1≤n≤p in this equation. The prediction error is the random variable Yt − Ŷt−1(1). Because
of the assumption that E(Yt) = 0 for all t made above, we can see that the mean square prediction
error is

(8.5) Var
(

Yt − Yt−1(1)
)

= E

(

(

Yt −
p
∑

n=1

φ̂nYt−n

)2
)

.

This will be minimum when equations (7.4) are satisfied with φ̂t−n replacing αnt and t−p replacing
k. Noting that {Yt} is stationary with mean 0, we have E(Yt−iYt−n) = CovE(Yt−iYt−n) = γ(n− i),
and similarly, E(YtYt−i) = γ(i), this gives the equations

(8.6)

p
∑

n=1

φ̂nγ(i− n) = γ(i) (1 ≤ i ≤ p).

These equations are identical to the Yule–Walker equations (8.3) given above.

8.2 Solvability of the Yule–Walker equations

We have the following

Theorem 8.1. Let {Yt} be a stationary process such that γ(0) 6= 0 and limn→∞ γ(n) = 0. Then,

for every p ≥ 1, the covariance matrix Γp
def
=
(

γ(k − i)
)

1≤i,k≤p
is nonsingular.

The covariance matrix Γp is the matrix of the form of the Yule–Walker equations given in (8.3));
the nonsingularity of this matrix means that those equations or equations (8.3) have a unique
solution. For the proof, we need the following

Lemma 8.1. Let m ≥ 1, and Xi for i with 1 ≤ i ≤ m be random variables such that the covariance
matrix C =

(

Cov(Xi, Xj)
)

1≤i,j≤m
is singular. Then there is an r with 0 ≤ r < m and there are

numbers a1, a2, . . ., ar such that Xr+1 =
∑r

i=1 aiXi with probability 1.
Further, if X ′

i for i with 1 ≤ i ≤ m is another collection of random variables with the same
covariance matrix C, then we have X ′

r+1 =
∑r

i=1 aiX
′
i with the same r and the same coefficients ai

for 1 ≤ i ≤ r.

8.1Ŷt−1(1) is more or less standard notation for the one-step ahead prediction made at time t− 1. In equation (7.1)
used a different notation, since the present notation would have been too cumbersome in those considerations.
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The lemma can be found in [5, Proposition 5.1.1 on p. 160].

Proof. As C is singular, there is an r with 0 ≤ r < m such that the (r + 1)st row of C is a linear
combination of its earlier columns; that is

Cov(Xr+1, Xj) =

r
∑

i=1

ai Cov(Xi, Xj) for all j with 1 ≤ j ≤ m

Hence

0 = Cov(Xr+1, Xj)−
r
∑

i=1

ai Cov(Xi, Xj) = Cov
(

Xr+1 −
r
∑

i=1

aiXi, Xj

)

(1 ≤ j ≤ m).

Any linear combination of the right-hand sides of these equations also gives 0. Thus

Cov
(

Xr+1 −
r
∑

i=1

aiXi, Xr+1 −
r
∑

i=1

aiXi

)

= 0.

Therefore, the existence of an r as claimed follows. As for the last sentence of the lemma, it follows
since the covariance matrix C by itself allowed us to find r and the coefficients ai.

For the proof, we need some background about matrices. An orthogonal r × r matrix is such
that QTQ = I, where I is the r × r identity matrix. This means that QT is the left inverse of Q. If
a square matrix has a left inverse, then it also has the right inverse, and it is the same as the left
inverse. Hence we also have QQT = I for an orthogonal matrix. The l2 norm of an r-dimensional
column vector x = (x1, x2, . . . , xr)

T is defined as

‖x‖ =

√

√

√

√

r
∑

i=1

x2i .

This norm is sometimes also denoted as ‖x‖2 to indicate that we are talking about l2 norms, but
we will refrain from this, since the only vector norm we will use is the l2 norm. An r × r matrix A
has a norm induced by the given vector norm:

‖A‖ = max{‖Ax‖ : ‖x‖ = 1}.

We have ‖x‖2 = xTx. If Q is an orthogonal matrix, we have

(8.7) ‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xT (QTQ)x = xT Ix = xTx = ‖x‖2.

This shows that an orthogonal matrix preserves vector norms; for this reason, it is also an isometry
(i.e., it preserves distances, i.e., the metric). For more about orthogonal matrices, see see [23, §38,
p. 175-176].8.2

Proof of Theorem 8.1. Assume there is a p ≥ 1 such that Γp is singular, and let p be the smallest
such integer. Then p > 1 since Γ1 is the 1 × 1 matrix with γ(0) as its only entry, and γ(0) 6= 0 by

8.2The quoted pages are interesting for statistics also in other respects, since §38 discusses the numerical handling
of the least squares approximation.

30



our assumption. Let k ≥ p be an integer. Applying the lemma m = p for the random variables
Yk−p+i with 1 ≤ i ≤ k, we find an r with 1 ≤ r < p and numbers ai for 1 ≤ i ≤ r such that

Yk−p+r+1 =

r
∑

i=1

aiYk−p+r.

Note that r does not depend on k in view of the last sentence of the lemma. The only important point
here is that Yk−p+r+1 can be expressed as a linear combination of Yj for j with 1 ≤ j ≤ k − p+ r.
Applying this result for each term on the right-hand side, we obtain that Yk−p+r+1 is expressible as
a linear combination of Yj for 1 ≤ j ≤ k − 1− p+ r as long as k − 1 ≥ p. Repeating this argument
k− p times, we obtain that Yk−p+r+1 is expressible as as a linear combination of Yj with 1 ≤ j ≤ r.

Taking n = k − p+ r + 1, we obtain

(8.8) Yn =

r−1
∑

i=1

a
(n)
i Yj

for every n > r, where the coefficients a
(n)
i may depend on n. Multiplying this equation by Yn and

taking expectations, we obtain that

γ(0) =
r−1
∑

i=1

a
(n)
i γ(n− j).

Making n → ∞, we have γ(n − j) → 0 by our assumptions, and so, writing a(n) = (a
(n)
1 , (a

(n)
2 , . . . ,

a
(n)
r )T , we must have

(8.9) lim
n→∞

‖a(n)‖ = +∞

for the last equation to hold.
WritingYk for the column vector (Yk+1, Yk+2, . . . , Yk+r)

T equation (8.8) can be written in matrix
form as

Yn = YT
1 a

(n).

Multiplying by the column vector YT
1 on the left and taking expectations, we obtain that

(8.10) (γn−1, γn−2, . . . , γn−r)
T = Γra

(n).

The matrix Γr is a symmetric positive semi-definite, and since it is nonsingular by the minimality
assumption of p (p was assumed to be the smallest integer such that Γp is singular, and r < p),
it follows that Γr is positive definite. All eigenvalues of a positive definite symmetric matrix are
positive real numbers. By the Principal Axis Theorem of linear algebra, there is an orthogonal r× r
matrix Q such that

Γr = QTDQ,

where D is a diagonal matrix with the eigenvalues λ1, λ2, . . ., λr of Γr being its diagonal entries;
we may assume that the entries occur in increasing order; that is, D = (λiδij)1≤i,j≤r with 0 < λ1 <
λ2 < . . . < λr; see e.g., [30, Theorem 7.4.4’ on p. 333].

Hence, for the norm of the right-hand side of (8.10) we have

‖Γra
(n)‖ = ‖QTDQa(n)‖ = ‖DQa(n)‖ ≥ λ1‖Qa(n)‖ = ‖a(n)‖.
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The second and third equalities here hold since QT and Q are both orthogonal matrices, and so
they preserve norms (cf. (AR: preserve norms), and the inequality holds since for a column vector
x = (x1, x2, . . . , xr)

T we have Dx = (λ1x1, λ2x2, . . . , λrxr)
T . Since the left-hand side of (8.10)

tends to zero as n → ∞, we must have limn→∞ ‖a(n)‖ = 0. This contradicts (8.9), completing the
proof.

8.3 Solving the Yule–Walker equations

The matrix Γp has a special form, and so in solving equations (8.3) there are methods faster than
Gaussian elimination. The matrix Γp is a Toeplitz matrix, that is, a square matrix in which all
elements is a diagonal parallel to the main diagonal are the same. That, is a square matrix (tij) is
a Toeplitz matrix if tij = ti′j′ whenever i− j = i′ − j′. Systems of linear equations whose matrix is
a Toeplitz matrix can be solved by variants of the Levinson algorithm – see [41]

8.4 Location of zeros of the autoregressive model polynomials

Assume {Yt} is a stationary process of order p as described at the beginning of Section 8. Then,
using the backshift operator B for the covariances to mean Bγ(k) = γ(k− 1), equation (8.3) can be
described with the aid of the polynomial φ(x) given in (8.2) as

φ(B)γ(k) = 0;

this equation is true for all k > 0, even though in stating the Yule-Walker equations, we restricted k
to the range 1 ≤ k ≤ p. Considering this as a homogeneous recurrence equation for γ(k), its solutions
are linear combinations of the basic solutions given in Corollary 4.2. In an example occurring in
practice, the solution is represented by a linear combination in which the coefficient of any basic
solution is nonzero, since there need to be very special initial conditions to ensure that such a
coefficient is zero. If φ(x) has a zero λ with |λ| ≤ 1, then this ensures that limk→∞ γ(k) 6= 0. This is
an undesirable behavior in a stationary time series, therefore, in autoregressive models one usually
requires that |λ| > 1 for all zeros λ of φ(x).

9 Mixed autoregressive moving average processes

9.1 ARMA models

Let {Yt} be a stationary time series such that E(Yt) = 0 for all t ∈ Z. The process {Yt} is called a
mixed autoregressive moving average process of order (p, q) if

(9.1) Yt =

p
∑

k=1

φkYt−k + et −
q
∑

k=1

θket−k,

where et is the error at time t; it is assumed that the random variables et are uncorrelated, and
E(et) = 0 and σ(et) < ∞ for all t. The error et is also uncorrelated with Yt′ with t

′ < t. Note that
the variable et is unobservable. Such a process is also called an ARMA(p, q) process. Writing

(9.2) φ(x) = 1−
p
∑

k=1

φkx
k and θ(x) = 1−

q
∑

k=1

θkx
k,
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we have

(9.3) φ(B)Yt = θ(B)et.

This model is reducible if the greatest common divisor χ(x) of φ(x) and θ(x) is not constant (i.e.,
if it has degree greater than or equal to 1), since in that case we can divide both sides by χ(x). In
any case, the model can also be written as

(9.4) Yt =
θ(B)

φ(B)
et,

or
φ(B)

θ(B)
Yt = et.

Replacing the fractions by their Taylor series at 0, these represent a pure moving average process
and a pure autoregressive process of infinite order, respectively. For the convergence of these series
certain assumptions are needed. We do not quite need to assume that the process {Yt} is stationary.
Assuming that the expectations of the squares of Yt and et are bounded, i.e., that there is a number
M such that E(Y 2

t ) < M and E(e2t ) < M ,9.1 and the power series

f(x) =

q
∑

k=0

akx
k,

has radius of convergence greater than one, the series f(B)Yt and f(B)et converge in the mean (i.e.,
in expectation); for example, for Yt this means that there is a random variable Ȳt such that

lim
n→∞

E

(

∣

∣

∣Ȳt −
n
∑

k=0

akYt−k

∣

∣

∣

)

= 0.

This follows from known results of integration theory, somewhat beyond the scope of this course.
Instead of convergence in the mean, one often prefers convergence in the square mean for technical
reasons:

lim
n→∞

E

(

∣

∣

∣Ȳt −
n
∑

k=0

akYt−k

∣

∣

∣

2
)

= 0;

the absolute value is unnecessary for real-valued random variables.
If one requires that the polynomials φ(x) and θ(x) have no zeros in the closed unit disk {z ∈ C :

|z| ≤ 1} of the complex place C, the radius of convergence of the Taylor series of both φ(x)/θ(x)
and θ(x)/φ(x) will be greater than 1; see Section 3.

9.2 Coefficients in the pure MA representation

Writing ψ(x) = θ(x)/φ(x), equation (9.4) can be written as

(9.5) Yt = ψ(B)et,

where ψ(x) can be represented as an infinite series

(9.6) ψ(x) =
∞
∑

n=0

ψnx
n.

9.1It follows from simple inequalities involving expectations that it is enough for this that the both the mean and
the variance of Yt and et are bounded.
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Assuming the zeros of φ(x) are outside the unit circle, this series has radius of convergence > 1.
The coefficient ψn can easily be determined from the coefficients in equations (9.2). Indeed, writing
φ0 = θ0 = −1 and ψn = 0 for n < 0, the equation ψ(x)φ(x) = θ(x) can be written as

∞
∑

n=0

(

p
∑

k=0

ψn−kφk

)

xn =

q
∑

n=0

θnx
n.

Equating the coefficients of xn gives equations for the coefficients ψn. That is, noting that φ0 = −1,
we have

(9.7) ψn = −θn +

p
∑

k=1

ψn−kφk (n ≥ 0),

where we take θn = 0 for n > q.9.2

9.3 Calculating the MA coefficients in ARMA models

Given a stationary time series {Yt} with zero means and positive integers p, q, we would like to
build an ARMA(p, q) model described in equation (9.1). Assume the coefficients φk for k with
1 ≤ k ≤ p have already been determined. The question is how to determine the coefficients θi for k
with 1 ≤ k ≤ q. To do this, we first need to build a pure MA model, using the innovation algorithm
described in Subsections 7.1 to calculate the coefficients in a pure MA model (9.5), with the infinite
series in equation (9.6) truncated to a finite sum:

Yt =
m
∑

l=0

ψnet−n

for some integer m, where ψ0 = 1; cf. equation (7.6); at present, the coefficients ψl do not depend
on t, since the time series {Yt} is stationary. Choosing larger values of m will give more accurate
results; in any case, we need to make sure that m ≥ max(p, q). Then, using equations (9.7), the
coefficients θn for n with 0 ≤ n ≤ q can be determined.9.3

9.4 The primacy of autoregressive models

Moving average models are a kind of mathematical artifact, and they do not reflect natural forces
producing the time series. An error committed at an earlier time does not directly govern the present
behavior of the time series {Yt}. Any effect on the present value of Yt is brought about by the earlier
errors is mediated through the values of Yt′ for t

′ < t. This means that autoregresssive models give
a natural description of the time series via an equation of the form

(9.8) φ∞(B)Yt = ǫt,

where the ǫt is the error committed at the present time, while the subscript of φ indicates that

φ∞(x) = 1−
∞
∑

k=1

φkx
k

9.2These equations just express in equations what happens when we perform the usual long division θ(x)/φ(x) with
the modification that the powers of x are arranged in reverse order, i.e., in the order 1, x, x2, . . ., and the process
goes on indefinitely.
9.3We have θ0 = −1 according to these equations, since ψ0 = 0; θ0 does not occur directly in equation (9.1).
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is usually an infinite series.9.4 If the time series {Yt} is stationary, it is natural to think about B as
an operator of norm 1,9.5 and so, for the convergence of the series on the left of (9.8), one wants to
make sure that the radius of convergence of the series φ∞(x) is greater than 1.

In numerical calculations, one truncates φ∞(x) to a polynomial

φm(x) = 1−
m
∑

k=1

φkx
k,

and considers the truncated model

(9.9) φm(B)Yt = et,

Truncation causes the errors et on the right-hand side to be different from ǫt, but if we choose m to
be large, et will be a good approximation to ǫt. Assuming Yt has zero means, we have

Var(et) = E
(

(

φm(B)Yt
)2
)

,

where, for stationary {Yt}, the right-hand side does not depend on t. So the variance of et is
independent of t. Dividing equation (9.9) by φm(B), we obtain

(9.10) Yt =
1

φm(B)
et,

Here 1/φm(x) can be written as a power series. In view of Subsection 8.4, it seems reasonable to
assume that φm(x) has no zeros λ with |λ| ≤ 1, so the Taylor series for 1/φm(x) has radius of
convergence > 1. Hence the series for 1/φm(B) is convergent when applied to et.

9.6

When building an ARMA model, 1/φm(x) in equation (9.10) is not calculated from an AR
model; and an approximation to 1/φm(x) is obtained via the innovation algorithm of Section 7
directly from the autocovariances γ(k) of the stationary time series {Yt}. In any case, 1/φm(x) has
no zeros anywhere, it being a reciprocal. Further, one takes an AR model

φ(B)Yt = et,

where φ(x) is a further truncation of φm(x). Then one replaces the model (9.10) with the equivalent
model

φ(B)Yt =
φ(B)

φm(B)
et.

Finally, one takes a polynomial approximation θ(x) of the infinite series φ(x)/φm(x), and the sought-
after ARMA model will be

φ(B)Yt = θ(B)et.

In fact, we can take θ(x) to be a truncation to a polynomial of the infinite power series φ(x)/φm(x).

9.4We mentioned above in Subsection 5.2 that such equations are naturally satisfied by time series produced by
simple state-space models described in Section 23.
9.5Norms are systematically discussed only in Subsection 17.1 below, since initially we want to avoid too much

abstract discussion, but at present, by the norm of a random variable X we mean ‖X‖ def
=

(

E(|X|2
)1/2

, and B having
norm 1 means that ‖B(Yt)‖ = ‖Yt‖ in view of stationarity.
9.6As we pointed out above, E(e2t ) does not depend on t, so ‖B(et)‖ = ‖et‖.

35



9.4.1 Why the MA polynomial in an ARMA model is expected to have no zeros in
the closed unit disk

As φ(x) is usually assumed to have no zeros λ with |λ| ≤ 1 in view of Subsection 8.4, neither will
have φ(x)/φm(x) have such zeros (also recall that 1/φm(x) is represented by a power series with
radius of convergence greater than 1). If θ(x) is a good enough approximation of 1/φm(x), then θ(x)
will have no zeros in the closed unit disk either.

9.5 Prediction with ARMA models

Assume we have observations yt of Yt for 0 ≤ t < n, and that these observations satisfy equation
(9.1), or equation (9.3), which is just a short form of the former equation, with the appropriate
changes (such as replacing Yt by yt). We want to predict Yn at time n − 1; we will denote the
prediction with Ŷn(1). To this end we write êt for the estimated error at time t with −∞ < t < n.
These error estimates are obtained by solving the equation

θ(B)êt = φ(B)yt
(

p ≤ t < n
)

,

with initial conditions êt = 0 for −∞ < t < p. Note that this is an inhomogeneous recurrence
equation for êt, since the right-hand side is known. If we change the initial conditions to the actual
values of the error et for t < p then the change in the solution for et will be a solution of the
homogeneous equation (i.e., the above equation with 0 right-hand side). If we require that all zeros
of θ(x) are outside the unit circle, then every solution of the homogeneous equation will tend to 0 as
t → ∞, according to Corollary 4.2, so, assuming n is large, taking 0 as initial condition will ensure
that the estimates êt will be close to the actual value of et for n− q ≤ t < n. We put

Ŷn−1(1) =

p
∑

k=1

φkyn−k −
q
∑

k=1

θkên−k.

This is is just equation (9.1), with n replacing t, Ŷn−1(1) replacing Yt on the left-hand side, Ŷn−k

replacing Yt−k for k with 1 ≤ k ≤ p, ên−k replacing et−k for k with 1 ≤ k ≤ q, and 0 replacing et on
the right-hand side.

9.6 The importance of ARMA models

As we saw in Subsection 9.1, and ARMA model can also be written as a pure autoregressive model,
or a pure moving average model, each with possibly infinitely many coefficients. The importance of
ARMA models lies in that they allow to model the time series with fewer parameters.

9.7 Integrated ARMA models

Let {Yt} be a time series, and assume that using the difference operator ∇ = I −B d times, where
d ≥ 0 is an integer, we arrive at the time series {(I −B)dYt} that is a stationary time series with 0
means. Then we can model the latter time series by an ARMA(p, q) model, that is we can write

(9.11) φ(B)(I −B)dYt = θ(B)et

according to equation (9.3), where φ(x) and θ(x) are are as in equation (9.2). If p and q are the
degrees of φ(x) and θ(x), respectively, such an equation is called an integrated autoregressive moving
average model of order (p, d, q), or, shortly, and ARIMA(p, d, q) model.
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10 Time reversal

When studying a time series
{Yt} = 〈Yt : t ∈ Z〉,

is it sometime useful to also look at the time series obtained by time reversal, i.e., the time series in
which t is replaced by −t:

{Y−t} = 〈Yt : t ∈ Z〉.
There may be various mathematical justification for studying the time reversed series. For example,
if the time series {Yt} is stationary, the time reversed series {Y−t} is also stationary, with the
same covariance coefficients. Hence, when constructing an autoregressive model for the time series
{Yt}, the same autoregressive model also works for the time reversed series {Y−t} in view of the
Yule–Walker equations (equations (8.3) or (8.4)). Since ARMA models can naturally related to
autoregressive models (cf. equation (9.4), this observation also extends to ARMA models.

Time reversal is also important in physics when studying time-reversal symmetric equations.
Yet, in a sense one feels uneasy about time reversal, since one has never seen a broken coffee cup
spontaneously reassemble its pieces into a whole coffee cup. Much ink has been spilled on physico-
philosophical explanations why this does not happen in spite of the time-reversal symmetry of the
equations of physics, but none of these explanations seem truly convincing.

Similarly, one may feel uneasy about time reversal in time series, since it is natural to attribute
a random component to future events; it is much less natural to attribute randomness to past
events. In any case, if the mathematical theory works, why not make use of it. The doubt however
persists whether a given time series, especially one obtained by differencing, can really be described
as stationary.

10.1 Estimating the residuals of an ARMA model

Assuming that the time series {Yt} has the ARMA model

(10.1) φ(B)Yt = θ(B)et

(cf. (9.3), the same ARMA model
φ(B)Y−t = θ(B)e−t

for the reversed time series can also be written as

(10.2) φ(E)Yt = θ(E)et,

where E is the forward shift operator (see Subsection 4.1). Assume we have observations yt of Yt for
0 ≤ t ≤ n, and that these observations satisfy equation (10.1) for an ARMA(p, q) model. We have
described in Subsection 9.5, given initial values of the errors et, usually called residuals in the time
series literature, for t with 0 ≤ t < p, we can calculate the residuals for t with p ≤ t ≤ n. Similarly,
if the values of et for t with n − p < t ≤ n are given, using equation (10.2) we can calculate et for
t with 0 ≤ t ≤ n− p. As we also pointed out in Subsection 9.5, if the zeros of θ(x) are outside the
unit circle (as required for ARMA models), then errors committed in the initial values for et die out
as t increases.

This motivates the following procedure to determine the residuals (see [4, Section 7.1.5, pp. 233–
235]). For a start, take êt,1 = 0 for t with 0 ≤ t < p and, using equation (10.1), calculate êt,1 for
t with p ≤ t ≤ n. Next use the initial values êt,2 = êt,1 for t with n − p < t ≤ n with equation
equation (10.2) to determine êt,2 for t with 0 ≤ t ≤ n − p. To go forward, use the initial values
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êt,3 = êt,2 for t with 0 ≤ t < p with equation equation (10.1), to calculate êt,3 for t with p ≤ t ≤ n.
Assuming that θ(x) has all its zeros outside the unit cirle, this procedure converges, and we can take

êt = lim
k→∞

êt,k (0 ≤ t ≤ n)

for the values of the residuals of the observed time series {yt}.

10.2 Conditional and unconditional sum of squares

Given the above observed time series 〈yt : 0 ≤ t ≤ n〉, the conditional sum of squares of the residuals
is the sum

n
∑

t=0

ê2t,1.

That is, this sum is conditional on the assumption that the initial values of the residuals are taken
to be 0 in the above calculation.10.1 The unconditional sum of squares is the sum

(10.3)

n
∑

t=0

ê2t ,

where êt can be calculated as described above. The coefficients of the model are usually described by
requiring that the conditional sum of squares or else the unconditional sum of squares be the least
possible. The method relying on the conditional sum of squares is numerically more stable, but,
especially since a short time series there is not enough time for the errors in the initial conditions to
die out,10.2 a more accurate model may be constructed by using the unconditional sum of squares.
It also seems that using the unconditional sum of squares method strongly relies on the correctness
of the assumption that the time series is stationary, while this is not the case for the conditional
sum of squares method.

10.3 The likelihood function of an ARMA model

Let X = (X1, X2, . . . , Xn) be a vector of random variables, and assume we are considering a
model in which the joint density function of X is described as as a function f(P,x), where P =
(P1, P2, . . . , Pm) is a vector of parameters. The goal is to find the parameter vector best describing
the random variable vector X. Assume we have a single observation xi for the random variable
Xi for 1 ≤ i ≤ n. When one considers these observations x = (x1, x2, . . . , xn) as given, f(P,x) is
called the likelihood function of the parameter vector P. The Maximum Likelihood Estimate takes
the place of maximum P = P(0) of the function f(P,x) as the estimate of the parameters P of the
model.10.3

10.1The initial condition 0 seems reasonable in that nothing is known about the residuals except that their expectation
is 0.
10.2This is especially so if in the obtained model θ(x) has a zero that is close to the unit circle (while being outside
the unit circle).
10.3The nature of most statistical models is such that the function f(P,x) has a single place of maximum for fixed x.
One would be tempted to describe such a model as unimodal, but one needs to be somewhat cautious here, since the
term “unimodal” is usually used for density functions having a single place of maximum, and we are talking about
likelihood functions, not density functions; that is, we are not looking for the place of maximum in x given P, we are
looking for the place of maximum in P given x.
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Given an ARMA model as in equation (10.1), the residuals et are usually assumed to be iden-
tically distributed independent random variables with an N (0, σ2

e) distribution, i.e., with a normal
distribution of mean 0 and standard distribution σe, so the joint density of the residuals is

(10.4)
1

(2π)(n+1)/2σn+1
e

exp

(

−2−n−1σ−2(n+1)
e

n
∑

t=0

ê2t

)

.

Often, one likes to consider the logarithm of this, called the log likelihood function:

(10.5) − 2−n−1σ−2(n+1)
e

n
∑

t=0

ê2t −
n+ 1

2
log(2π)− (n+ 1) log σe.

The the residuals êt are functions of the parameters, i.e., of the polynomials φ(x) and θ(x) (or,
rather, of their coefficients). That is, the maximum likelihood method for an ARMA model consists
in finding the coefficients of these polynomials for which the unconditional sum of sqares in equa-
tion (10.3) is the least possible. That is, the maximum likelihood method in this case is a form of
least squares approximation.

It is important to note that the likelihood function should not be considered a function of the
residuals êt and σe; properly, it is a function of the model parameters, i.e., the coefficients φk and
θl in equation (9.1) and of the available observations of the time series {Yt}; the residuals êt in
formulas (10.4) and (10.5) should be determined from these model parameters. The variance σe
occurring in these formulas can also be estimated from the observations of the time series {Yt}, but
this is unimportant for the application of the maximum likelihood method.

11 The extended autocorrelation function

An ARMA(p, q) process is described by the equation

(11.1) φ(B)Yt = θ(B)et,

where

φ(x) = 1−
p
∑

k=1

φkx
k and θ(x) = 1−

q
∑

k=1

θkx
k.

That is,

(11.2) Yt =

p
∑

k=1

φkYt−k + et −
q
∑

k=1

θket−k;

Assuming that {et} are independent normal variables of zero mean, and noting that

(11.3) Wt
def
= Yt −

p
∑

k=1

φkYt−k = et −
q
∑

k=1

θket−k,

we have

(11.4) ρ
(p)
l

def
= Corr(Wt,Wt+l) = 0 whenever l > q,

since on the right-hand side of Wt+l of (11.3) with t + l replacing t, et′ occurs only for t′ > t, and

so et′ so et′ is independent of Yt′′ for t
′′ ≤ t. The quantity ρ

(p)
l is called the extended autocorrelation

function. A similar argument using the right-hand side of (11.3) gives

(11.5) ρ
(p)
l = Corr(Yt,Wt+l) = 0 whenever l > q,
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11.1 The generalized Yule–Walker equations

Assuming that {Yt} is stationary, using the middle member of equation (11.3), equation (11.5) can
be also written as

(11.6) ρ(l) =

p
∑

k=1

φkρ(l − k) whenever l > q,

where recall that ρm = Corr(Yt′ , Yt′+m) for any t′,m ∈ Z (that is, the correlation on the right-hand
side does not depend on t′). One usually considers these equations for l with q+1 ≤ l ≤ q+ p. The
equations are called the generalized Yule–Walker equations. See equation (8.4) for the Yule-Walker
equation for an autoregressive process.

11.2 Determining the order of an ARMA model

In order to build an ARMA model of the correct order, one tentatively build an ARMA(p, q) model,
and then tests if equation (11.4) is satisfied. In building the model, given a series of observations
{yt} of the process {Yt}, one determines the coefficients in the ARMA(p, q) model

Yt =

p
∑

k=1

φ̂kYt−k + et −
q
∑

k=1

θ̂ket−k,

and calculates wt as

(11.7) wt
def
= yt −

p
∑

k=1

φkyt−k.

Then one calculates the sample autocorrelation as follows.
If yt is available for t with 0 ≤ t ≤ n, then wt is available for t with p ≤ t ≤ n− t. One estimates

the sample mean as

w̄ =
1

n+ 1

n
∑

i=p

wi,

and then estimates the sample autocorrelation as

ρ̂
(p)
l =

n− p

n− p− l

∑n−l
i=p (wi − w̄)(wi+l − w̄)
∑n

i=p(wi − w̄)2
;

more commonly, the first factor on the right-hand side is omitted, and one takes

ρ̂
(p)
l =

∑n−l
i=p (wi − w̄)(wi+l − w̄)
∑n

i=p(wi − w̄)2

instead. The difference is small, since n is usually much larger than p or l. Then one tests if

ρ
(p)
l = 0 for l > q (cf. equation (11.4). For the test, one may note that the distribution of ρ̂

(p)
l is

asymptotically N
(

0, 1/(n − p − l)
)

. So the hypothesis that ρ
(p)
l = 0 is rejected with confidence of

95% if

|ρ̂(p)l | > 1.96√
n− p− l

for l > q.

If the validity of equation (11.4) is not rejected by this test, then the given ARMA(p, q) is accepted
as having the correct order; otherwise, and improved model needs to be built. See [12, Exhibit 6.4
on p. 117 and Exhibit 6.17 on p. 124] about how to plot the extended autocorrelation function.
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12 Exponential smoothing

Various forms of exponential smoothing go back to Poisson. For time series forecasting, the two
parameter exponential smoothing discussed below is usually attributed to C. C. Holt, and the three
parameter version to cope with seasonality, to P. R. Winters. Assume we are given an observed time
series {xt} (t ≥ 0). We want to filter out the noise to get at the core of the data. We construct a
smoothed series:

s0 = x0

st = αxt + (1− α)st−1 (t > 0),

where 0 < α < 1 is the smoothing factor. We will discuss how to chose α.

12.1 One-step ahead forecast

The value st can be used to forecast the time series {xt} one step ahead

x̂t(1) = st.

The forecasting error is
et = xt − x̂t−1(1).

Now, if observations for t with 1 ≤ t ≤ n are available, α can be chosen by taking the sum of the
squared past forecasting errors

n
∑

k=1

e2t

to be a minimum.

12.2 Trend: double exponential smoothing

Simple exponential smoothing does not well handle forecasting a time series with a trend. To deal
with this, a trend term {Tt} is included:

s1 = x1

T1 = x1 − x0

st = αxt + (1− α)(xt−1 + Tt−1) (t > 2),

Tt = β(st − st−1) + (1− β)Tt−1 (t > 2),

where 0 < α, β < 1 are smoothing parameters. The h step ahead forecast will now be

x̂t(h) = st + hTt.

12.3 Seasonality: triple exponential smoothing

To cope with seasonality, a seasonal term It and a third smoothing parameter γ with 0 < γ < 1
is also introduced. The seasonal effect may be additive or multiplicative. Assume a multiplicative
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seasonal effect, and consider a seasonal period s:

s1 = x1

st = αxt + (1− α)(xt−1 + Tt−1), (t ≥ 1)

Tt = β(st − st−1) + (1− β)Tt−1, (t ≥ s)

It = γ
xt
st

+ (1− γ)It−s (t > s).

At least 2s steps are needed to initialize Tt and It. One can take

Tk =
1

s2

k+s−1
∑

i=k

(xi+s − si) (0 ≤ k < s).

For the initialization of Ik one first calculates the quantities Ak; withN being the number of complete
cycles present in the data {xt}, we put

Aj =
1

s

s
∑

i=1

xs(j−1)+i (1 ≤ j ≤ N),

Ii =
1

s

N
∑

j=1

xs(j−1)+i

Aj
(1 ≤ j ≤ s).

The h step ahead forecast at time t can be written as

x̂t(h) = (st + hTt)It−s+h (1 ≤ h ≤ s).

For more details on exponential smoothing, see [6, §§5.2.2–5.2.8, pp. 76–80] and [19].

13 Fourier series: a brief introduction

13.1 Trigonometric series

Let f be a function on the real line. We are trying to represent f with a trigonometric series

(13.1) f(x) =
1

2
a0 +

∞
∑

k=1

(ak cos kx+ bk sin kx);

the coefficient 1/2 in front of a0 is used to make sure that the first equation in (13.2) below is true
also in case k = l = 0. The series on the right-hand side is called the Fourier series of the function
f . Since the trigonometric functions on the right-hand side are periodic with a period that is a
multiple of 2π, for this to be possible, f must also be periodic with a period (that is a multiple)
of 2π. Assuming periodicity, it is indeed possible to represent a large class of functions as a series
described in formula (13.1); see Subsection 13.2 below.

The trigonometric functions satisfy the following relations, called orthogonality relations:

(13.2)

1

π

∫ π

−π

cos kx cos lx dx=

{

δkl if l > 0,

2δkl if l = 0,
(k ≥ 0, l ≥ 0),

1

π

∫ π

−π

sin kx sin lx dx=δkl (k > 0, l > 0),

1

π

∫ π

−π

sin kx cos lx dx=0 (k > 0, l ≥ 0).
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These equations can easily be proved from the trigonometric formulas13.1

(13.3)

2 cosx cos y = cos(x− y) + cos(x+ y),

2 sinx sin y = cos(x− y)− cos(x+ y),

2 sinx cos y = sin(x+ y) + sin(x− y),

2 cosx sin y = sin(x+ y)− sin(x− y).

Ignoring issues of convergence, we multiply equation (13.1) by cos kx or by sin kx and integrate; we
obtain

(13.4) an =
1

π

∫ π

−π

f(x) cosnx dx (n ≥ 0) and bn =
1

π

∫ π

−π

f(x) sinnx dx (n > 0).

13.2 Dirichlet’s theorem and the Dirichlet kernel

In 1829, L. Dirichlet proved that if f is 2π-periodic and bounded, and, considered only on the inter-
val [−π, π), it has finitely many discontinuities and it is put together from finitely many monotonic
pieces, then the series on the right-hand side of equation (13.1), where the coefficients are given by
equations (13.4), converges to f at every point of continuity, and at a point x of discontinuity it
converges to

1

2

(

lim
tրx

f(t) + lim
tցx

f(t)

)

.

Dirichlet’s theorem is based on the eponymous formula13.2 writing

(13.5) sn(x) =
1

2
a0 +

n
∑

k=1

(ak cos kx+ bk sin kx),

for the partial sum with the coefficients given by equations (13.4), we have

(13.6) sn(x) =
1

2π

∫ π

−π

f(x− t)Dn(t) dt,

where Dn(t), called the Dirichlet kernel, is defined as

(13.7) Dn(t)
def
= 1 + 2

n
∑

k=1

cos kt =
sin
(

n+ 1
2

)

t

sin 1
2 t

;

for the second equation, see Problem 13.1. below.13.3 Formula (13.6) can be proved by substituting

13.1It is convenient to list also the fourth among these equation, even though it is an easy consequence of the third
one and the equation sin(−t) = − sin t.
13.2That is, on the formula called Dirichlet’s formula.
13.3There are also some slightly different definitions of the Dirichlet kernel in the literature, in that some authors
divide the expression in our definition by 2 or perhaps 2π.

43

https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet


the coefficients an and bn from equations (13.4) into equation (13.5):

(13.8)

sn(x) =
1

2π

∫ π

−π

f(y) dy +
1

π

n
∑

k=1

∫ π

−π

f(y)(cos ky cos kx+ sin ky sin kx) dy

=
1

2π

∫ π

−π

f(y)
(

1 + 2

n
∑

k=1

cos k(y − x)
)

dy =
1

2π

∫ π

−π

f(y)Dn(y − x) dy

= − 1

2π

∫ x−π

x+π

f(x− t)Dn(−t) dt =
1

2π

∫ x+π

x−π

f(x− t)Dn(t) dt

=
1

2π

∫ π

−π

f(x− t)Dn(t) dt;

here, the fourth equation was obtained by the substitution t = x − y, the fifth equation uses the
relation Dn(−t) = Dn(t), and the sixth equation uses the fact that the integrand has period 2π.

Dirichlet’s formula (13.8) is the key in proving most convergence results about Fourier series, including
Dirichlet’s own. While such proofs involve technical difficulties of various levels that puts them beyond the
scope of these notes, in the proof, first one notes that

(13.9)
1

2π

∫ π

−π

Dn(t) dt = 1,

an easy consequence of the first equation in (13.7) defining the Dirichlet kernel. The key idea is that in view
of formula (13.8) we have

f(x)− sn(x) =
1

2π

∫ π

−π

(

f(x)− f(x− t)
)

Dn(t) dt

=
1

2π

(
∫ η

−η

+

∫ −η

−π

+

∫ π

η

)

(

f(x)− f(x− t)
)

Dn(t) dt;

the first equation here holds in view of equation (13.9). The last two integrals tend to 0 as n → ∞ by the
Riemann-Lebesgue lemma, which says that the limits

lim
α→∞

∫ b

a

g(x) sinαxdx and lim
α→∞

∫ b

a

g(x) cosαxdx

are zero for any function g that is integrable in the interval [a, b]; this lemma is applied to the integral
(
∫ −η

−π

+

∫ π

η

)

f(x− t)Dn(t) dt =

(
∫ −η

−π

+

∫ π

η

)

f(x− t)

sin 1
2
t

sin

(

n+
1

2

)

t dt

as n→ ∞. The estimation of the integral
∫ η

−η

(

f(x)− f(x− t)
)

Dn(t) dt

is more technical.

13.3 Problems

Problem 13.1. Prove the second equation in formula (13.7). Hint: expand

Dn(t) sin
1

2
t

with the aid of the first equation in (13.7), and use the fourth equation in (13.3).

Problem 13.2. Find the Fourier series of the 2π-periodic function f(x) such that f(−π) = 0 and
f(x) = x when −π < x < π.
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13.4 Complex Fourier series

Using Euler’s equation (3.1) and the equation obtained from it by replacing x by −x and the relations
cos(−x) = cosx and sin(−x) = − sinx, we obtain the equations

(13.10) cosx =
eix + e−ix

2
and sinx =

eix − e−ix

2i
.

Substituting these equations into equation (13.1), we obtain the complex form of a Fourier series

(13.11) f(x) =

∞
∑

k=−∞

cke
ikx,

where

(13.12) c0 =
1

2
a0, ck =

ak − ibk
2

, and c−k =
ak + ibk

2
(k > 0).

If ak and bk are real, we have c−k = c∗k, where the asterisk indicates complex conjugate.13.4 These
equations can also be written as

(13.13) a0 = 2c0, ak = ck + c−k, bk = (ck − c−k)i (k > 0).

The orthogonality relations analogous to (13.2) can be written as

(13.14)

1

2π

∫ π

−π

eikx
(

eilx
)∗
dx =

1

2π

∫ π

−π

eikxe−ilx dx

=
1

2π

∫ π

−π

ei(k−l)x dx = δkl (−∞ < k, l <∞).

Multiplying equation Ignoring the issues of convergence, multiplying equation (13.11) by e−in and
integrating, the orthogonality relations allow us to express the coefficients as

(13.15) cn =
1

2π

∫ π

−π

f(x)e−inx dx (−∞ < n <∞).

Again, ignoring issues of convergence, and defining the L2 norm ‖f‖ of f on the interval [−π, π)
by the first equation next, we obtain from equation (13.11) that

(13.16)

1

2π
‖f‖2 =

1

2π

∫ π

−π

|f(x)|2 dx

=
1

2π

∫ π

−π

f(x)
(

f(x)
)∗
dx =

1

2π

∫ π

−π

∞
∑

k=−∞

cke
ikx ·

∞
∑

l=−∞

c∗l e
−ilx dx

=
1

2π

∞
∑

k=−∞

∞
∑

l=−∞

ckc
∗
l

∫ π

−π

ei(k−l)x dx =

∞
∑

k=−∞

ckc
∗
k =

∞
∑

k=−∞

|ck|2;

13.4In mathematics, the complex conjugate of the number z is usually denoted by z̄, but this notation conflicts with
the notation X̄ for the (sample) mean of the random variable X in statistics. On the other hand, it is common in
mathematics to use A∗ for the Hermitian conjugate of the matrix A, and in a way this is an analog of the complex
conjugate for matrices.
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the penultimate13.5 equation on above holds because the orthogonality relations. The square root
of sum on the right is called the l2 norm of the sequence {ck}∞k=−∞. The equation of the left- and
right-hand sides in this formula is called Parseval’s identity, named after Marc-Antoine Parseval.
He claimed this identity without proof as self-evident in a paper dated 1799. A similar calculation
involving equation (13.1) gives Parseval’s formula for the coefficients ak and bk

(13.17)
1

π
‖f‖2 =

1

π

∫ π

−π

(

f(x)
)2
dx =

|a0|2
2

+

∞
∑

k=1

(

|ak|2 + |bk|2
)

.

One usually considers this equation only for real ak and bk, in which case the absolute values can
be omitted.

In undergraduate courses, when integration is defined precisely, usually the integral concept
introduced by Bernhard Riemann in 1854 is discussed in his Habilitationsschrift. 13.6 For a deeper
understanding of the L2 norm a newer integral concept, introduced by Henri Lebesgue in 1904 is
needed. We will not go into these issues.

13.5 Problem

Problem 13.3. Use the solution of Problem 13.2 and Parseval’s formula (13.17) to prove

(13.18)
∞
∑

n=1

1

n2
=
π2

6
,

a formula first proved by Euler in 1741.13.7

13.6 The complex form of the Dirichlet kernel

The Dirichlet kernel defined in equation (13.7) can also be written as

(13.19)

Dn(t) =

n
∑

k=−n

eikx = e−inx ei(2n+1)x − 1

eix − 1
=
ei(n+1)x − e−inx

eix − 1

=
ei(n+1/2)x − e−i(n+1/2)x

eix/2 − e−ix/2
=

sin
(

n+ 1
2

)

t

sin 1
2 t

;

the second equation is obtained by using the sum formula for the geometric progression, and the
last one follows from the second one among Euler’s equations (13.10). The symmetric partial sum

(13.20) sn(x) =
n
∑

k=−n

cke
ikx (n ≥ 0),

where the coefficients are given by equations (13.15), is given by equation (13.8).

13.5The one before the last.
13.6Habilitation is a post-doctoral qualification at universities in various countries; there is a Wikipedia article about
this. Habilitationsschrift is the name of the dissertation used for habilitation in German speaking universities. There
is a German Wikipedia article about this, but it is written in German.
13.7The problem of finding the sum of the series on the left is called the Basel problem, posed by Pietro Mengoli in
1644, and solved by Euler in 1734, though he was not able to justify his arguments rigorously until 1741.
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14 Trigonometric interpolation with equidistant nodes

14.1 Lagrange interpolation

Let N be a positive integer, let z1, z2, . . .,zN be distinct complex numbers, and let w1, w2, . . .,wN

also be complex numbers, these latter not necessarily distinct. The task of polynomial interpolation
is to find a polynomial P (z) of degree less than N such that P (zk) = wk for k with 1 ≤ k ≤ N ;
the points zk are called interpolation points or nodes. It is not hard to prove that if there is such
a polynomial, then it is unique; see Problem 14.1 below. We will show that there is indeed a
polynomial P (z) of degree less than N satisfying these requirements. The polynomial interpolation
problem was first solved by Newton. A different, elegant solution was later found by Lagrange. Here
we consider the latter solution.

Lagrange considers the polynomials

lk(z) =

N
∏

j=1

j 6=k

z − zj
zk − zj

.

It is clear that lk(z) is a polynomial of degree N − 1, since the numbers in the denominator do not
depend on z. Further, for any integer j with 1 ≤ j ≤ N we have

lk(zj) =

{

1 if j = k,

0 if j 6= k.

Indeed, if z = zk then each of the fractions in the product expressing lk(z) is 1, and if z = zj for
j 6= k then one of the fractions in this product has a zero numerator. For this reason, the polynomial
P (z) defined as

P (z) =

N
∑

k=1

wklk(z)

satisfies the requirements; that is P (zk) = wk for k with 1 ≤ k ≤ N .

Both Lagrange’s and Newton’s solution of the polynomial interpolation problem has uses. Only Newton’s

solution is suitable for numerical calculations; both solutions have theoretical applications. It is easy to see

that Lagrange’s solution is works for any field replacing the field of complex numbers.

14.2 Problem

Problem 14.1. Show that the solution of the interpolation problem is unique. That is, given
points z1, z2, . . .,zN be distinct complex numbers, and w1, w2, . . .,wN complex numbers, these
latter not necessarily distinct. Let P1(z) and P2(z) be polynomials of degree less than N such that
P1(zk) = P2(zk) = wk for all k with 1 ≤ k ≤ N . Show that then P1(z) and P2(z) are the same
polynomial.

14.3 Complex exponential interpolation with equidistant nodes

Let f be a 2π-periodic function on the real line, and let x0 be an arbitrary fixed real. We want to
represent f at the nodes

(14.1) xn = x0 + 2nπ/N (0 ≤ n < N)
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by a complex exponential polynomial as

(14.2) f(xn) =

N−1
∑

k=0

cke
ikxn (0 ≤ n < N).

It is immediate from the main result of Subsection 14.1 that this problem has a solution. Namely,
the question can be reformulated as the polynomial interpolation problem of finding a polynomial

P (z) =

N−1
∑

k=0

ckz
k

such that P (eixn) = f(xn) for n with 0 ≤ n < N . 14.1 To find the coefficients ck in (14.2), observe
that for k with 0 < k < N we have

N−1
∑

n=0

e2nkπi/N =
e2kNπi/N − 1

e2kπi/N − 1
=

e2kπi − 1

e2kπi/N − 1
= 0;

the first equation holds by the sum formula of geometric series, and the second equation holds since
e2kπi = 1; this calculation is not applicable in case n = 0 since the denominator is 0 then.14.2 For
n = 0, all terms in the sum are 1, and hence the sum is N . Thus

(14.3)

1

N

N−1
∑

n=0

exnki =
1

N

N−1
∑

n=0

ek(x0+2nπ/N)i

=
1

N
eikx0

N−1
∑

n=0

e2nkπi/N =

{

1 if k = 0,

0 if k 6= 0 (−N < k < N).

Hence, the orthogonality relations are

(14.4)
1

N

N−1
∑

n=0

eikxne−ilxn =
1

N

N−1
∑

n=0

ei(k−l)xn = δkl (0 ≤ k, l < N).

Multiplying equation (14.2) by e−ilxn and summing for n, by using these orthogonality relations we
obtain

(14.5) cl =
1

N

N−1
∑

n=0

f(xn)e
−ilxn (0 ≤ l < N).

Observe that the right-hand side here can be considered as a numerical integration formula approx-
imating the integral in (13.15) (with l here replacing n in that formula). Parseval’s identity can be
written as

(14.6)
1

N

N−1
∑

n=0

|f(xn)|2 =
N−1
∑

n=0

|cn|2.

14.1 Actually, this equation holds for all n, not just for n with 0 ≤ n < N , but this is a consequence of the equations
f(ixn+N ) = f(ixn) and P (eixn+N ) = P (eixn ).
14.2More generally, the calculation is not applicable for any k that is divisible by N , since for such k the denominator
is 0; it is applicable for any other k ∈ Z. That is, the above formula is true for any integer k that is not divisible by N .
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14.4 More on complex exponential interpolation with equidistant

nodes

Instead of the range 0 ≤ k < N of exponent range in equation (14.2) we can take a exponent range
K ≤ k < K +N for an arbitrary K ∈ Z. Finding a complex exponential polynomial

(14.7) QK(x) =
K+N−1
∑

k=K

cke
ikx

such that

(14.8) QK(xn) = f(xn)

for n with 0 ≤ n < N is equivalent to the type of problem given in equation (14.2); namely, we need
to find a complex exponential polynomial

Q(x) =

N−1
∑

k=0

ck+Ke
ikx

such that Q(xn) = f(xn)e
−iKxn for for n with 0 ≤ n < N . As for the coefficients ck, multiplying

equation (14.8) with x = xn by e−lxn and summing for n, the orthogonality relations (14.4) give the
equation

(14.9) cl =
1

N

N−1
∑

n=0

f(xn)e
−ilxn (K ≤ l < K +N).

This is of course the same as equation (14.5), except that a different range of the coefficients ck is
considered. Parseval’s identity to replace equation (14.6) can now be written as

(14.10)
1

N

N−1
∑

n=0

|f(xn)|2 =
K+N−1
∑

n=K

|cn|2.

14.5 Real trigonometric interpolation with an odd number of equidistant

nodes

Translating these formulas to the real line is easier in case N is odd. Assuming this and writing
N = 2M +1, consider equation (14.7) with K = −M . Assuming f(x) is real for all x ∈ R, equation
(14.9) implies that c−l = cl∗ for l with −M ≤ l ≤M . Hence, Euler’s equations (13.10), we obtain

(14.11) Q−M (x) =
M
∑

k=−M

cke
ikx =

a0
2

+
M
∑

k=1

(ak cos kx+ bk sin kx)

with

(14.12) a0 = 2c0, ak = ck + c−k = 2ℜck, bk = (ck − c−k)i = −2ℑck (0 < k ≤M);

the second equations for ak and bk hold since c−k = c∗k. These equations identical to equations
(13.13). These equations together with the Euler equations (13.10) and equation (14.9) give the
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equations for the coefficients:

(14.13)

ak =
2

N

N−1
∑

n=0

f(xn) cos kxn (0 ≤ k ≤M),

bk =
2

N

N−1
∑

n=0

f(xn) sin kxn (0 < k ≤M).

That is, according to equation (14.8) we have

(14.14) f(xn) =
a0
2

+

M
∑

k=1

(ak cos kxn + bk sin kxn) (0 ≤ n < N, N = 2M + 1).

with these coefficients. As it can be seen, the number of coefficients here is 2M + 1 = N . The
coefficient equations can also be obtained directly from the orthogonality relations

(14.15)

2

N

N−1
∑

n=0

cos kxn cos lxn=

{

δkl if l > 0,

2δkl if l = 0,
(0 ≤ k, l ≤M),

2

N

N−1
∑

n=0

sin kxn sin lxn =δkl (1 ≤ k, l ≤M),

2

N

N−1
∑

n=0

sin kxn cos lxn=0 (1 ≤ k ≤M, 0 ≤ l ≤M).

To prove these equations, we need first observe that

(14.16)

N−1
∑

n=0

sin(kxn + α) =

N−1
∑

n=0

cos(kxn + α) = 0 (1 ≤ |k| < N and α ∈ R).

These equations are valid for both even and odd N . They follow by multiplying (14.3) by eiα and
taking real parts and imaginary parts, respectively. Then equations (14.15) can be easily proved
using the trigonometric formulas (13.3). Parseval’s equation can be written in this case as

(14.17)
2

N

N−1
∑

n=0

|f(xn)|2 =
|a0|2
2

+

M
∑

n=1

(

|an|2 + |bn|2
)

.

14.6 Real trigonometric interpolation with an even number of equidistant

nodes

The case of even N > 0 is somewhat more complicated. Given a real-valued 2π-periodic function f
on R, with xn as in equation (14.1), writing N = 2M , we require

(14.18) f(xn) =
a0
2

+

M−1
∑

k=1

(ak cos kxn + bk sin kxn) +
aM
2

cos
(

M(xn − x0)
)

(0 ≤ n < N).

The number of coefficients here is also N . This equation can be justified as follows. Represent f
with the interpolation formula in (14.7) with K = −M + 1; that is, also using equation (14.7), we
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have

(14.19) f(xn) =

M
∑

k=−M+1

cke
ikxn .

According to equation (14.1), we have M(xn − x0) = nπ, and so equation (14.9) implies

(14.20)

cMe
iMx0 =

1

N

N−1
∑

n=0

f(xn)e
−iM(xn−x0) =

1

N

N−1
∑

n=0

f(xn)e
−inπ =

1

N

N−1
∑

n=0

f(xn)(−1)n

=
1

N

N−1
∑

n=0

f(xn) cosnπ =
1

N

N−1
∑

n=0

f(xn) cos
(

M(xn − x0)
)

.

Equations (14.12) are now replaced with

(14.21)
a0 = 2c0, aM = 2cMe

iMx0 ,

ak = ck + c−k = 2ℜck, bk = (ck − c−k)i = −2ℑck (0 < k < M).

all these equations except for the second one can be justified the same way as in formula (14.12).
The reason for the second equation will be clear soon.

It is easy to see that with this choice of the coefficients ak and bk we can define a trigonometric
polynomial f̃(x) such that f̃(xn) = f(xn), as required in equation (14.18):

(14.22)

f̃(x)
def
=

a0
2

+

M−1
∑

k=1

(ak cos kx+ bk sin kx) +
aM
2

cos
(

M(x− x0)
)

=
M−1
∑

k=−M+1

cke
ikx + ℜ(cMeiMx);

here the first equation defines the interpolation polynomial in case of an even number of nodes; the
second equation here needs some explanation. By virtue of the second equation in (14.21) we have

ℜ(cMeiMx) = ℜ
(aM

2
eiM(x−x0)

)

=
aM
2

cos(M(x− x0);

the last equation holds since aM = 2cMe
iMx0 is real according to formula (14.20). The second

equation in (14.22) follows from this equation. This also justifies the adoption of the second equation
in (14.21). Further, the observation just made that aM = 2cMe

iMx0 is real also implies that cMe
iMxn

is real for every integer n. Indeed, we have

cMe
iMxn = cMe

ix0 eiM(xn−x0) = cMe
ix0 einπ = cMe

ix0 (−1)n;

the third equation here holds in view of the definition of xn given in formula (14.1). Thus, for x = xn
the right-hand side of (14.22) equals

f̃(xn) =

M−1
∑

k=−M+1

cke
ikxn + ℜ(cMeiMxn) =

M−1
∑

k=−M+1

cke
ikxn + cMe

iMxn

=

M
∑

k=−M+1

cke
ikxn = f(xn);
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the real part ℜ(·) was dropped from the second member of these equation, since the term it was
applied to is real. The last equality holds according to equation (14.19). The equality of the sides
show that the trigonometric polynomial f̃(x) indeed interpolates f(x) at the given notes, justifying
the definition of the interpolation polynomial in equation (14.22).

The orthogonality relations corresponding to the above equations are

(14.23)

2

N

N−1
∑

n=0

cos kxn cos lxn =

{

δkl if l > 0,

2δkl if l = 0,
(0 ≤ k, l < M),

2

N

N−1
∑

n=0

cos kxn cos
(

M(xn − x0)
)

=0 (0 ≤ k < M),

2

N

N−1
∑

n=0

cos2M(xn − x0) =2,

2

N

N−1
∑

n=0

sin kxn sin lxn =δkl (1 ≤ k, l ≤M),

2

N

N−1
∑

n=0

sin kxn cos lxn =0 (1 ≤ k, l < M),

2

N

N−1
∑

n=0

sin kxn cos
(

M(xn − x0)
)

=0 (1 ≤ k < M),

The third of these equations holds since cos
(

M(xn − x0)
)

= cosnπ = (−1)n, as we saw in equation
(14.20), the rest follows the same way as (14.15) from the equations in (14.16) and the trigonometric
formulas (13.3). Using the orthogonality relations, equation (14.18) implies that

(14.24)

ak =
2

N

N−1
∑

n=0

f(xn) cos kxn (0 ≤ k < M),

aM =
2

N

N−1
∑

n=0

f(xn) cosM(xn − x0),

bk =
2

N

N−1
∑

n=0

f(xn) sin kxn (0 < k < M).

Parseval’s equation becomes

(14.25)
2

N

N−1
∑

n=0

|f(xn)|2 =
|a0|2
2

+

M−1
∑

n=1

(

|an|2 + |bn|2
)

+
|aM |2
2

.

15 The Stieltjes integral

There is a clear analogy between the formulas describing Fourier series and trigonometric inter-
polation with equidistant nodes. This analogy can be brought out more clearly by rewriting the
interpolation formulas with the aid of Stieltjes integrals. The next three definitions describe the
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Riemann–Stieltjes integral.15.1

Definition 15.1 (Partition). A partition of the interval [a, b] is a finite sequence 〈x0, x1, . . . , xn〉 of
points such that

P : a = x0 < x1 < x2 < . . . < xn = b.

The width or norm of a partition is

‖P‖ def
= max{xi − xi−1 : 1 ≤ i ≤ n}.

Definition 15.2 (Riemann–Stieltjes sum). Given a partition

P : a = x0 < x1 < x2 < . . . < xn = b.

of the interval [a, b], a tag for the interval [xi−1, xi] with 1 ≤ i ≤ n is a number ξi ∈ [xi−1, xi] for
each i. A partition with a tag for each interval [xi−1, xi] is called a tagged partition. Given a tagged
partition as described, and given the functions f and g on [a, b], the corresponding Riemann–Stieltjes
sum is

S =

n
∑

i=1

f(ξi)
(

g(xi)− g(xi−1)
)

.

The Riemann–Stieltjes integral
∫ b

a

f(x) dg(x)

is defined as the limit of the Riemann–Stieltjes sums S associated with the partition P as ‖P‖ → 0,
independently of the choice of the tags. While not important for our purposes, we will give a
rigorous definition (if we take g(x) = x in this definition, this gives the usual definition of the
Riemann inegral):

Definition 15.3 (Riemann–Stieltjes integral). If there is a real number A such that for every ǫ > 0
there is a δ > 0 such that for any Riemann–Stieltjes sum S for f and g associated with a partition
of width < δ of [a, b] we have |A − S| < ǫ, then we call A the Riemann–Stieltjes integral of f with

respect to g on [a, b], and we write A =
∫ b

a
f dg. In this case we call f Riemann–Stieltjes integrable

with respect to g on [a, b].

Let N > 0, and let the interpolation points xn be chosen as formula (14.1). except now we want
to consider xn for any n ∈ Z. That is, given some real x0

(15.1) xn = x0 + 2nπ/N (n ∈ Z).

Assume f is a continuous 2π-periodic function, and define the function ωN on R as

(15.2) ωN (x) =
2πn

N
if xn ≤ x < xn+1 (n ∈ Z).

Then we can write equation (14.5) as

cl =
1

2π

∫ π

−π

f(x)e−ilx dωN (x) (0 ≤ l < N),

15.1There is also a Lebesgue–Stieltjes integral that extends the concept of of Riemann–Stieltjes integrability. See
footnote 13.6 on p. 46. The xi in the definition that follows has nothing to do with the nodes of the interpolation also
denoted by xi in a different context.

53



emphasizing the analogy with equation (13.15) – cf. Problem 15.1. Since we assumed that f is
2π-periodic, we could integrate on any interval of length 2π instead of [−π, π].15.2 Other equations
involving interpolations can also be rewritten as Stieltjes integrals. In case N = 2M + 1 is odd,
writing, in analogy with formula (13.8),

(15.3) f̃(x) =
1

2π

∫ π

−π

f(y)DM (x− y) dωN (y),

then we have

(15.4) f̃(xn) = f(xn) for 0 ≤ n < N.

The easiest way to see this is use real form of interpolation as given in equation (14.11), and
repeating the calculations in equation (13.8) with M replacing n; see Problem 15.2 below. For even
N , equation (13.8) needs a minor modification.15.3

15.1 More on Stieltjes integrals

The only reason we mentioned Stieltjes integrals is to more closely highlight the analogy between Fourier
series and trigonometric interpolation. We will include here some simple results to put Stieltjes integrals
in the proper context, even though they are not needed for the discussion below. The first one converts
Stieltjes integrals into Riemann integrals in certain cases (but not in the case of interest to us above, when
the function playing the role of g is not continuous).

Theorem 15.1. Assume g is differentiable on [a, b]. Assume further that the Riemann integral
∫ b

a
f(x)g′(x) dx

and the Riemann–Stieltjes integral
∫ b

a
f(x) dg(x) exist. Then

∫ b

a

f(x) dg(x) =

∫ b

a

f(x)g′(x) dx.

Proof. Let
P : a = x0 < x1 < x2 < . . . < xn = b.

a partition of the interval [a, b]. By the mean-value theorem of differentiation, for each i with 1 ≤ i ≤ n
there is a ξi ∈ [xi−1, xi] such that g′(ξi)(xi − xi−1) = g(xi)− g(xi−1).

15.4 Hence we have

n
∑

i=1

f(ξi)
(

g(xi)− g(xi−1)
)

=

n
∑

i=1

f(ξi)g
′(ξi)(xi − xi−1).

Making ‖P‖ → 0, the left-hand side tends to
∫ b

a
f(x) dg(x) and the right-hand side tends to

∫ b

a
f(x)g′(x) dx,

completing the proof.

Theorem 15.2 (Integration by Parts). Assume the integral
∫ b

a
f(x) dg(x) is defined. Then the integral

∫ b

a
g(x) df(x) is also defined and we have

∫ b

a

f(x) dg(x) = f(b)g(b)− f(a)g(a)−

∫ b

a

g(x) df(x).

15.2If we integrate on the interval [xm, xm +2π], then the value of the integrand at xn+N = xm +2π will contribute
to the integral, and its value an xm will not. This is because in equation (15.2) we defined ωN (x) to be constant on
the interval [xn, xn+1).
15.3In formula (15.3) we used the fourth member of formula (13.8), since the rest of the transformations in that
formula are not valid in the present situation.
15.4In order to apply the mean-value theorem, we need to assume that g is real valued, since the mean-value theorem
is not valid for complex-valued functions. The result can nevertheless be proved in case g is complex valued by
establishing it separately for the real and the imaginary parts of g.
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Proof. For the proof, we redefine the concept of partition by allowing P = 〈xi : 1 ≤ i ≤ n〉 to be a
nondecreasing sequence. This is a harmless change, since the terms f(ξi)

(

g(xi)−g(xi−1)
)

for which xi−1 = xi
do not contribute to the Riemann–Stieltjes sum. Let P be such an arbitrary partition; that is

P : a = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn = b,

and let ξi ∈ [xi−1, xi] be arbitrary tags. We have the identity

n
∑

i=1

f(ξi)
(

g(xi)− g(xi−1)
)

= f(xn)g(ξn)− f(ξ1)g(x0) +

n−1
∑

i=1

g(xi)
(

f(ξi)− f(ξi+1)
)

.

This is easy to verify; namely, the same terms are added on both sides, in different order. Indeed, for i
with 1 ≤ i ≤ n, both sides adds the term +f(ξi)g(xi), except that on the right-hand time for i = n this
term is written out separately. Further, both sides adds the terms −f(ξi)g(xi−1) for i with 1 ≤ i ≤ n,
even though on the right-hand side this term is written as −f(ξi+1)g(xi) for i with 1 ≤ i ≤ n − 1, and
the term corresponding to i = 0, i.e., the term −f(ξ1)g(x0), is written out separately. This rearrangement
of a sum is called partial summation or Abel rearrangement, named after the Norwegian mathematician
Niels Henrik Abel.

Making the assumption a = x0 = ξ1 = x1 and xn−1 = ξn = xn = b, the above identity becomes

n
∑

i=1

f(ξi)
(

g(xi)− g(xi−1)
)

= f(b)g(b)− f(a)g(a)−

n−1
∑

i=1

g(xi)
(

f(ξi+1)− f(ξi)
)

.

Considering
P ′ : a = ξ1 ≤ ξ2 ≤ ξ3 ≤ . . . ≤ ξn = b

with the tags xi ∈ [ξi, ξi+1] for i with 1 ≤ i ≤ n − 1, the right-hand side contains a Riemann–Stieltjes

sum for the integral
∫ b

a
g(x) df(x), and the left-hand side contains a Riemann–Stieltjes sum for the integral

∫ b

a
f(x) dg(x); the fact that we allow xi−1 = xi makes no difference here, since the terms with xi−1 = xi

make no contribution to the sum.15.5 Since ξi−1 ≤ xi ≤ ξi ≤ xi+1 ≤ ξi+1 for all i with 1 ≤ i ≤ n − 1,
x0 = x1, and xn−1 = xn, we have ‖P‖ ≤ 2‖P ′‖. Hence, making ‖P ′‖ → 0, we also have ‖P‖ → 0; hence the

left-hand side tends to
∫ b

a
f(x) dg(x), since this integral was assumed to exist. So, the right-hand side also

has a limit; thus, the integral
∫ b

a
g(x) df(x) also exists, it being the limit of the sum on the right-hand side.

This completes the proof of the theorem.

We also have a change of variables (i.e., substitution) formula for Riemann–Stieltjes integrals; it is even
simpler than the one for regular Riemann integrals. For this, we need to put

∫ a

b

f(x) dg(x)
def
= −

∫ b

a

f(x) dg(x) (a < b),

as is usual in case of Riemann integrals. At this point, we might as well put
∫ b

a
f(x) dg(x) = 0 in case a = b.

Theorem 15.3. Assume the integral
∫ b

a
f(x) dg(x) exists, and let h : [A,B] → [a, b] be a nondecreasing or

nonincreasing function onto [a, b]. Then the integral
∫ B

A
f
(

h(t)
)

dg
(

h(t)
)

, exists and we have
∫ B

A

f
(

h(t)
)

dg
(

h(t)
)

=

∫ h(B)

h(A)

f(x) dg(x).

Note that h(A) = a and h(B) = b in case h is nondecreasing, and h(A) = b and h(B) = a in case h is

nonincreasing. As for the proof, it is fairly direct and straightforward except that it involves simple results

about uniform continuity, and so we omit the proof.15.6 Readers familiar with uniform continuity can easily

construct a proof.

15.5The equality ξi = ξi+1 is possible, whether or not we allow the possibility that xi−1 = xi. This causes no trouble,
just as allowing xi−1 = xi causes no trouble.
15.6A function h satisfying the requirements of Theorem 15.3 is necessarily continuous, and so also uniformly contin-
uous.
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15.2 Problems

Problem 15.1. Let f be a function on [−1, 1] that is continuous at 0, and let g be the function
that is

g(x) =

{

0 if − 1 ≤ x < 0,

1 if 0 ≤ x ≤ 1.

Show that
∫ 1

−1

f(x) dg(x) = f(0).

Problem 15.2. Re-write formula (15.3) with a sum instead as a Stieltjes integral.

Problem 15.3. Prove equation (15.4).

Problem 15.4. Write the equation corresponding the equations (15.3) and (15.4) with an even
number of points. Hint: the formula you obtain is essentially identical, but with a slightly modified
version of the Dirichlet kernel.

16 Spectrum of a time series

Given the observations yt of a time series for 0 ≤ t < N we want to represent it in the form

(16.1) yt =

N−1
∑

k=0

cke
2iktπ/N (0 ≤ t < N).

This is just the interpolation formula (14.2) with yt = f(xt) and xt = 2tπ/N ; other forms of the
interpolation formula could also have been used instead. The term cke

2iktπ/N is said to represent
the frequency k/N in the above sum. That is, yt is decomposed as a sum of frequencies.

Given a complex number z, it can be written in what is called a trigonometric form z = |z|eiα;
here α is called the argument of z, and it is determined only up to an additive multiple of 2π (since
e2πi = 1). We write α = arg z; we usually take 0 ≤ arg z < 2π, though occasionally other values of
arg z may be taken. According to (14.5), we have

(16.2) ck =
1

N

N−1
∑

t=0

yte
−2iktπ/N (0 ≤ k < N).

Here |ck| is called the amplitude of the frequency k/N and arg ck, its phase in the time series yt,
0 ≤ t < N .

16.1 The periodogram

In equation (16.1), the frequency ranges from 0 to (N − 1)/N , so roughly from 0 to 1. We will
assume that yt is real. Hence we have cN−k = c∗k; this is clear from equation (16.2), since

e−2i(N−k)tπ/N = e−2iNtπ/N · e2iktπ/N = e2iktπ/N =
(

e−2iktπ/N
)∗
.

For this reason, |ck| for k > N/2, is of no interest. That is, the amplitude is only of interest in the
range [0, 1/2].16.1

16.1In the real interpolation formula (14.14) or (14.15), the frequencies clearly range from 0 to 1/2, but much of the
discussion is simpler with the complex interpolation formula (14.2).
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In electromagnetic radiation, the squares of the amplitudes of the electric and magnetic fields
are proportional to the energy density of the the radiation. Analogously, for 1 ≤ k ≤ N/2, the term
cke

2iktπ/N contributes an energy of |ck|2. This energy is restricted to the frequency range

(

2k − 1

2N
,
2k + 1

2N

)

.

Given that the length of this interval is 1/N , this gives an energy density of N |ck|2. Given that t is
an integer, we have

cN−ke
2i(N−k)tπ/N = cN−ke

−2iktπ/N .

hence this term represents the same frequency,16.2 and it contributes an additional energy of |cN−k|2
to the same frequency range. Since we have cN−k = c∗k; we have |cN−k|2 = |ck|2. This makes the
energy density at the frequency k/n to be 2N |ck|2 for 1 ≤ k < N/2. If N is even and k = N/2, then
N − k = k, so only one term contributes to the energy density. Thus we define the periodogram as

(16.3)

I

(

k

N

)

def
= 2N |ck|2 (1 ≤ k < N/2),

I

(

1

2

)

def
= N |cN/2|2 if N is even.

With this notation, equation (14.6) becomes

N−1
∑

t=0

y2t −N |c0|2 = N

N−1
∑

n=1

|cn|2 =

⌊N/2⌋
∑

n=1

I

(

k

N

)

.

The term |c0|2 does not represent a wave, and so it carries no “energy.”

16.2 Sampling rate and the Nyquist frequency

We saw that the time series above can be described in terms of frequencies in the range [0, 1/2].
In electric engineering, one has a continuous time series (Voltage, for example), and one takes
measurements of this time series, to represent the continuous time series as a discrete16.3 time series,
perhaps for digital transmission or recording. Often, one wants to reconstruct the continuous time
series. This is the situation, for example, with the transmission or digital recording of sound. Sound
is really an oscillation at various frequencies, and an accurate reconstruction of these frequencies
is important. The considerations above show that only frequencies in the range [0, 1/2] can be
reconstructed, where the unit time is the time between samples. That is, to reconstruct sound
waves in the range of 0 to 6000 Hz16.4 one needs to sample the signal representing the sound 12000
times a second. That is, the sampling rate must be twice the maximum frequency that can be
reconstructed from the signal. This maximum frequency is called the Nyquist frequency after the
Swedish-born American electronic engineer Harry Nyquist.

16.2Unless but one wants to consider negative frequencies; however, in the real form (14.14) there are no negative
frequencies.
16.3It is important to learn the difference between discrete and discreet.
16.4Cycles per second. Named after the German physicist Heinrich Rudolf Hertz, who experimentally demonstrated
the existence of electromagnetic waves, after the theory of electromagnetism developed by James Clerk Maxwell
predicted their existence.

57

https://en.wikipedia.org/wiki/Harry_Nyquist


16.3 Variance of a complex-valued random variable

Below, we are going to calculate the variance of a complex-valued random variable. If X is a
complex-valued random variable, we define its variance as

Var(X) = E
(

|X − E(X)|2
)

.

We have

Var(X) = E
(

|X − E(X)|2
)

= E
(

(

X − E(X)
)(

X∗ − E(X∗)
)

)

= E
(

XX∗ −X E(X∗)−X∗ E(X) + E(X) E(X∗)
)

= E(XX∗)− E(X) E(X∗)− E(X∗) E(X) + E(X) E(X∗)

= E(|X|2)− E(X)
(

E(X)
)∗ −

(

E(X)
)∗

E(X) + E(X)
(

E(X)
)∗

= E(|X|2)−
∣

∣E(X)
∣

∣

2
.

in complete analogy with the situation when X is real valued.

16.4 The spectrum of a stationary process

Assume {Yt} is a real-valued stationary process, and write µ = E(Yt). Writing

Yt =

N−1
∑

k=0

Cke
2iktπ/N . (0 ≤ t < N).

the analog of formula (16.2) becomes

(16.4) Ck =
1

N

N−1
∑

t=0

Yte
−2iktπ/N (0 ≤ k < N).

Taking expectations, we obtain

(16.5) E(Ck) =
1

N

N−1
∑

t=0

E(Yt)e
−2iktπ/N =

{

µ if k = 0,

0 if 1 ≤ k ≤ N − 1

according to (14.3). So we also have

Ck =
1

N

N−1
∑

t=0

Yte
−2iktπ/N =

1

N

N−1
∑

t=0

(Yt − µ)e−2iktπ/N (1 ≤ k < N);

the second equation here holds according to (14.3). Hence, for k with 1 ≤ k < N we have

Var(Ck) = E(|Ck|2)−
∣

∣E(Ck)
∣

∣

2
= E(C2

k) =
1

N2
E

(

∣

∣

∣

N−1
∑

t=0

(Yt − µ)e−2iktπ/N
∣

∣

∣

2
)

=
1

N2
E
(

N−1
∑

t=0

N−1
∑

t′=0

(Yt − µ)(Yt′ − µ)e−2ik(t−t′)π/N
)

=
1

N2

N−1
∑

t=0

N−1
∑

t′=0

e−2ik(t−t′)π/N E
(

(Yt − µ)(Yt′ − µ)
)

=
1

N2

N−1
∑

t=0

N−1
∑

t′=0

e−2ik(t−t′)π/Nγ(t− t′).
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That is, putting t = t′ +m, we have

N Var(Ck) =
1

N

∞
∑

m=−∞

γ(m)e−2imkπ/N

min(N−1,N−1+m)
∑

t=max(0,m)

1.

Of course, the outside sum here is not a truly infinite sum, since the inside sum is empty (and
therefore zero) for |m| > N . Writing f = k/N , we obtain

N Var(CfN ) =

N−1
∑

m=−N+1

γ(m)e−2ifmπ N − |m|
N

.

Making N → ∞, it follows that

(16.6) lim
N→∞

N Var(CfN ) =

∞
∑

m=−∞

γ(m)e−2ifmπ,

assuming that this series
∑∞

m=−∞ |γ(m)| is convergent. The limit on the left-hand side is called the
power spectral density S(f). Given that γ(m) = γ(−m) is real, by (13.10) we have

(16.7) S(f) = γ(0) + 2

∞
∑

m=1

γ(m) cos(2fmπ).

This result showing the existence of the spectrum is called the Wiener–Khinchin theorem.16.5 The
frequency function here defined is an even function with a period of 1; this means that its values
in the interval [0, 1/2) determine its values on the whole real line. Comparing these equations to
equation (16.3), we expect that periodogram approximates twice the spectrum.16.6 The problem of
estimating the spectrum is, however, somewhat more complicated, as we will discuss below.

16.5 The periodogram is an inconsistent estimator of the spectrum

The question arises how good is the periodogram, described in equation (16.3), for estimating the
spectrum. We will consider the special case of a white noise process. That is, let Yt (0 ≤ t < N)
be independent normal N (0, σ2) variables. Let N > 3 be an integer (we expect N to be fairly
large), and 1 ≤ k < N/2. For the sake of simplicity, assume N is odd.16.7 Then Ck defined by
equation (16.4) is a complex-valued random variable.

Writing

Ak =
2

N

N−1
∑

t=0

Yt cos
2ktπ

N
and Bk =

2

N

N−1
∑

t=0

Yt sin
2ktπ

N

in analogy with equations (14.13). with xt = 2πt/N and f(xt) = Yt, these equations imply that
the joint distribution of (Ak, Bk) is a multivariate normal distribution according to the definition

16.5What we stated is only the discrete case. The Wiener–Khinchin theorem is about a more general class of stochastic
processes.
16.6We have E(|Ck|2) = VarCk, since E(Ck) = 0 according to equation (16.5).
16.7All the arguments that follow will also work in the case of even N . The only reason that we assume N is odd is
that we will refer to real interpolation formulas with N nodes, and the case of an odd number of nodes is somewhat
simpler than the case of even number of nodes. In any case, when referring to formulas involving interpolation, we
would have to refer to different formulas when the number of nodes is odd or even.
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given in equation (2.4). These equations are connected with Ck with the equations Ak = 2ℜCk and
Bk = −2ℑCk according to equations (14.12).

It is not hard to calculate the variances of Ak and Bk:

Var(Ak) = E
(

(Ak)
2
)

=
4

N2
E

(

(

N−1
∑

t=0

Yt cos
2ktπ

N

)2
)

=
4

N2
E
(

N−1
∑

t=0

N−1
∑

t′=0

Yt cos
2ktπ

N
Yt′ cos

2kt′π

N

)

=
4

N2

N−1
∑

t=0

N−1
∑

t′=0

E(YtYt′) cos
2ktπ

N
cos

2kt′π

N

=
4

N2

N−1
∑

t=0

E(Y 2
t ) cos

2 2ktπ

N
=

4

N2

N−1
∑

t=0

σ2 cos2
2ktπ

N
=

2

N
σ2;

the fourth equation holds because Yt and Yt′ are independent for t 6= t′ and the last equation holds
in view of the first equation in (14.15), and because Var(Yt) = σ2. Similarly, we have

Var(Bk) = E
(

(Bk)
2
)

=
4

N2
E

(

(

N−1
∑

t=0

Yt sin
2ktπ

N

)2
)

=
4

N2
E
(

N−1
∑

t=0

N−1
∑

t′=0

Yt sin
2ktπ

N
Yt′ sin

2kt′π

N

)

=
4

N2

N−1
∑

t=0

N−1
∑

t′=0

E(YtYt′) sin
2ktπ

N
sin

2kt′π

N

=
4

N2

N−1
∑

t=0

E(Y 2
t ) sin

2 2ktπ

N
=

4

N2

N−1
∑

t=0

σ2 sin2
2ktπ

N
=

2

N
σ2;

the fourth equation holds because Yt and Yt′ are independent for t 6= t′ and the last equation holds
in view of the second equation in (14.15).

We next show that Cov(Ak, Bk) = 0. We have

Cov(Ak, Bk) = E(AkBk) =
4

N2
E
(

N−1
∑

t=0

N−1
∑

t′=0

Yt cos
2ktπ

N
Yt′ sin

2kt′π

N

)

=
4

N2

N−1
∑

t=0

N−1
∑

t′=0

E(YtYt′) cos
2ktπ

N
sin

2kt′π

N

=
4

N2

N−1
∑

t=0

E(Y 2
t ) cos

2ktπ

N
sin

2ktπ

N
=

4

N2

N−1
∑

t=0

σ2 cos
2ktπ

N
sin

2ktπ

N
= 0;

the fourth equation holds because Yt and Yt′ are independent for t 6= t′ and the last equation holds
in view of the third equation in (14.15). Thus Ak and Bk, being uncorrelated random variables with
a joint multivariate normal distribution, are independent in view of Theorem 2.1.

Thus, the the covariance matrix of (Ak, Bk) is
(

2σ2/N 0
0 2σ2/N

)

.
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As we have Ck = (Ak − iBk)/2 according to equation (14.12), we have E(N |Ck|2) = E
(

N(A2
k +

B2
k)/4

)

= σ2. Thus N |Ck|2 = N(A2
k +B2

k)/4 has a χ2(2) distribution16.8 with expectation σ2. Thus
N |Ck|2 has the distribution of σ2/2 times a standard χ2 variable of degree of freedom 2. Hence its
variance is N |Ck|2 is (σ2/2)2 · 4 = σ4, since the variance of the standard χ2 variable of degree of
freedom 2 is 4 (see footnote 16.8 on p. 61). So, using the sample value ck of Ck to estimate the
spectrum gives poor results (cf. equations (16.3), (16.6), and (16.7)). In statistical language, the
periodogram is an inconsistent estimator of the spectrum.16.9

16.6 Estimating the spectrum

As we we have seen N |ck|2 is an inconsistent estimator of the spectrum S(f) with f = k/N . To
develop a better estimator, we simply average neighboring values. That is, let λn,N be a sequence
of nonnegative of nonnegative numbers such that

∞
∑

n=−∞

λn,N = 1;

here, usually only a finite number of the λn,N is nonzero; often, the best choice is to make about√
N of them to be nonzero. Then, instead of |ck|2, we use

∞
∑

n=−∞

λk,N |ck−n|2

to estimate the spectrum.16.10 The sequence {λn,N}n is called a spectral window. Usually, the value
of λn,N is the largest for n close to zero. Most often, the window is symmetric, that is we have
λ−n,N = λn,N . There are a great variety of spectral windows in use.

17 Orthogonal systems of functions

17.1 Inner product spaces

Let V be a vector space over F , where F is either the set of real numbers R or the set of complex
numbers C.

Definition 17.1. An inner product is a mapping 〈·, ·〉 : V × V → F such that

(a) For all x ∈ V , 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 only if x = 0,

(b) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ V ,

(c) α〈x, y〉 = 〈x, αy〉 for all α ∈ F and x, y ∈ V ,

(d) 〈x, y〉+ 〈x, z〉 = 〈x, y + z〉 for all x, y, z ∈ V .

16.8 I.e., a χ2 distribution with degree of freedom 2. The standard χ2 distribution of degree of freedom k is defined
as the sum the squares of k independent standard normal random variables. Its mean is k and its variance is 2k. A
constant multiple of such a variable is called a χ2 variable of degree of freedom k.
16.9 Given a parameter θ and an estimator θ̂ calculated from a sample, θ̂ is said to be a consistent estimator if θ̂
converges to θ in probability when the sample size goes to infinity. calculating the periodogram in formula (16.3), a
sample size of N is used to calculate ck.
16.10Note that this sum is the convolution of the sequences {λn,N} and {|cn|2}.
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A vector space with an inner product is called an inner product space.

In Clause (a), 〈x, x〉 ≥ 0 means that the complex number 〈x, x〉 is actually a nonnegative real.
According to Clauses (b) and (c), we have α〈x, y〉 = 〈α∗x, y〉. If F = R, the complex conjugation
has no effect. In Section 13, we already dealt with several inner product spaces. When discussing
Fourier series, the vector space was the set of complex-valued or real-valued functions f on the
interval [−π, π) for which

∫ π

−π
|f |2 exists, and the inner product was

〈f, g〉 = 1

2π

∫ π

−π

(f(x))∗ g(x) dx.

For complex Fourier series, we used F = C, for the real version we used F = R. The factor
1/(2π) in front of the integral is not essential, but it makes the discussion more elegant in terms
of inner products. For the real case, it is best to use the factor 1/π instead.17.1 When discussing
trigonometric interpolation, the inner product was vector space was the set of complex-valued or
real-valued functions on the set {xk : 0 ≤ k < N}, and the inner product was

〈f, g〉 = 1

N

N−1
∑

n=0

(f(xn))
∗ g(xn).

Another example for an inner-product space is the set of complex-valued random variables on
a given probability space. For random variables X and Y , we take 〈X,Y 〉 = E(X∗Y ). In order
to make sure that Clause (a) is satisfied, the random variables X and Y must be considered equal
if P(X = Y ) = 1.17.2 Similarly, the real-valued random variables give rise to an inner product space
over the reals if we take 〈X,Y 〉 = E(XY ).

Schwarz’s inequality says that we have

(17.1) |〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉;

see Problem 17.1 below. On a vector space V over F (with F = C or R) one often defines a norm:

Definition 17.2. A norm is a mapping ‖ · ‖ : V → R such that

(a) ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 only if x = 0,

(b) ‖αx‖ = |α| ‖x‖ for all α ∈ F and for all x ∈ V ,

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

A vector space with a norm is called a normed vector space or, more shortly, a normed space.

Clause (c) is called Minkowski’s inequality. With an inner product 〈·, ·〉 one can define the
induced norm as ‖x‖ =

√

〈x, x〉. If the norm is induced by an inner product, Minkowski’s inequality
can be proved by Schwarz’s inequality; see Problem 17.2 below. In an inner product space, by the
norm we will always mean the induced norm unless otherwise mentioned.

17.1For a proper discussion of these function spaces (i.e., the vector spaces just described), Riemann integration is
not really an adequate tool, and one needs to use the newer integral concept invented by Henri Lebesgue in 1904.
However, we will not get into subtle issues of convergence where the advantages of Lebesgue integration are felt.
17.2That is, the inner-product space is formed by the equivalence classes of random variables under the equivalence
relation X ≡ Y if P (X = Y ) = 1. Note that this ensures that Clause (a) is satisfied; cf. Problem 5.1 above.
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Two vectors x and y are called orthogonal if 〈x, y〉 = 0. Let x1, x2, . . ., xn be a system of vectors
such that xi and xj are orthogonal whenever 1 ≤ i < j ≤ n. Then

(17.2)

∥

∥

∥

∥

∥

n
∑

k=1

xk

∥

∥

∥

∥

∥

2

=
n
∑

k=1

‖xk‖2.

Indeed, we have
∥

∥

∥

∥

∥

n
∑

k=1

xk

∥

∥

∥

∥

∥

2

=
〈

n
∑

k=1

xk,
n
∑

l=1

xl

〉

=
n
∑

k=1

n
∑

l=1

〈xk, xl〉 =
n
∑

k=1

‖xk‖2;

the last equation holds since 〈xk, xl〉 = 0 unless k = l. The equation we just established can be
considered an analog of the Pythagorean theorem.

17.2 Orthonormal systems

Definition 17.3. A system of vectors S = {f1, f2, f3, . . .} is called orthonormal if

(17.3) 〈fk, fl〉 = δkl.

It is called complete if every vector f ∈ V can be expressed as

(17.4) f =
∑

k

αkfk.

If the orthonormality condition (17.3) is weakened to say that 〈fk, fk〉 > 0 and 〈fk, fl〉 = 0 if
k 6= l then the system is called orthogonal rather than orthonormal. The system S in this definition
may be finite or infinite. In case of Fourier series, we had an infinite orthonormal system (the factor
1/(2π) in front of the integral above in the complex case and 1/π in the real case was needed to make
the system orthonormal rather than only orthogonal), and in case of trigonometric interpolation we
had a finite orthonormal system. If S is infinite, we need a concept of convergence to interpret the
sum (17.3). In an inner product space there are several notions of convergence; the simplest we can
use in this case is convergence in norm:

Definition 17.4. Assume V is a vector space with norm ‖ · ‖. Let f ∈ V and let {fn}∞n=1 be a
sequence, where fn ∈ V . Then we say that fn converges to f in norm if

lim
n→∞

‖fn − f‖ = 0.

We say
∞
∑

n=1

fn = f

if the partial sums
n
∑

k=1

fk

converge to f in norm.
A sequence f ∈ V and let {fn}∞n=1, where fn ∈ V , called a Cauchy sequence if

lim
m→∞
n→∞

‖fm − fn‖ = 0.

A normed vector space is called complete if every Cauchy sequence is convergent.
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The trigonometric system (in the complex and real Fourier series) is complete. Similarly, the
corresponding finite systems in the cases of trigonometric interpolation considered above are com-
plete. The inner product spaces considered in these examples are all complete with respect to the
norm induced by the inner product in question.17.3 In equation (17.4), the orthonormality relations
imply that

(17.5) αk = 〈fk, f〉.

This equation is the general statement of equations (13.4), (13.15), (14.6), and (14.13). We have the
following

Lemma 17.1. Let V be an inner product space, S = {f1, f2, f3, . . .} be an orthonormal system of
vectors in V and let f ∈ V be an arbitrary vector, and let αk = 〈fk, f〉. Then

(17.6)
∑

k

|αk|2 ≤ ‖f‖2.

We have equality here if and only if

(17.7) f =
∑

k

αkfk.

Inequality (17.6) is called Bessel’s inequality. When we have equality in Bessel’s inequality, we
obtain Parseval’s identity (more on this below):

(17.8) ‖f‖2 =
∑

k

|αk|2.

This is the general statement of the Parseval identities (13.16), (13.17), (14.6), and (14.17).

Proof. Write S = {fk : k < m}, where m is an integer or m = ∞. For any integer n ≤ m we write

gn =
n
∑

k=1

αkfk.

Then we have 〈fk, gn〉 = αk for any k ≤ n, and so

〈fk, f − gn〉 = 〈fk, f〉 − 〈fk, gn〉 = αk − αk = 0

for every k ≤ n. Hence any two of the vectors f − gn and αkfk (k ≤ n) are orthogonal. Therefore
according to equation (17.2) we have

(17.9) ‖f‖2 = ‖f − gn‖2 +
n
∑

k=1

‖αkfk‖2 = ‖f − gn‖2 +
n
∑

k=1

|αk|2.

This establishes inequality (17.6).
According to formula (17.9), equality in (17.6) means that ‖f − gn‖ = 0 for n = m if m is finite,

or that
lim

n→∞
‖f − gn‖ = 0

if m is infinite. In either case, this is equivalent to saying that (17.7) holds.
17.3For the space associated with Fourier series, see the discussion below, on p. 65, especially footnote 17.4 on the
same page.
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Corollary 17.1. Let V be an inner product space, S = {f1, f2, f3, . . .} be an orthonormal system
of vectors in V . Assume there is no nonzero vector g ∈ V such that 〈fk, g〉 = 0 for all fk in S. If S
is finite, or if S is infinite and V is complete space, then S is complete orthonormal system.

Note that in this corollary we have the extra assumption about the completeness of V . This was done
in order to guarantee the convergence of the series

∑

k

αkfk (αk = 〈fk, f〉),

in case S is infinite. In (17.7), the convergence of the series on the right-hand side was guaranteed, since
we assumed that equality holds there. Without the assumption of equality, the conververgence of this series
is not guaranteed. However, if we assume that V is complete, the the convergence of this series follows.
Indeed, assume that S is infinite. Inequality (17.6) implies that

∑∞
k=1 |αk|

2 is convergent. Writing

gn =

n
∑

k=1

αkfk.

for the partial sums of the series
∑∞

k=1 αkfk, given integers µ and ν with 1 ≤ µ < ν, we have

‖gν − gµ‖
2 =

∥

∥

ν
∑

k=µ+1

αkfk
∥

∥

2
=

ν
∑

k=µ+1

‖αkfk‖
2 =

ν
∑

k=µ+1

|αk|
2 ‖fk||

2 =

ν
∑

k=µ+1

|αk|
2;

the second equality here holds according to (17.2). This shows that
∑∞

k=1 αkfk is a Cauchy sequence; hence

it is convergent, since we assumed that V is complete.

Proof. Assume S is not a complete orthonormal system. Then, according to the assumptions, there
is an f ∈ V such that equation (17.7) does not hold for this f , i.e., that

(17.10) g
def
= f −

∑

k

〈fk, f〉fk 6= 0.

Now, for any fl in S we have

〈fl, g〉 = 〈fl, f〉 −
∑

k

〈

fl, 〈fk, f〉fk
〉

= 〈fl, f〉 −
∑

k

〈fk, f〉〈fl, fk〉

= 〈fl, f〉 −
∑

k

〈fl, f〉δlk = 〈fl, f〉 − 〈fl, f〉 = 0;

to rigorously establish the second equation here, some convergence issues need to be dealt with,
but these are easily handled with Schwarz’s inequality (17.1) – see Problem 17.3 below. This is a
contradiction, since we assumed that no vector g exists for which 〈fl, g〉 = 0 for all fl in S.

The space of functions that are square integrable on the interval (a, b), called L2(a, b), space is an
important example of a complete space.17.4 Fourier series were considered on the space L2(−π, π).
17.4The name L2(a, b) does not specify whether the functions are real valued or complex valued. When it is not clear
from the context, one can make the distinction by calling it a real L2 space or a complex L2 space. The completeness
of these spaces (for any interval (a, b), finite or infinite) is the Riesz-Fischer theorem. It was proved independently by
Frigyes (Frederick) Riesz and Ernst Sigismund Fischer. The integral concept used in this theorem is that of Lebesgue
– the result is not true with Riemann integration.

In actual fact, the elements of L2(a, b) are not functions; they are equivalence classes for functions under the
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17.2.1 Gram–Schmidt orthogonalization

Let V be a vector space, let m be a positive integer and let S = {fk : 1 ≤ k < m} be an orthonormal
system of vectors in V . Assume S is not complete. Then, as we saw in the proof of Corollary 17.1
there is a vector f ∈ V such that the inequality in formula (17.10) holds. Taking fm = (1/‖g‖)g with
the g defined in this formula, the system S′ = S ∪ {fm} is orthonormal. If V is finite dimensional,
then starting with S = ∅, we can obtain a complete orthonormal system in finitely many steps.

If V is infinite dimensional, then, in order to obtain a complete orthonormal system one needs to
proceed more delicately, because even after repeating this step infinitely many times, the resulting
infinite system may not be complete. While this issue is only of marginal interest for our purposes,
we will outline one possible way we may proceed in this case. For this, we need the following

Definition 17.5. Let V be an inner product space and let M ⊂ V . We say that M is dense in V
if for every ǫ > 0 and for every f ∈ V there is a g ∈M such that ‖f − g‖ < ǫ.

We recall that given a vector space V and a subset D, the span of D is the smallest subspace
of V including D. It is well known that the elements of the span of D are exactly the finite linear
combinations of the elements of D.17.5

Lemma 17.2. Let V be an inner product space, S = {f1, f2, f3, . . .} be an orthonormal system of
vectors in V and let f ∈ V . Let M be a set such that the span of M is dense in V , and assume that
equation (17.4) holds for every f ∈M . Then S is complete.

Proof. By linearity, equation (17.4) holds for all f in the span of M , and then, by taking limits, we
can conclude that this equation holds for every f ∈ V . Hence S is complete.

If M = {hk : 1 ≤ k < ∞} is a subset of V such that the span of M is dense in V , then one
can modify the above method to obtain an orthonormal system in V as follows. Let m > 0 be an
integer and assume the orthonormal system Sm = {fk : 0 ≤ k < m} has already been constructed.
Pick the least positive integer l such that Sm ∪ {hl} is linearly independent.17.6 If such an l can be
found, then writing,

(17.11) gm
def
= hl −

m−1
∑

k=1

〈fk, hl〉fk 6= 0.

put Sm+1 = Sm ∪ {fm} with fm = (1/‖gm‖)gm. If no such l can be found, put Sm+1 = Sm. Then
the system

S =

∞
⋃

m=1

Sm

is a complete orthonormal system. The reason is that the construction ensures that equation (17.4)
holds for every f ∈M ; hence the completeness of S follows from Lemma 17.2.

equivalence relation

f ∼ g ≡
∫ b

a
|f − g|2 = 0.

It is necessary to take equivalence classes in order to make sure that Clause (a) of Definition 17.1 is satisfied. It
is common parlance, however, to talk about elements for L2(a, b) as functions rather than equivalence classes of
functions. Functions that belong to the same equivalence class are said to be equal a.e. (almost everywhere).
17.5Linear combination always means finite linear combinations, unless otherwise indicated. We included the word
“finite” for emphasis, since we have considered infinite sums above.
17.6It is easy to see that any orthonormal system is linearly independent, and so Sm itself is linearly independent.
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There are several well-known countable dense subsets of L2(a, b). The simplest one is formed
by the finite linear combinations with rational coefficients of the characteristic functions of all finite
open intervals with rational endpoints.17.7

17.3 Problems

Problem 17.1. Given two vectors in an inner product space V over R or C, show that

∣

∣〈x, y〉
∣

∣

2 ≤ 〈x, x〉〈y, y〉

for any x, y ∈ V . (This inequality is called Schwarz inequality).

Problem 17.2. Let V be an inner product space over R or C, and for x ∈ V define its norm as
‖x‖ =

√

〈x, x〉. Show that for any x, y ∈ V we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(This inequality is called Minkowski’s inequality.)

Problem 17.3. Let V be an inner product space with inner product 〈·, ·〉 and induced norm ‖ · ‖,
and let f and fn for all n > 0 be elements of V . Assume that

lim
n→∞

‖fn − f‖ = 0.

Show that for all g ∈ V we have
lim
n→∞

〈g, fn − f〉 = 0.

Hint: Use Schwarz’s inequality.

Problem 17.4. Let V be a vector space over C, and let 〈·, ·〉R be a real-valued inner product on V
considered as a vector space over R (that is, Clause (c) in Definition 17.1 is only assumed for real α)
with the additional property that

(17.12) 〈if, ig〉R = 〈f, g〉R for all f, g ∈ V.

Show that

(17.13) 〈f, g〉 = 〈f, g〉R + i〈if, g〉R

is a complex inner product on V over C.

Problem 17.5. Let V be a normed vector space over R or C. Show that

(17.14)
∣

∣‖f‖ − ‖g‖
∣

∣ ≤ ‖f − g‖ for all f, g ∈ V.

Problem 17.6. Let V be a normed vector space over R or C, and let f ∈ V and fn ∈ V for all
positive integers n. If fn → f in norm, show that

(17.15) lim
n→∞

‖fn‖ = ‖f‖.
17.7The characteristic function of a set U is a function that is 1 in U and zero elsewhere. We need to take rational
endpoints to make sure that the set of functions we obtain is countable.
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18 Building ARIMA models directly

Let {Yt} be a time series, and assume observed values yn are available for times 1 ≤ n ≤ N , where
N > 0 is an integer; we assume that Yt is real, but it is easy to extend these considerations to
complex-valued time series. Let p, q, and d be integers such that 0 ≤ d < p and q ≥ 0. We would
like to build an ARIMA(p−d, d, q) model for Yt. We expect that d is large enough such that {∇dYt}
is stationary with zero means, but we do not wish to determine d. Determine the AR coefficients in
equation

(18.1) Yt =

p
∑

k=1

φkYt−k + et −
q
∑

k=1

θket−k

by using least square approximation; i.e., let φk for k with 1 ≤ k ≤ p be such that

(18.2)

N
∑

n=p+1

1

1 + y2n

(

yn −
p
∑

k=1

φkyn−k

)2

be the least possible.18.1 Write

(18.3) φ(x) = 1−
p
∑

k=1

φkx
k.

With the notation introduced in equation (18.3), this suggests the approximate AR model

(18.4) φ(B)Yt ≈ 0.

We wrote ≈ instead of =, since p is not large enough to build a good ARI model (where as p and q
together should be suitable to build an ARIMA model). What is meant by ≈ here is unimportant,
since this equation will not be used, it will only be a guide as to how to build the ARIMA model.

To determine the MA coefficients, let m ≤ N−p−q be a large positive integer. We will comment
on the choice of m later. Put

(18.5) yk = (yk−m+1, yk−m+2, . . . , yk)
T (k ≥ m).

We determine the error vectors et by orthogonalizing the vectors yt for t with m ≤ t ≤ N with
respect to the real inner product 〈x,y〉 = xTy without normalizing. That is, we put em = ym and
assuming that ek has been defined for k with m ≤ k < t, where m < t ≤ N , we put

(18.6) et = yt −
t−1
∑

k=1

ek 6=0

1

eTk ek
(eTk yk)ek,

where we sum only for those values of k for which ek 6= 0 (in which case eTk ek 6= 0, so we do not
have a zero in the denominator).18.2 As for the choice of m, there is a danger in choosing N too
small as compared to N , since there are about N − m vectors yt, and this number needs to be

18.1Since we do not assume that the time series {Yt} is stationary, we need to allow larger errors if the value of yn is
large. We divide by 1 + y2n instead of y2n to avoid dividing by zero in case yn is zero.
18.2The parentheses on the right-hand side of equation (18.6) were only written for clarity; they are not needed, since
matrix multiplication is associative.

68



substantially smaller than the length m of the vectors so that the orthogonalized vectors retain a
random character. There are m linearly independent vectors of length m, so after orthogonalizing
m linearly independent vectors, the whole space of m-dimensional vectors will be spanned. Perhaps
the choice of m ≈ N −

√
N is the optimal. This makes the number of vectors to be orthogonalized

to be about
√
m.

Equation (18.6) should be compared to (17.11) of Gram–Schmidt orthogonalization; the difference is that
in that equation we have ‖fk‖ = 1, whereas here we do not require that ‖ek‖ = 1, where the norm is the
norm induced by the inner product.18.3 This kind of orthogonalization without normalizing was described
earlier on account of the innovations algorithm; see Section 7.

Equation (18.6) is not to be used in numerical calculations. This is because, we mentioned at the end
of Subsection 7.1, the Gram–Schmidt orthogonalization is numerically unstable; that is, small numerical
errors committed initially give rise to large errors later in the calculation. There are also numerical problems
with doing least square optimization in the common sense way, that is, by taking the partial derivatives
of the expression describing the least squares error, and looking for its minimum by equating the partial
derivatives to zero. Interestingly, both of these two problems can be handled in a stable way by the QR
decomposition using Householder transformations. The QR decomposition starts with an m× n matrix A,
where m ≥ n > 0 and finds an orthogonal matrix18.4 such that the equation

QA = R′, where R′ =

(

R
0m−n,n

)

holds, where R is an upper triangular matrix, and 0m−n,n is the (m−n)×n zero matrix. In [23, Section 38,
pp. 174–184] it is explained how the QR decomposition can be used to solve the least squares optimization
problem. As for using it to solve the orthogonalization problem, the orthonormal vectors resulting from the
orthogonalization of the columns of the matrix A will be the rows of the matrix Q, i.e., the columns of the
matrix Q−1 = QT .18.5 The coefficients to express the kth column of A as a linear combination the first k
columns of the matrix QT are contained in the kth column of R′ (or R, since all the coefficients in R′ outside
R are 0 – since R is upper triangular, only the first k entries in the kth column are nonzero); this is because
we have A = Q−1R′ = QTR′. In [23], the QR decomposition is described for real matrices, but it is easy to
adapt it for complex matrices.

The numerical method we described will produce a system of the orthonormal vectors e′
t = (1/‖et‖)et,

and then we can recover the vectors et from these and the related coefficients.

The equations in (18.6) can be rearranged to express yt as a linear combination et as follows to
obtain

(18.7) yt =

t−m
∑

l=0

ψl,tet−l = et +

t−m
∑

l=1

ψl,tet−l.

by orthonogonality. The equation ψ0,t = 1 easily follows from equation (18.6). As for the other
coefficients, writing ‖x‖ = (xTx)1/2 = 〈x,x〉 for the norm induced by the inner product we are
using, given t and l with m ≤ t ≤ N and 0 ≤ l ≤ t−m, we have

ψl,t = eTt−lyt/‖et‖

if et 6= 0 (in which case case ‖et‖ 6= 0); et = 0 then we can define ψl,t arbitrarily, except that
we want to put ψ0,t = 1 also in this case; these equations follow easily from the considerations in
Section 17; see e.g. equations (17.3), (17.4), and (17.5).

18.3That is, ‖x‖2 = xTx = 〈x,x〉.
18.4Orthogonal matrices were defined before equation (8.7).
18.5The latter equation holds since Q is orthogonal.
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Writing

(18.8) ψt(x) =
t−m
∑

l=0

ψl,tx
l,

the last equation can be written as

(18.9) yt = ψt(B)et.

Multiplying this equation by the polynomial φ(B), where φ(x) is given in equation (18.3), we obtain

(18.10) φ(B)yt = φ(B)ψt(B)et.

It is important to point out that the operator B in φ(B) acts on everything to the right of it, even
on t in the subscript of the polynomial ψt(B). That is, we have Bψt(B)et = φt−1(B)et−1.

To explain the scope of B in φ(B), we need to write out how to obtain equation (18.10) in more detail.
To simplify the notation, writing yt = et = 0 for t < m, in equation (18.7) we can extend the summation to
infinity:

yt =
∞
∑

l=0

ψl,tet−l.

Note that this equation is identical to equation (18.9). Substituting this (with t or t − k replacing t) into
the expression

φ(B) = yt = yt −

p
∑

k=1

φkyt−k

(cf. equation (18.4)), we obtain the equation

yt −

p
∑

k=0

φkyt−k =
∞
∑

l=0

ψl,tet−l −

p
∑

k=1

φk

∞
∑

l=0

ψl,t−ket−k−l.

A shorter way to write this equation was given in equation (18.10) with the scope of B in φ(B) as described

after that equation.

Changing the from vectors to random variables, this suggests the equation

(18.11) φ(B)Yt = φ(B)ψt(B)et,

where et is the random variable describing the error committed by the process at time t. This would
give an ARIMA model except for the dependence of ψt on t.

If the time series {Yt} can be modeled by an ARIMA model, we expect that the time series
{φ(B)Yt} is stationary, because in this case the polynomial φ(x) is expected to include a factor
(x− 1)d for which already the time series {(B − I)dYt} is stationary. Then, assuming that equation
(18.11) correctly models the time series {Yt}, the coefficients of θ(x)ψt(x) cannot depend on t; this
is because the innovations algorithm described in Section 7 allows us to determine these coefficients
from the moments (θ(B)Yt)(θ(B)Yt−k), where the score of the operator first operator B stops at
the enclosing parenthesis (that is, it does not affect the Yt−k), and these moments only depend on
k, and not on t. Hence, if we choose N and m large enough, for appropriate values of p and q,
the polynomials φ(B) (which depends on N) and φ(B)ψt(B) approximate polynomials18.6 φ(B) and
θ′(B) such that the equation

(18.12) φ(B)Yt = θ′(B)et,

18.6Note that we cannot write φ(x)ψt(x) instead of φ(B)ψt(B), since, as we indicated above, B in φ(B) acts also on
the subscript of ψt(B), so the coefficients of φ(x)ψt(x) and φ(B)ψt(B) are not the same.
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correctly models the time series {Yt}. If in the polynomial θ′(B) we discard the terms of degree
higher than q to obtain the polynomial θ(B),18.7 then we obtain the ARIMA(p− d, d, q) model

(18.13) φ(B)Yt = θ(B)et.

Here d is the largest integer for which (x− 1)d is a factor of φ(x).

The ARIMA model obtained this way will probably not be identical to the ARIMA model obtained
by differentiation, and numerical experiments are needed to evaluate the quality of models obtained this
way as opposed to ARIMA models obtained by differencing. The difference can be described as follows:
The present model makes no direct assumption about the size of the errors, since the errors are determined
according to the innovation algorithms, and not by fitting an ARMA model. When fitting an ARMA model,
the least squares method assumes that these errors will be about equal size; a similar assumption is made
if the maximum likelihood method is used, since the maximum likelihood method is also based on some
kind of least square optimization according to formula (10.5). In an ARIMA model, the errors et do not
assume differencing, since in equation ARMA: ARIMA eq the polynomial θ(x) is expected to have all its
zeros outside the unit circle. That is, the expectation is that even in an ARIMA model the errors are of
about the same size, even when the size of Yt may increase rapidly. On the other hand, the norming factor
1/(1+ y2n) used in the least squares optimization makes one to expect that the errors are proportional to yn
(at least for large values of yn; this appears to be a much more reasonable expectation.

18.1 Adding a drift term and ensuring zero means of innovations

An ARIMA model with a drift term has the form

(18.14) Yt = δ +

p
∑

k=1

φkYt−k + et −
q
∑

k=1

θket−k.

To determine the AR coefficients in such a model by using least square approximation find the values
of δ̂ and of the coefficients φk for 1 ≤ k ≤ p such that

(18.15)

N
∑

n=p+1

1

1 + y2n

(

yn − δ̂ −
p
∑

k=1

φkyn−k

)2
;

see footnote 18.1 on p. 68 for an explanation of the reason to divide by 1 + y2. With the notation
introduced in equation (18.3), this suggests the approximate AR model

(18.16) φ(B)Yt ≈ δ̂.

Similarly to equation (18.4), this equation will not play a direct role; it will only give an indication
as to how to build the ARIMA model. We wrote approximate equality since the value of p is not
large enough to build a correct ARI model.

To determine the MA coefficients, let m ≤ N −p− q be a large positive integer as before,18.8 and
let yk as given in equation (18.5), and let u = (1, 1, . . . , 1)T be the m-dimensional column vector
with all its entries 1. We determine the error vectors et by orthogonalizing the vectors u and yt

for t with m ≤ t ≤ N (in this order, u being the first one) with respect to the real inner product

18.7In fact, if an ARIMA(p− d, d, q) model is appropriate, then the coefficients of the terms of degree higher than q
of θ′(B) should be near 0.
18.8The choice of m is similar to the choice before. That is, perhaps the the best choice is m ≈ N −

√
N . See the

discussion after equation (18.6).
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〈x,y〉 = xTy without normalizing. As before, with the aid of these vectors we can express the vector
yt as

(18.17) yt = δtu+

t−m
∑

l=0

ψl,tet−l = δtu+ et +

t−m
∑

l=1

ψl,tet−l.

With the notation introduced in equations (18.8), this can be written as

(18.18) yt = δt + ψt(B)et;

of course, the polynomial ψt(x) now is different from what it was above, but we use the same
notation. Multiplying this equation by the polynomial φ(B), where has the same look as φ(x) given
in equation (18.3), but now it is the polynomial used in equation (18.16), we obtain

(18.19) φ(B)yt = φ(B)δtu+ φ(B)ψt(B)et.

Here, in the first term on the right-hand side, the operator B in φ(B) acts on δt, but not on u, since
the latter does not depend on t. Similarly as we explained after equation (18.10), in the second term
the scope of B in φ(B) to the right of it.

Similarly as above, changing the from vectors to random variables, this suggests the equation

(18.20) φ(B)Yt = φ(B)δt + φ(B)ψt(B)et,

where et is the random variable describing the error committed by the process at time t. This would
give an ARIMA model with drift except for the dependence of ψt on t. As we explained above
on account of the model without a drift term, if the time series {φ(B)Yt} is stationary, then the
polynomials in this equation should not depend on t. So, choosing N and m large enough, we will
approximate a model

(18.21) φ(B)Yt = φ(B)δt + θ′(B)et,

as in equation (18.12). Here δt may depend on t, but φ(B)δt should not, as we will explain below.
Writing δ for δ for φ(B)δt, and truncating θ′(B) by discarding the terms of degree higher than q,
we obtain the ARIMA(p− d, d, q) model

(18.22) φ(B)Yt = δ + θ(B)et.

Here d is the largest integer for which (x− 1)d is a factor of φ(x). The constant δ on the right-hand
side is called drift.

The difference between an ARIMA model with and without a drift term can be explained as
follows. If we want to model the time series {Yt} with an ARIMA model via first building an
ARMA model, we need to perform differencing on {Yt} until we obtain a stationary time series with
zero means, and then build an ARMA model. If we include a drift term, then we do the differencing
up to the point when we obtain a stationary time series {Xt} but without requiring that E(Xt) = 0.
Instead, we build an ARMA model for the time series {Xt − µ}, where µ is an estimate for E(Xt).
If Xt = (I −B)dYt and Xt − µ is modeled as

Xt − µ =

p−d
∑

k=1

φ̃kXt−k + θ(B)et,

72



then the model in equation (18.13) can be written as

(I −B)dYt = µ
(

1−
p−d
∑

k=1

φ̃k

)

+

p−d
∑

k=1

φ̃kB
k(I −B)dYt + θ(B)et.

The first term on the right-hand side is the drift term.

18.2 Seasonal ARIMA models

We will consider a multiplicative ARIMA(p, d, q)×(P,D,Q) model with seasonal parameter s, which
means that we have s equally timed observations per period. The form suggested for such a model
in [4, Subsection 9.1,3, formula (9.1.7) on p. 332] is

φ(B)Φ(Bs)(I −B)d(I −Bs)DYt = θ(B)Θ(Bs)et;

see also [12, Section 10.2, p. 231]. Here the time series {(I − B)d(I − Bs)DYt} is assumed to be
stationary.

We will describe how to build such a model. As in building the model in equation (18.9), we do
not need to separate out the integration degrees d and D in advance. That is, given p, q, P , and Q,
we will build an ARIMA(p− d, d, q)× (P −D,D,Q) model for appropriate d and D with 0 ≤ 0 ≤ p
and 0 ≤ D ≤ Q. Assume that the observed values yt of Yt are available for the times 1 ≤ n ≤ N ,
where N > 0 is a large enough integer. For the sake of simplicity, assume that s | N . We first
discuss the seasonal part

(18.23) Yt =
P
∑

k=1

ΦkYt−sk + ǫt −
Q
∑

k=1

Θkǫt−s)

of the model, where ǫt describes the error between times t − s and t; what we mean by this error
will be explained below. We determine the AR coefficients in this equation by using the least square
approximation. That is, let Φk for k with 1 ≤ k ≤ P be such that

(18.24)
N
∑

n=sP+1

1

1 + y2n

(

yn −
P
∑

k=1

Φkyn−sk

)2

is the least possible; see footnote 18.1 on p. 68 for an explanation of the reason to divide by 1 + y2.
We determine the seasonal error vectors, we proceed similarly as we did around equation (18.5)
except that now we need to take the seasons into account. Let m ≤ N − sP − sQ be a large positive
integer. Put

(18.25) yk = (yk−m+1, yk−m+2, . . . , yk)
T (k ≥ m, s | k);

requiring s | k is important here, so yt and yt′ occurs in the same component only if t ≡ t′ mod s.
To determine the error vectors ǫt, orthogonalize the vectors yt for t with m ≤ t ≤ N and s | t. As
before, the vectors yk can be expressed as a linear combination of the error vectors as

(18.26) yt =
t−m
∑

l=0

ψl,tǫt−sl = ǫt +
t−m
∑

l=1

ψl,tǫt−sl (m ≤ t ≤ N, s | t),
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similarly to equation (18.7). Proceeding similarly as we did after this equation, we arrive at an
equation analogous to equation (18.13):

(18.27) Φ(Bs)Yt = Θ(Bs)ǫt.

We expect that here all zeros of Θ(x) are outside the closed unit circle, while Φ(x) may have zeros
on the unit circle, since we are creating an ARIMA model directly, rather than an ARMA model.
Also note that the construction ensures that the constant term of Θ(x) = 1, similarly as in equation
(18.1). Expressing ǫT from equation (18.27, for a sequence of observations 〈yt : 1 ≤ t ≤ N〉 we can
then calculate the the approximate values ǫ̂t of the seasonal errors, similarly as we did in Subsection
9.5; for this, we need initial values for ǫ̂t; the requirement that all zeros of Θ(x) are outside the unit
circle ensure that the choice of the initial values of ǫ̂t do not significantly influence the values of ǫ̂t
for moderately large t.

Next, we build an ARIMA model

(18.28) φ(B)ǫt = θ(B)et

using the sequence 〈êpsilont : K ≤ t ≤ N〉 as observed values; here K > 0 is used to discard
the values of ǫ̂t for small t for which the effect of the arbitrary choice of initial values cannot be
considered small. Hence, we obtain

φ(B)Φ(Bs)Yt = φ(B)Θ(Bs)ǫt = Θ(Bs)φ(B)ǫt = Θ(Bs)θ(B)et. = θ(B)Θ(Bs)et.

The first equation is obtained by multiplying equation (18.27) by φ(B) on the left; the second
equation is uses the commutativity of polynomial multiplication, and the third equation follows
from equation (18.28; the fourth equation again uses the commutativity of polynomial multiplication.
That is, we have

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)et.

This is the multiplicative seasonal ARIMA model we wanted to construct.

19 Bootstrap methods

In the paper in the paper [15] published in 1979, Bradley Efron described a number of statistical
methods made feasible by the revolution in computing in the middle of the twenties century. Most
statistical methods then in use, many of them still in use today, were invented in the early twentieth
century were based on methods of computing that required relatively small amounts of calculation.
Among these methods was bootstrap, Efron’s own invention.

19.1 Bootstrap for independent identically distributed random variables

Bootstrap, as originally invented for independent, identically distributed random variables, can be
described as follows. Assume we have a sample x1, x2, . . ., xn of measurements from a large
population, so that these sample values can be regarded as values of a sequence of independent
identically distributed random variables. Given the sample, we can estimate the population mean,
but the question is how good this estimate is? Since we do not know anything about the distribution
of the measurements, using normal distribution theory may lead to the wrong conclusion. In the
bootstrap method we resample these measurements with replacement, we calculate the mean of each
resample, and thereby we establish an empirical distribution of the means of the sample.
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This can be described in a mathematical language as follows. Let m > 0 be an integer indicating
the size of each resamle, and let N be a large positive integer to indicate the number of resamples
we want to create. For each i with 1 ≤ i ≤ N let

fi : {1, 2, . . . ,m} → {1, 2, . . . , n}

be a random function (this function is not assumed to be one-to-one or onto). For each i, this will
give a resample

xfi(1), xfi(2), . . . , xfi(m)

of the original data. With

µi =
1

m

m
∑

k=1

xfi(k)

we get a collection of the sample means µi. One can now devise a confidence interval for the
population mean µ by choosing an a such that the about 5N/200 = .025N among the µi is less than
a and choosing a b such that about 5N/200 = .025N among the µi is greater than b. Then one can
say that a ≤ µ ≤ b with 95% confidence. The method can be used to set up estimates for other
population parameters, such as the variance, median, etc.

19.2 Confidence intervals for multistep predictions in ARIMA models

Given an ARIMA model

(19.1) Yt =

p
∑

k=1

φkYt−k + et −
q
∑

k=1

θket−k (t ∈ Z),

the errors et, also called residuals, can be estimated from an observed run of the time series, as
described in Subsection 9.519.1 (as pointed out at the cited loaction, when using this method, a
number of the beginning values of the residuals need to be discarded, because the choice of the
initial values does not correspond to their actual values) or in Subsection 10.1. Assuming that Yt
has observed values yt for t with 1 ≤ t ≤ N , and the estimated values for the residuals is êt. Assume,
further that the residuals are considered reliable for t with K ≤ t ≤ N . For t > N , an estimate
for et is not available. For one prediction run, for t > N one can define êt and a randomly selected
value from among the residuals et′ for t′ with K ≤ t′ ≤ N . In this way, replacing et with êt, one
can use equation (19.1) repeatedly with t = N + 1, N + 2, . . ., N + k to predict YN+k. Making
repeated predictions of YN+k with new random choices of the future residuals, one can construct
an empirical distribution of YN+k, and using this empirical distribution, one can find a confidence
interval for the predicted value of YN+K .

The application of this method relies on the tacit assumption that the residuals are independent
identically distributed random variables. This assumption goes beyond the assumption of stationar-
ity of the appropriately differenced time series used in the construction of the ARIMA model, since
stationarity does only involves first and second moments, and says nothing about distributions. The
assumption of strict stationarity would certainly imply this (see Subsection 5.1), but even without
the assumption of strict stationarity one often makes this assumption about the residuals.

19.1That discussion concerned only ARMA models rather than ARIMA models. However, and ARIMA model is also
an ARMA model for the appropriately differced time series, with the same residuals.
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19.3 Other applications of bootstrap for time series

Bootstrap methods have been extended from independent identically distributed random variables
to other situations, and there are many other, more complicated applications of bootstrap methods
for time series. See Kreiss and Lahiri [21], Politis [27], and Kirch and Politis [20]; the last one
discusses bootstrap methods in the frequency domain.

20 The Fourier transform

20.1 The definition of the Fourier transform

Let f be a function on R. Its Fourier transform is defined as

(20.1) f̂(x) =
1√
2π

∫ ∞

−∞

f(y)e−ixy dy,

assuming the integral exists. We then have

(20.2) f(x) =
1√
2π

∫ ∞

−∞

f̂(y)eixy dy;

again f has to satisfy certain conditions for this integral to exist. The expression on the right-hand
side is called the inverse Fourier transform. We will outline how to prove formula (20.2) while
treating some convergence issues lightly.

Given a function f on R and a (large) integer N , we will represent f by a Fourier series on the
interval (−Nπ,Nπ). To do this, we write y = x/N

g(y) = f(Ny) = f(x),

and represent g(y) by a Fourier series on (−π, π) as 20.1

(20.3) f(x) = g(y) =
∞
∑

n=−∞

cne
iny =

∞
∑

n=−∞

cne
ixn/N (−Nπ < x < Nπ),

where

cn =
1

2π

∫ π

−π

g(y)e−iny dy =
1

2Nπ

∫ Nπ

−Nπ

f(x)e−ixn/N dx (−∞ < n <∞),

where the first equation holds according to equation (13.15), and the second equation was obtained
by using the substitution x = Ny and noting that then g(y) = f(x). Writing

(20.4) hN (t) =
1

2π

∫ Nπ

−Nπ

f(x)e−ixt dx,

we have cn = (1/N)hN (n/N), and equation (20.3) becomes

(20.5) f(x) =
1

N

∞
∑

n=−∞

hN (n/N)eixn/N (−Nπ < x < Nπ).

20.1 If f is continuous and put together from finitely many monotonic pieces on finite intervals, the next equation
will hold for all y ∈ (−π, π), i.e., for all x ∈ (−Nπ,Nπ), according to Dirichlet’s theorem quoted in Subsection 13.2.
Even then, it will not hold for x = ±Nπ unless f(Nπ) = f(−Nπ). If f is not real-valued, Dirichlet’s theorem can be
applied separately to the real part and the imaginary part of f , assuming that those are continuous and put together
from finitely many monotonic pieces on finite intervals.
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where, as above, we wrote x = y/N . Putting

(20.6) h(t) =
1

2π

∫ ∞

−∞

f(x)e−ixt dx,

we have limN→∞ hN (t) = h(t) according to equation (20.4). Making N → ∞ in (20.5), the sum
approximates an integral, and hN approaches h, and so we obtain

(20.7) f(x) =

∫ ∞

−∞

h(t)eixt dt (−∞ < x <∞).

Equations (20.6) and (20.7) are identical to equations (20.1) and (20.2) with f̂(x) =
√
2π h(t).

20.2 The Fourier transform is an isometry

The formula corresponding to Parseval’s identity (13.16) is

(20.8) ‖f‖2 =

∫ ∞

−∞

|f(x)|2 dx =

∫ ∞

−∞

|f̂(x)|2 dx = ‖f̂‖2

assuming both integrals exist. This means that for f ∈ L2(−∞,−∞), the norm of f and f̂ is
the same; a transformation of normed vector spaces that preserves norms is called an isometry.20.2

The statement described by this equation is called Plancherel’s theorem. The Fourier transform
as described in (20.1) does not exist for every f ∈ L2(−∞,∞), but every such function can be
approximated by a sequence fn of functions such that fn converges to f in norm; in fact, we can
take fn to be a continuous function that is 0 outside a finite subinterval of (−∞,∞).20.3 Taking a
sequence of functions fn such that f = limn→∞ fn (convergence in norm), we can put

f̂ = lim
n→∞

f̂n.

The convergence here is assured, since ‖f̂n − f̂m‖ = ‖(fn − fm)̂ ‖ = ‖fn − fm‖.
Plancherel’s theorem ({20.8) can be extended to inner products:

〈f, g〉 =
∫ ∞

−∞

(

f(x)
)∗
g(x) dx =

∫ ∞

−∞

(f̂(x))∗ĝ(x) dx = 〈f̂ , ĝ〉.

This is immediate from the identity

(20.9) 4f∗g = |f + g|2 − |f − g|2 + i|if + g|2 − i|if − g|2.

See Problem 20.1 for the proof of this identity.

20.2More generally, an isometry is a transformation of metric spaces that preserves distances.
20.3Such a function can be called a continuous function with compact support. The support of a function is a set
that contains all the points where a function is nonzero. We do not need the concept of compact sets at this point, it
suffices to say that every bounded closed interval is a compact set. So, a function is said to have compact support if
it is zero outside a bounded closed interval.
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20.3 The Fourier transform and convolution

Given two functions f and g on R, according to equation (20.1) and the second equation in (5.5),
we have

(20.10)

(f ∗ g)̂ (x) =
1√
2π

∫ ∞

−∞

(∫ ∞

−∞

f(τ)g(y − τ) dτ

)

e−ixy dy

=
1√
2π

∫ ∞

−∞

(∫ ∞

−∞

f(τ)g(y − τ)e−ixτe−ix(y−τ) dτ

)

dy

=
1√
2π

∫ ∞

−∞

(∫ ∞

−∞

f(τ)g(y − τ)e−ixτe−ix(y−τ) dy

)

dτ

=
1√
2π

∫ ∞

−∞

(∫ ∞

−∞

f(τ)g(u)e−ixτe−ixu du

)

dτ

=
1√
2π

∫ ∞

−∞

g(u)e−ixu du

∫ ∞

−∞

f(τ)e−ixτ dτ =
√
2π ĝ(x)f̂(x) =

√
2π f̂(x)ĝ(x),

where the fourth equation was obtained by making the substitution u = y − τ . That is, the Fourier
transform converts a convolution into a product.20.4 Of course, there are conditions f and g must
satisfy in order that the transformations performed in the equations above be permissible, but we
omit any discussion of them. Besides, such a discussion can be done much more fruitfully with
Lebesgue integration theory than with Riemann integration.

One can derive a similar relation between convolutions of sequences and the Fourier series formed
by these sequences as coefficients. Indeed, if f and g are functions on Z and

F (x) =

∞
∑

k=−∞

f(k)eikx and G(x) =

∞
∑

k=−∞

g(k)eikx

then

(20.11) F (x)G(x) =
∞
∑

k=−∞

(f ∗ g)(k)eikx.

This is certainly true if the series representing F (x) and G(x) are absolutely convergent, and it simply
reflects the rule for multiplying two-way power series.20.5 The above relation shows one aspect of
the importance of the Fourier transform for analysis of time series. Linear filters or convolutions
(see Subsection 5.6) are important for analyzing or processing time series, and their effects are
much easier to study in the frequency domain, since products are much easier to understand than
convolutions.

20.4 Frequency filtering

To screen out certain frequencies from an incoming signal has been a concern for radio engineers
for a long time; for example, when you tune into a radio station, you do not want to listen to the
neighboring station at the same time. This was accomplished by analog circuits, but today, a lot

20.4The factor
√
2π on the right-hand side is somewhat of a nuisance. To avoid this, sometimes when discussion

convolutions and Fourier transforms together, one puts a factor of 1/
√
2π in front of the integral in the definition of

convolution in equation (5.5).
20.5If z = eix then eikx = zk, so the series representing F and G are two-way infinite power series.
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of filtering is done by mathematically processing the time series obtained by sampling the analog
signal. Practically, one would only be interested in the discrete series resulting by sampling rather
than the continuous signal, that is, in the Fourier series rather than the Fourier transform, but,
for a theoretical understanding of the issues studying the Fourier transform is very important. The
isometry of the Fourier transform described in equation (20.8) is often easier the work with than the
analogous Parseval identities (13.16) or (14.6). Mathematically, filtering out frequencies in the signal
expressed by the function f(t) amounts to taking the characteristic function χ[a,b] of the interval,

20.6

and then taking the inverse Fourier transform of the function χ[a,b]f̂ . One can use functions other
than characteristic functions of intervals for filtering. In fact, in analog processing the filtering
function that can be realized will only approximately be the characteristic function of an interval.
This kind of filtering is called filtering in the frequency domain. One can also use filtering in the
time domain, or in spatial domain (for image transmission), or in the time-space domain.

20.5 Spectral analysis: what for?

The book [11, §9.6, pp. 183–190] describes a number of applications of frequency analysis. An
especially interesting one concerns fault detection on electric motors. Electric motors vibrate, and the
vibration has typical frequencies, and faults such as a broken rotor bars20.7 changes these frequencies.
Monitoring these frequencies can be used to detect faults. Spectral analysis can be used for stationary
time series; vibration of electric motors naturally generate stationary time series – in the electric
motor example, the signal was monitored 400 times a second, so the time series can safely be assumed
to be stationary. Monitoring frequency variations in nonstationary time series can be accomplished
with wavelets – see Section 22.

20.6 Problems

Problem 20.1. Prove equation (20.9).

Problem 20.2. Prove the analog of equation (20.9) for inner products and norms. That is, given
a complex inner product 〈·, ·〉 and the induced norm ‖ · ‖ in a vector space V over C, show that

(20.12) 4〈f, g〉 = ‖f + g‖2 − ‖f − g‖2 + i‖if + g‖2 − i‖if − g‖2.
Problem 20.3. Let V be a normed vector space over R. Show that the norm ‖ · ‖ is induced by an
inner product if and only if

(20.13) ‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2 for all f, g ∈ V.

This identity is called the parallelogram identity.20.8 Note: This problem is difficult. The result is
due to Maurice René Fréchet, John von Neumann, and Pascual Jordan.

Problem 20.4. Let V be a normed vector space over C. Show that the norm ‖ · ‖ is induced by an
inner product if and only if it satisfies equation (20.13).

Problem 20.5. Find the Fourier transform of

f(x) = e−α2x2

,

where α > 0.
20.6See footnote 17.7 on p. 67.
20.7A certain part of an alternating current induction motor – see [35]. Note that the example describes the alternating
current frequency as 50 Hz, common in Europe. In the USA, the alternating current frequency is 60 Hz.
20.8If the vectors f and g stand for two sides of a parallelogram, the identity expresses the statement that the sum
of squares of the diagonals of a parallelogram is equal to the sum of squares of the sides.
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21 The Haar orthonormal system

In 1909, Alfred Haar designed an interesting system of orthonormal functions that became the focus
of special interest in the light of later developments.21.1 The functions χn are defined on the interval
[0, 1] as follows. We put χ0(x) = 1 for all x with 0 ≤ x ≤ 1. Further, we put

χ1(x) =

{

1 if 0 ≤ x < 1/2,

−1 if 1/2 < x ≤ 1.

For each n ≥ 1 divide the interval [0, 1] into 2n equal intervals, and let these subintervals be denoted
as Ijn (1 ≤ j ≤ 2n). We write

χ(k)
n (x) =











2(n−1)/2 inside I2k−1
n ,

−2(n−1)/2 inside I2kn ,

0 elsewhere in (0, 1)

for 1 ≤ k ≤ 2n−1.

At the jumps in the interval (0, 1), the value of χ
(k)
n will be the arithmetic mean of its values in the

neighboring intervals. Finally, we define χ
(k)
n (x) for 0 and 1 for it to be continuous at these points

(n ≥ 2 and 1 ≤ k ≤ 2n−1) in the interval [0, 1].
As we will see below, the Haar system is a complete orthonormal with respect to the inner

product

〈f, g〉 =
∫ 1

0

(

f(x)
)∗
g(x), dx.

Nothing is really gained by considering complex-valued function, so, for the sake of simplicity, we
may assume that f and g are real valued, and then the complex conjugation in this formula may be
omitted.

We used Haar’s original notation for these functions. To simplify the notation, write χ
(0)
0 = χ0

and χ
(1)
1 = χ1. The normality of the Haar system, i.e., that

∫ 1

0

|χ(k)
n (x)|2 dx = 1,

is easy to see. Further, we can also see that

∫ 1

0

χ(k)
n (x) dx = 0 for n ≥ 1.

From this, the orthogonality

∫ 1

0

χ(k)
n (x)χ

(k′)
n′ (x) dx = 0 if (n, k) 6= (n′, k′)

also follows. Indeed, if n = n′, then at least one of χ
(k)
n (x) and χ

(k′)
n (x) is zero, with the exception

of at most a single value of x. If n < n′, then χ
(k)
n is constant on the union the the two intervals

I2k
′−1

n′ and I2k
′

n′ where χ
(k′)
n′ 6= 0, except perhaps at the endpoints of the union.

We formulate the completeness as a separate theorem:

21.1Haar’s original paper appeared in 1910, but on the first page it says that it is essentially an unchanged version
of his “Göttinger Inauguraldissertation,” that is, the dissertation written to obtain habilitation at the University of
Göttingen, Germany. See footnote 13.6 on page 46 concerning habilitation.
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Theorem 21.1. The Haar system is a complete orthonormal system in L2[0, 1].

We have already established orthonormality. For the proof of completeness, we will use Lemma
17.2 on p. 66. For this, note that the (finite) linear combinations of the characteristic functions of
the intervals Ikn (n ≥ 1, 1 ≤ k ≤ 2n) form a dense set in L2[0, 1].

One really needs to study Lebesgue integration to really understand this statement, if for no other reason
that the definition of L2[0, 1] relies on Lebesgue integration. For an intuitive understanding for those only
familiar with Riemann integration, note that every Riemann integrable function can be approximated by a
step function with partition points coming from among the endpoints of the intervals Ikn; approximation is
meant here in the sense that the integral of the absolute value of the difference is small. To appreciate the
difference between the Riemann integral and the Lebesgue integral, consider the function f on [0, 1] that
is 1 at rational points and 0 elsewhere. This function is not Riemann integrable; its Lebesgue integral is 0.

In probability theory, this property of the Riemann integral should be understood to be a deficiency.
Consider, for example, a random variable X with values uniformly distributed in the interval [0, 1], and
ask the question: what is the probability of X assuming a rational value. As there are only countably
many rational numbers, and the probability of X = r for any specific r is zero, the probability of X being
rational is 0, because of the σ-additivity axiom of probability theory, saying that if An are mutually exclusive
events (1 ≤ n <∞) and A is the event that at least one of the An will occur, then

P (A) =
∞
∑

n=1

P (A).

This property of σ-additivity is built into the definition of Lebesgue integral, whereas it is not in that of the

Riemann integral.

Proof of Theorem 21.1. Given m ≥ 2, let Dm be the subspace of L2[0, 1] spanned by the (finite)
linear combinations of the characteristic functions of Ikn for 1 ≤ n ≤ m and and 1 ≤ k ≤ 2n.

The dimension of this space of 2m; the reason for this is that for n < m and for 1 ≤ k′ ≤ 2n
′

the characteristic function of Ik
′

n is a linear combination of the characteristic functions Ikm, 1 ≤ k ≤
2m.21.2 This is exactly the number of Haar functions χ

(k)
n belonging to this space, i.e., χ

(k)
n for

n = k = 0 and for 1 ≤ n ≤ m and 1 ≤ k ≤ 2m, since

1 +

m
∑

n=1

2n−1 = 2m.

Therefore these Haar functions span Dm. Therefore the Haar functions span D =
⋃∞

m=1Dm. As D
is dense in L2[0, 1], the Haar system is complete by Lemma 17.2.

21.1 Frequency filtering of the Haar system

In time series with changing characteristics, one wants to filter out distant parts; that is, one wants
to filter in the time domain. In this sense, the Haar system (when adapted to discrete time series)
is excellent, since it perfectly filters out far-away effects. Its frequency performance, however, is

21.2Observe that the value of these functions at the end points of the intervals i
(l)
n make no difference. The real

reason for this is that L2[0, 1] is a space of equivalence classes of functions, and not a space of functions, in spite of
one saying the opposite in loose parlance. See the second paragraph of footnote 17.4 on 65.
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another story. Indeed, for the Fourier transform of χ
(k)
n for x 6= 0 we have

χ̂(k)
n (x) =

1√
2π

∫ ∞

−∞

χ(k)
n (x)e−ixy dy

=
1√
2π

(

∫ (2k−1)/2n

(2k−2)/2n
−
∫ 2k/2n

(2k−1)/2n

)

2(n−1)/2 e−ixy dy

=
2(n−1)/2

−ix
√
2π

(

−e−i(2k−2)/2n + 2e−i(2k−1)/2n + e−2ik/2n
)

= O

(

1

x

)

as x → ∞; the last equation ignores the dependence on n.21.3 The problem here is that 1/x does
not tend to zero fast enough when x → ∞. In engineering terms, as says that the functions of the
Haar system have poor performance in frequency filtering.

22 Wavelets

22.1 Haar wavelet and multiresolution analysis

Let V = L2(R) (the real L2 space), and In,k be the interval
[

(k − 1)2n, k2n
)

for ∞ < k <∞. Let

(22.1) Vn = {f ∈ V : f is constant on In,k for each k ∈ Z}.

Let φ = χ[0,1) be the characteristic function of the interval [0, 1) = I0,0, that is,

φ(x) =

{

1 if 0 ≤ x < 1,

0 otherwise.

and let

ψ(x) =











1 if 0 ≤ x < 1/2,

−1 if 1/2 ≤ x < 1,

0 otherwise.

The function φ is called the Haar scaling function, and ψ, the Haar mother wavelet.22.1 We put

φn,k(x) = 2−n/2φ(2−nx− k),

ψn,k(x) = 2−n/2ψ(2−nx− k)

for n, k ∈ Z. That is,

φn,k(x) =

{

2−n/2 if x ∈ In,k,

0 otherwise.

21.3The “big Oh” and “little oh” symbols were introduced by Edmund Landau. The symbols are very convenient,
but often their exact meaning must be ascertained from the context. Given a function f(x), which is usually, but not
necessarily assumed to be positive, the symbol O

(

f(x)
)

denotes a function g(x) such that g(x)/f(x) remains bounded
when x→ a, or xց a, or xր a (i.e., x tends to a from the right, or from the left), where usually a = +∞, or a = −∞,
or a = ±∞ or a = 0, or else a is any other value; the value of a and how it is approached should be understood
from the context. Similarly, o

(

f(x)
)

denotes a function g(x) such that limx→a f(x)/g(x), (or limxցa f(x)/g(x), or
limxրa f(x)/g(x)), where, again a and how it is approached should be understood from the context.
22.1The scaling function is occasionally called the father wavelet.
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and

ψn,k(x) =











2−n/2 if x ∈ In−1,2k−1,

−2−n/2 if x ∈ In−1,2k,

0 otherwise.

For fixed n, The system of functions φn,k is orthonormal in Vn. The orthogonality is clear, since if
k 6= k′ then for all x ∈ R, one of φn,k(x) and φn,k′(x) is zero. The Haar system can be expressed in
terms of these functions as22.2

χ0 = φ,

χ1 = ψ,

χ(k)
n = ψ−n+1,k for n ≥ 2 and 1 ≤ k ≤ 2n−1.

It is also clear that any function fn in Vn can be expressed as a sum

(22.2) fn(x) =

∞
∑

k=−∞

cn,k φn,k(x),

where ck is the constant value of 2n/2f(x) for x ∈ In,k.
22.3 This equation implies that the the system

of functions φn,k is also complete in Vn (cf. Lemma 17.2 with M = V in that Lemma – i.e., M = Vn
in the present case).

Observe that

(22.3) φn+1,k =
1√
2
(φn,2k−1 + φn,2k)

and

(22.4) ψn+1,k =
1√
2
(φn,2k−1 − φn,2k).

Hence, the above equation becomes

fn =
∞
∑

k=−∞

cn,k φn,k =
∞
∑

k=−∞

(

cn,2k−1 φn,2k−1 + cn,2k φn,2k
)

=

∞
∑

k=−∞

(

cn,2k−1 + cn,2k
2

(

φn,2k−1 + φn,2k
)

+
cn,2k−1 − cn,2k

2

(

φn,2k−1 − φn,2k
)

)

=

∞
∑

k=−∞

(

cn,2k−1 + cn,2k√
2

φn+1,k +
cn,2k−1 − cn,2k√

2
ψn+1,k

)

22.2Note quite, since we equality at the end points of the intervals In,k is not guaranteed. However, these functions
are still equal a.e., i.e., in the sense of L2. See footnote 21.2 on page 81.
22.3As a consequence of orthonormality, we must have

cn,k =

∫

In,k

φn,k(x)f(x) dx = 〈φn,k, f〉.

We did not use complex conjugate in this equation, since f is assumed to be real valued. It is also easy to check this
equation directly.
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Writing

(22.5) fn+1 =
∞
∑

k=−∞

cn,2k−1 + cn,2k√
2

φn+1,k

and

(22.6) gn+1 =

∞
∑

k=−∞

cn,2k−1 − cn,2k√
2

ψn+1,k,

we have fn = fn+1 + gn+1. Further, fn+1 ∈ Vn+1. and 〈fn+1, gn+1〉 = 0. This latter equation holds
since 〈φn+1,k, ψn+1,k′〉 = 0.22.4 Write

Wn+1 =

{

∞
∑

k=−∞

akψn+1,k :

∞
∑

k=−∞

|ak|2 <∞
}

.

It is worth restating this discussion in a more formal framework. We need a definition for this.

Definition 22.1. Let X and Y be subspaces of the inner product space U such that for each x ∈ X
and y ∈ Y we have 〈x, y〉 = 0. We then call X and Y orthogonal and we write

X ⊕ Y = {x+ y : x ∈ X and y ∈ Y }.

X ⊕ Y is called the orthogonal sum of the spaces X and Y . If U = X ⊕ Y , then we can also write
Y = U ⊖ X.22.5 If U = X ⊕ Y and u ∈ U , then the unique y for which u = x + y is called the
projection of u onto Y . The function P for which Pu = y is called the projection operator onto
Y .22.6

We have

(22.7) Vn = Vn+1 ⊕Wn+1 for all n ∈ Z.

Let Pn be the projection operator from Vn to Vn+1; we have Pnfn = fn+1. There are further notable
properties of the spaces involved that will be important for describing a more general setting of
multiresolution analysis. We have

(22.8) Vn+1 ⊂ Vn for all n ∈ Z.

Further,

(22.9)

∞
⋂

n=−∞

Vn = {0};

22.4If k 6= k′ then for any x ∈ R, one of φn+1,k(x) and ψn+1,k′ is zero.
22.5One needs to be a little careful here. The symbol ⊕ is also used to indicate the direct sum of two vector spaces.
When X and Y are subspaces of a vector space U (no inner product is assumed here), and X ∩ Y = {0}, then the
direct sum of X and Y is defined as

X ⊕ Y = {x+ y : x ∈ X and y ∈ Y }.
There is no real conflict here, but there is one important difference. If U is the orthogonal sum of X and Y , then
knowing U and X, we can find Y . On the other hand, if U is only the direct sum of X and Y , then knowing X, we
can have several choices for Y .
22.6It is customary to write Pu instead of P (u). This is a general custom for operators. P is a linear operator (also
called a linear transformation in linear algebra).

84



This is because a function belonging to all the spaces Vn has to be constant on the intervals [0, 2n)
and [−2n, 0) for all n, and then it also needs to be square integrable. We also have

(22.10) cl

(

∞
⋃

n=−∞

Vn

)

= L2(R);

here cl(U) denotes the closure of U . For this closure to make sense, U needs to be a subspace of
a given normed space, say Z22.7 (at present, this space is V ). A subspace Z is closed if given any
sequence of elements of Z that is convergent in norm then the limit of this sequence is also in Z.
The closure of U is the smallest closed subspace of Z that includes U .22.8 Finally, we have

(22.11)

∞
⊕

n=−∞

Wn = L2(R);

the symbol on the left indicates the closure of the subspace formed by all finite linear combinations
of vectors in

⋃∞
n=−∞Wn, and the direct sum sign also indicates that the subspaces Wn are pairwise

orthogonal. The equation is the consequence of equations of equations (22.7), (22.8), (22.9), and
(22.10), as we will see next.

Write

fn+1(x) =

∞
∑

k=−∞

cn+1,k φn+1,k(x),

and

gn+1(x) =

∞
∑

k=−∞

dn+1,k ψn+1,k(x).

Equations (22.2), (22.5), and (22.6) imply

(22.12) cn+1,k =
cn,2k−1 + cn,2k√

2
and dn+1,k =

cn,2k−1 − cn,2k√
2

.

Since we have fn = fn+1 + gn+1 for all n, equation (22.11) implies that for any fn ∈ Vn we have

(22.13) fn =

∞
∑

m=n+1

∞
∑

k=−∞

dm,kψm,k.

This equation together with equation (22.10) implies (22.11). Equations (22.12) will point to way
to compute the coefficients in the wavelet expansion of a function. This will be further elaborated
below in a discussion of the discrete wavelet transform.

The above discussion is based mainly on [14, Chapter 5, pp. 129–].22.9 This is an award-winning
book, but it has some prerequisites in functional analysis and harmonic analysis to read it.

22.7An inner product space is also a normed space with the norm induced by the inner product, as we pointed out
above.
22.8That is, cl(U) consists of the limits of all sequences convergent in norm whose elements come from U .
22.9The mistakes are mine.
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22.2 What are wavelets?

Given a function ψ ∈ L2(R), called the mother wavelet, and a function f ∈ L2(R), the continuous
wavelet transform is22.10

Fw(a, b) =
1√
a

∫ ∞

−∞

f(x)

(

ψ

(

x− b

a

))∗

dx (a, b ∈ R and a > 0).

Often, one only considers discretely labeled wavelets, meaning that Fw(a, b) is only considered for
certain discrete values of a and b.22.11 An illustration for this were the Haar wavelets in Subsec-
tion 22.1. Orthonormality, as exemplified by the Haar wavelets is a useful property in allowing
efficient computer algorithms. There are also non-orthonormal wavelets that retain most of the
computational advantages of orthonormal wavelets.

Wavelets are used for localized frequency analysis of data. For time series occurring in practice
this is very important, since time series are usually non-stationary, and Fourier analysis is applicable
only to stationary time series. The short-time Fourier transform considers only a part of the time
series to keep track of frequency changes. It is used for analysis of a fixed frequencies at a fixed band-
width (the difference between the upper and lower frequencies in the analyzed range of frequencies).
Wavelets automatically adapt the analyzed frequency range to the size of the frequency.

Restricting time series both in time and frequency is mathematically impossible, since one needs
infinitely long time to measure a frequency exactly. This is related to the Heisenberg’s uncertainty
relations in physics concerning the determination of the location and the momentum (velocity times
mass) of a particle.22.12 Daubechies [14, §2.3, pp. 21–23] discusses the example of a phone con-
versation, which is of finite time, and also of limited bandwidth, since the phone line is capable of
transmitting frequencies only in a certain range. So, how well can a function be represented under
such circumstances. The problem is not an easy mathematical problem, and its solution involves
eigenvalues and eigenfunctions of integral and differential operators.

22.3 Smoothness and frequency filtering

As we discussed in Subsection 21.1, the frequency filtering performance of the Haar wavelet is poor;
the main reason for this is the sharp discontinuity of the Haar wavelet. In order to get better
performance, one needs smooth wavelets. The reason smoothness help frequency filtering can be
seen by integration by parts. Indeed, assume ψ(x) = 0 outside a bounded interval (such a function
is called compactly supported; see footnote 20.3 on p. 77.) Assume, further, that ψ is continuously
differentiable; this will allow integration by parts. We have

(22.14) ψ̂(x) =
1√
2π

∫ ∞

−∞

ψ(y)e−ixy dy =
1

−ix
√
2π

∫ ∞

−∞

ψ′(y)e−ixy dy

for x 6= 0;22.13 note that there is no integrated-out term, since ψ(y) = 0 for large y. The x in the

denominator of the factor on the right-hand side indicates the speed of convergence of ψ̂(x) → 0
as x → 0.22.14 If ψ is continuously differentiable more than once, then we can repeat integration

22.10There is a technical condition, called the admissibility condition, that need to be imposed on ψ in order that f
can be reconstructed from its wavelet transform. See [14, Section 1.3, p. 7].
22.11Discretely labeled wavelets are to be distinguished from the discrete wavelet transform, discussed below.
22.12This relation is certainly not perfect. For time series, the statement is a mathematical result, for physics, it is a
basic principle that supports arguments even in cases when the exact equations governing a physical system are not
known.
22.13We have i = 1/(−i), so we could simplify the right-hand side a little, but that is beside the point.
22.14Without the x in the denominator, one would expect a rate of convergence of O(1/x), as in the Haar wavelet –
see Subsection 21.1. This factor indicates that the rate of convergence is at least O(1/x2).
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by parts to show even better frequency filtering. Given any positive integer n, in [13], Daubechies
developed a method to construct orthonormal wavelets that are zero outside a bounded interval and
are continuously differentiable n times.

22.4 A short history of wavelets

22.5 Wavelets and image analysis

Given a complete orthonormal system of wavelets ψn,k(x), one can construct a two-dimensional
complete orthonormal system of wavelets if two dimensions by taking the system of functions

Ψn,k,n′,k′(x, y) = ψn,k(x)ψn′,k′(y).

Such a system of two-dimensional wavelets can be called the tensor product of one-dimensional
wavelets. A more interesting scheme of producing two-dimensional wavelets is using multiresolution
analysis in two-dimensions directly; that is, the method the basic features of which were described in
Subsection 22.1, can be generalized to two dimensions without relying on one-dimensional wavelets;
see [14, Chapter 10, pp. 313–]. Smoothness of two-dimensional wavelets is important for avoiding
edge effects, caused by sharp jumps in the Haar wavelet. The site [1] has nice pictures showing
the wavelet decomposition of images, and illustrates various uses (such as e.g. edge detection) of
wavelets with pictures.

22.6 The discrete Haar wavelet transform

Let

f0(x) =
∞
∑

k=−∞

c0,k φ0,k(x),

Start with a finite sequence of the coefficients c0,k; these are perhaps the sampled value of a con-
tinuous time series (the coefficients outside the sampled range can taken to be zero). Using equa-
tions (22.12), and can calculate the coefficients cn,k and dn,k for n > 0. These equations show
the number of coefficients cn+1,k in the nonzero range is half of the number of coefficients cn,k in
the nonzero range. Similarly, the number of coefficients dn+1,k in the nonzero range is half of the
number of coefficients cn,k in the nonzero range. So, after a while, all coefficients will be zero. The
coefficients dm,k for m > 0 and z ∈ Z will be the coefficients of the wavelet expansion of f0; cf.
equation (22.13).

22.7 Orthogonal wavelets

We will generalize the framework described in Subsection 22.1 on account of the Haar wavelets. The
starting point again will be the selection of two functions φ, called the scaling function, and ψ, called
the mother wavelet. These two functions will determine the wavelets to be constructed, and how
to select these functions is a difficult problem. These two functions, and the subspaces Vn and Wn

constructed with the aid of them will satisfy properties analogous to those described in Subsection
22.1.

The closed subspaces22.15 Vn and Wn of L2(R) will satisfy equations (22.7)–(22.11). Equation
(22.1) will be no longer in force – that equation applied only to the Haar wavelets. Instead, we will

22.15A subspace U is closed if cl(U) = U . See footnote 22.8 on p. 85.
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require that

Vn ={g : there is an f ∈ V0 and a k ∈ Z such that

for all x ∈ R we have g(x) = f(2−nx− k)}
(22.15)

for all n ∈ Z. Note that for n = 0 this means that if f ∈ V0 and g(x) = f(x− k) for some integer k
and for all reals x then we also have g ∈ V0. Assume φ ∈ V0 and ψ ∈W0, and for each n, k ∈ Z, put

(22.16)
φn,k(x)

def
= 2−n/2φ(2−nx− k),

ψn,k(x)
def
= 2−n/2ψ(2−nx− k).

Assume that {φn,k : k ∈ Z} is an orthonormal basis of Vn and {ψn,k : k ∈ Z} is an orthonormal
basis of Wn.

22.16 We have22.17

(22.17) φ(x) =

∞
∑

k=−∞

hk
√
2φ(2x− k) for a.e. x

with some numbers hk, because φ(x) ∈ V0 ⊂ V−1, and the functions
√
2φ(2x− k) = φ−1,k(x) form

an orthonormal basis of V−1. Similarly,

(22.18) ψ(x) =

∞
∑

k=−∞

gk
√
2φ(2x− k) for a.e. x

with some numbers gk, because ψ(x) ∈W0 ⊂ V−1.
Assuming φ and ψ are continuous, these equations hold everywhere. In this case, the values of

φ at the integers determine the values of φ and ψ at places m/2 for all integers m. The values of φ
at these points then determine values of φ and ψ at all points m/4 for integer m. Repeating this
argument, we can see that the values of φ at integers determine the values of φ and ψ at all dyadic
rationals.22.18 Then, by continuity, φ(x) and ψ(x) are determined for all x.

In many cases, all but finitely many of the coefficients are zero in equations (22.17) and (22.18).
This is certainly true if both φ and ψ are zero outside a finite interval (i.e., when φ and ψ have
compact support.22.19 The method to construct compactly supported smooth wavelets was invented
by Daubechies, and it was described in [13] and also in [14]. It involves very sophisticated mathe-
matics using the Fourier transform, estimating products of certain trigonometric polynomials,22.20

eigenvalues, and polynomial algebra. Compactly supported smooth wavelets are indispensable for
storing pictures on your cellphone. It is interesting to reflect on the abstract mathematical tools
needed to develop such ubiquitous applications. In a book first published in 1940, G. H. Hardy [18]

22.16Here basis is meant in the the sense of normed vector space. That is, every element of the vector space can be
represented as an infinite linear combination of the basis vectors. Linear independence is still meant in the sense of
finite linear combinations – though this is not an issue, since linear independence is a consequence of orthonormality.

We need to make these assumptions only in case n = 0, when they in effect define the spaces V0 and W0 in terms
of the functions φ and ψ, respectively. For other values of n, they care consequences of equations (22.16), (22.15),
and (22.7), as one can see after some consideration.
22.17As indicated, these equations hold for almost every (a.e.) x. See the comment in the second paragraph of
footnote 17.4 on p. 65.
22.18A dyadic rational is a number m/2n for all integers n > 0 and m.
22.19If ψ has compact support, then the wavelet is called compactly supported. If φ has compact support, then it
follows that ψ also has compact support; the proof of this is, however, technical. See [14, Section 6.1, p. 167].
22.20Called Riesz products, named after F. Riesz, who was mentioned in footnote 17.4 on 65.
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reflected on the practical usefulness of mathematics, and tried to draw the boundary between pure
and applied mathematics. The boundary has considerably shifted since then for many reasons; the
invention of computers played a major role, making vast segments of pure mathematics useful in
applications. The book is an amusing light read.

22.8 The discrete wavelet transform

Given any integer m, using equations (22.16), we can rewrite equations (22.17) and (22.18) can be
rewritten as

φ0,m(x) = φ(x−m) =

∞
∑

k=−∞

hk
√
2φ
(

2(x−m)− k
)

=

∞
∑

k=−∞

hkφ−1,2m+k(x) for a.e. x,

ψ0,m(x) = ψ(x−m) =
∞
∑

k=−∞

gk
√
2φ
(

2(x−m)− k
)

=
∞
∑

k=−∞

gkφ−1,2m+k(x) for a.e. x.

Using equations (22.16) again, these equations imply that for any integers m and n we have

φn+1,m =
∞
∑

k=−∞

hkφn,2m+k,

ψn+1,m =
∞
∑

k=−∞

gkφn,2m+k,

(22.19)

where the equation of functions is meant a.e.
We want to express the functions on the right-hand side in terms of the functions on the left-hand

side. Orthonormality makes this easy. Indeed, we have

〈φn+1,m, φn,l〉 =
〈

∞
∑

k=−∞

hkφn,2m+k, φn,l

〉

=
∞
∑

k=−∞

h∗k 〈φn,2m+k, φn,l〉

=

∞
∑

k=−∞

h∗k δ2m+k,l =

∞
∑

k=−∞

h∗k δk,l−2m = h∗l−2m.

The asterisk here indicates complex conjugation. Similarly,

〈ψn+1,m, φn,l〉 = g∗l−2m.

Usually, both functions φ and ψ are real, in which case the coefficients hk and gk are real, and
the complex conjugation can be omitted.22.21 Since the functions φn+1,m and φn+1,m form an
orthonormal basis of the space Vn+1 ⊕Wn+1 = Vn, according to equations (17.4) and (17.5) this
means that

(22.20) φn,l =
∞
∑

m=−∞

h∗l−2m φn+1,m +
∞
∑

m=−∞

g∗l−2m ψn+1,m.

22.21If A = (akl) is an m × n matrix with complex entries, then its Hermitian conjugate (also called conjugate

transpose) is the matrix A∗ is the n ×m matrix with a∗kl being the entry in the lth row and kth column. That is,
after taking the transpose of A, we take the complex conjugate of each entry. A square matrix U is a unitary matrix
if U∗U = I, where I is the identity matrix of the appropriate size. That is, U−1 = U∗. The coefficient matrix in the
system (22.19) of equations can easily seen to be an orthonormal matrix.

A matrix is unitary if and only if its columns (or its rows) form an orthonormal system of vectors. The real unitary
matrix is an orthogonal matrix. Orthogonal matrices were defined in Subsection 8.2.
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Given f ∈ Vn, we can write f as

f =
∞
∑

l=−∞

cn,l φn,l =
∞
∑

m=−∞

(

∞
∑

l=−∞

cn,l h
∗
l−2m

)

φn+1,m +
∞
∑

m=−∞

(

∞
∑

l=−∞

cn,l g
∗
l−2m

)

ψn+1,m,

where the second equation was obtained by using (22.20). As f ∈ Vn = Vn+1 ⊕Wn+1, we can also
write

f =

∞
∑

m=−∞

cn+1,m φn+1,m +

∞
∑

m=−∞

dn+1,m ψn+1,m.

Since this representation is unique, comparing the last two displayed equation, we obtain

cn+1,m =
∞
∑

l=−∞

cn,l h
∗
l−2m,(22.21)

dn+1,m =

∞
∑

l=−∞

cn,l g
∗
l−2m.(22.22)

Let

f0(x) =
∞
∑

k=−∞

c0,k φ0,k(x).

As in Subsection 22.6, start with a finite sequence of the coefficients c0,k; these are perhaps the
sampled value of a continuous time series (the coefficients outside the sampled range can taken to
be zero). Using (22.21) and (22.22) we can calculate the coefficients for n > 0. Assuming only a
finite number of the coefficients hk and gk are nonzero, at for each n the number of coefficients gets
approximately halved. Hence we will find an N ∈ Z such that all coefficients cn,k and dn,k will be
zero for n > N . The coefficients dm,k for m > 0 and z ∈ Z will be the coefficients of the wavelet
expansion of f0:

f0 =

∞
∑

m=1

∞
∑

k=−∞

dm,kψm,k.

In the language of electric engineering, equation (22.21) represents a low-pass filter, i.e., filtering out
(discarding) high frequencies, that is, the finer features of the signal (those represented by elements
of the space Wn+1), and equation (22.22) represents a high-pass filter, i.e., filtering out (discarding)
low frequencies, that is, the cruder features of the signal (those represented by elements of the space
Vn+1).

The Haar wavelets fit into this pattern as follows. Comparing equations (22.5), (22.6), and
(22.19), we can see that

h−1 = h0 =
1√
2
, g−1 =

1√
2
, g0 = − 1√

2
,

and hk = gk = 0 for k ∈ Z with k 6= −1, 0. It is easy to check, that with this choice for hk and gk,
equations (22.21) and (22.22) will become identical to equations (22.12).

22.9 Non-orthogonal wavelets

Often, the condition of orthogonality of wavelets is is abandoned, but usually equations similar to
(22.21) (22.22) are still obtained to perform efficient calculation. Usually, non-orthogonal wavelets
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are also linearly dependent. One of the advantages of this is redundant representation of the coeffi-
cients c0,k for error correction. For calculations, there is little need to get involved with theoretical
issues, and it is enough to know the high-pass and low-pass filters used in calculations,22.22 but one
may need a somewhat closer understanding in order to see how these wavelets can be used.

22.10 Applications of wavelets in finance

Frequency analysis has long been established in engineering and the sciences, but it has major limi-
tations in that it imposes major restrictions on the dynamics on the time series such as stationarity,
and information in the time domain is lost. While stationary time series are common in engineering,
they are rare in finance.

Wavelets overcome these limitations, and they are capable of capturing information both in
the frequency domain and the time domain. The early development of wavelets took place in
image analysis. In the last two decades, their applications became wide-spread in the sciences,
but they were slow to emerge in finance. This situation is now changing; the paper [22] gives a
simple introductions to wavelets, and discusses their applications in finance. The paper argues
that the advantages of wavelet methods are that they combine time-domain and frequency-domain
information, and, further, that they are very flexible, and do not make strong assumptions about
the data generating the time series under consideration. The paper [7] gives a tutorial of the
wavelet transform. The doctoral dissertation [28] uses wavelets for financial time series to discuss
the interaction between major equity markets, and discusses wavelet networks, a special class of
neural networks, in financial forecasting. The master’s thesis [32] analyzes various financial model
experiments, and demonstrates that wavelet neural networks combined with statistical methods is
feasible for achieving accurate forecasting. The paper [31] uses wavelets to analyze the effects of
high-frequency trading on the stock market.

23 State-space models

23.1 A simple state-space model

Given a field F (in these notes mainly the field R of real numbers or C of complex numbers), write
Fm,n for the set (or algebra)23.1 over F of m× n matrices. A state-space model involves two vector
time series: {St}, the state of the system, and {Yt}, the observed time series; here for given positive
integers m and n we have St ∈ Rn,1 and Yt ∈ Rm,1 are column vectors.23.2 St is not assumed to be
known. The updating equations are

St = ASt−1 + et,(23.1)

Yt = HSt + ǫt.(23.2)

Here et ∈ Rn,1 is the column vector of errors in the update equation (23.1), ǫt ∈ Rm,1 is the vector
of error in the observation equation (23.2). Further, A ∈ Rn,n, and H ∈ Rm,n are matrices.

Sometimes one also assumes that the et are identically distributed; similarly, one may assume
that the errors of ǫt are identically distributed. Further, one often also assumes that any collection
of the vectors et and ǫt for various values of t is independent. [17]

22.22Some wavelet schemes may involve several high-pass and low-pass filters.
23.1An algebra over a field F is a vector space over F also has a product operation with certain properties. In a
matrix algebra, the product operation is matrix multiplication.
23.2What we did is somewhat of an abuse of notation. Namely, the entries of the vector St are random variables and
not numbers; so saying that St ∈ Rn,1 is technically incorrect. Similarly for Yt.
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23.2 Representation of simple state-space models as ARMA models

Let m, n, M , and N be positive integers, Let {Yt} be vector time series, Yt ∈ Rm,1, let Et ∈ Rn,1

be identically distributed error vectors such that any collection of them for different values of t is
independent. Let Ak ∈ Rm,m (1 ≤ k ≤M) and Bl ∈ Rm,n (0 ≤ l ≤ N) be matrices. Assume

(23.3) Yt =
M
∑

k=1

AkYt−k +
N
∑

l=0

BlEt−l

for all t. This equation is called a vector ARMA(M,N) model of the time series {Yt}. If the matrices
Ak are scalar multiples of the identity matrix, we call the model a vector ARMA(M,N) model with
scalar AR coefficients. We have

Theorem 23.1. The vector Yt in equations (23.1) and (23.2) satisfies an ARMA(N,N) model with
scalar AR coefficients for some N ≤ m, where m is the dimension of the state vector St.

If the errors et in (23.1) are identically distributed, and also so are the errors ǫt in (23.2), then
the errors in the obtained ARMA model are also identically distributed. Similarly, if the error vectors
(ǫ∗t , e

∗
t )

∗ are independent,23.3 then so are the errors in the obtained ARMA model.

Proof. By repeated applications of equation (23.1), we can see that for any integer k ≥ 0 we have

(23.4) St+k = AkSt +

k−1
∑

j=0

Ajet+k−j .

This is easy to verify by induction. Indeed, for k = 0 this says that St = St. Assuming the equation
is true with a certain value of k, by equation (23.1) we have

St+k+1 = ASt+k + et+k+1 = A
(

AkSt +

k−1
∑

j=0

Ajet+k−j

)

+ et+k+1

= Ak+1St +

k
∑

j=0

Ajet+k+1−j ,

establishing equation (23.4). Let P (x) =
∑N

k=0 αkx
k (αN = 1) be the minimal polynomial of the

matrix A.23.4 Multiplying equation (23.4) by αk and adding the resulting equations for 0 ≤ k ≤ N ,
we obtain

N
∑

k=0

αkSt+k =
N
∑

k=0

αkA
kSt +

N
∑

k=0

αk

k−1
∑

j=0

Ajet+k−j

= P (A)St +

N
∑

k=0

αk

k
∑

l=1

Ak−let+l;

23.3 The repeated application of the Hermitian transpose cancel out, since for any number or matrix x we have
(x∗)∗ = x. We wrote out the right-hand side to illustrate this. The purpose of this notation is to avoid the use of
writing column vectors, which take up more space to print.
23.4A monic polynomial is a polynomial with leading coefficient 1. The minimal polynomial P (x) of an n×n matrix
A is the the monic polynomial of the smallest degree such that P (A) = 0. It is known that the degree of the minimal
polynomial of A is ≤ n. This is because we have Q(A) = 0 for the characteristic polynomial Q(x) of A by the
Cayley–Hamilton theorem. See [24, Subsections 3.1 and 8.8, and especially Theorem 6.1 on p. 14 in Section 6].
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in the last equation we replaced the summation variable j with l = k− j.23.5 Noting that P (A) = 0,
and interchanging the order of summation on the right, we obtain

N
∑

k=0

αkSt+k =

N
∑

l=1

N
∑

k=l

αkA
k−let+l .

Multiplying this equation by the matrix H on the left and using equation (23.2) with t+k replacing
t, we obtain that

N
∑

k=0

αk(Yt+k − ǫt+k) =

N
∑

l=1

N
∑

k=l

αkHA
k−let+l ,

Since αN = 1, this equation can be written as

Yt+N = −
N−1
∑

k=0

αkYt+k +

N
∑

l=0

αlǫt+l +

N
∑

l=1

N
∑

k=l

(

αkHA
k−l
)

et+l

= −
N−1
∑

k=0

αkYt+k +

N
∑

j=0

αN−jǫt+N−j +

N−1
∑

j=0

N
∑

k=N−j

(

αkHA
k+j−N

)

et+N−j ,

where, to obtain the last equation, we put j = N − l in the summation. To make this equation fit
the form described in equation (23.3), take

Et = (ǫ∗t , e
∗
t )

∗ =

(

ǫt
et

)

,

where we used Hermitian transpose in the middle member to save space. The matrix on the right is
an m+ n dimensional column vectors (since ǫt is m-dimensional and et is n-dimensional). Further,

Bj =
(

αN−jIm,

N
∑

k=N−j

αkHA
k+j−N

)

for 0 ≤ j ≤ N − 1,

BN = (α0Im, 0m,n) for j = N,

where Im is the m×m identity matrix and 0m,n is the m× n zero matrix; since H is m× n and A
is n× n matrix this makes Bj an n× (m+ n) matrix. As for the comment about the independence
and identical distribution of the errors, this is clear from the equations for the error Et. The proof
is complete.

23.3 Representation of an ARMA model as a state-space model

Conversely, an ARMA(M,N) model can also be represented as a state-space model described by
equations (23.1) and (23.2). We will only consider a scalar ARMA model of form

Yt =

M
∑

k=1

φkYt−k +

N
∑

l=0

θlvt−l,

23.5Even though Ak for negative k occurs in the above equations, and A−1 may not be defined, this is harmless, since
the coefficient of Ak for negative k is 0.
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where {Yt} is a scalar time series, and the errors vt are scalar. To represent this as a state-space
model, we take the state as the vector

St = (Y ∗
t , Y

∗
t−1, . . . , Y

∗
t−M+1)

∗,

where the repeated application of the Hermitian transpose cancels out – see footnote 23.3 on p. 92.
Take A = (aij) be an M ×M matrix with a1j = φk for 1 ≤ j ≤M , aij = δi−1,j for 2 ≤ i ≤M and
1 ≤ j ≤M , and et = 0M,1. Further, let H be the N -dimensional row vector

H = (1, 0, 0, . . . , 0),

and let ǫt be the scalar

ǫt =

N
∑

l=0

θlvt−l.

With these choices, equations (23.1) and (23.2) are satisfied. As it is seen from these equations, the
independence of the errors ǫt is not assured in this model.

23.4 Question whether the ARMA model of scalar time series with scalar

errors is appropriate

It seems that in a scalar ARMA model the presence of past errors is an artifact. It is reasonable to
assume that the past behavior of a system producing a time series is communicated via the current
state of a system. That is, the correct model of a time series would apparently be a state-space model,
and the ARMA behavior is only a mathematical consequence of the state-space model. However, as
we saw in Theorem 23.1, the errors in this ARMA model have matrix coefficients, and an ARMA
model with scalar error coefficients could produce only a relatively poor approximation of the actual
errors. For this reason, the description showing how past errors in the ARMA model seems more of
a mathematical artifact than some philosophical reflection on the behavior a system.

The translation of an ARMA model into a state-space model is only a mathematical trick in that
we describe the state as a vector of past outputs, and is not based on a deeper understanding of the
system producing the signals. The fact that independent errors in the time series are not reflected
in the independence of the state errors at different times of the state-space model obtained from the
ARMA model points even more to the artificialness of the ARMA model.

24 The Kalman filter

24.1 What is the Kalman filter trying to do?

Imagine you are steering on ship through a narrow and dangerous straight. You can control the
steering and the engine power. However, the ship is slow to respond to any input. Furthermore, the
ship’s response has a random element because of currents and wind. You have precise maps indicating
the route the ship is required to follow. You can monitor the ship’s position and orientation (perhaps
by GPS and compass, or by features on land visible from the ship). The position of the ship, her
orientation, the position of the steering wheel, the engine controls, and the actual engine power is
monitored as the sampled values vector time series. It is also known how the ship is supposed to
respond to steering and engine controls. The problem to be solved is how to change the steering
and engine controls to keep the ship safe. The ship’s response to these controls involves various
delays and random elements, so the exact state of the engine is not known; all information about

94



it comes from various sensors. A mathematical method to handle this situation was invented by
Rudolf E. Kalman. The mathematical model encompassing his method will be described next.

24.2 A state-space model with control input

A time series model of the described situation can in general be described as follows; we will assume
in the rest of this section that all matrices are real. We are trying to estimate the state vector
Xk ∈ Rn×1 (i.e., an n-dimensional column vector of reals) of a process at time k with measurements
Zk ∈ Rm×1, where m and n are positive integers. Here Zk is known but Xk is not. These quantities
are governed by the following equations

Xk = FkXk−1 +Bkuk + ek,(24.1)

Zk = HkXk + ǫk.(24.2)

Here uk ∈ Rp,1 is the control input at time k, where p is an integer, Fk ∈ Rn,n is the state transition
matrix applied to the previous state, Bk ∈ Rn,p is the control-input model that is applied to the
control input uk, Hk ∈ Rm,n is the observation model, ek ∈ Rn,1 is the control error, and ǫk ∈ Rm,1

is the measurement error, all at time k. The errors ek and ǫk are assumed to follow multivariate
normal distribution with 0 mean with covariance matrices Qk ∈ Rn,n and Rk ∈ Rp,p.

24.1 We will
assume that the errors ek and ǫk are independent of each other and of any Xl, Zl el, and ǫl for l < k.
We further assume that ǫk is independent of Xk. It is not necessary to know the covariance matrices
Qk and Rk; they can be estimated from prior observations (called the tuning of the process). In
equations (24.1) and (24.2), the matrices Fk, Bk, and Hk are assumed to be known.24.2

24.3 The Kalman filter: prediction

The Kalman filter works in two steps: a prediction step, and an update step. X̂k|k−1 denotes the

predicted estimate of Xk before the measurement Zk is taken into account, and X̂k|k denotes the
corrected estimate after the measurement Zk is known. We will assume that these estimates are
unbiased, that is, their mean is E(Xk).

24.3 Note that Xk is not observable. We put

(24.3) X̂k|k−1 = FkX̂k−1|k−1 +Bkuk.

We have

(24.4) Xk − X̂k|k−1 = Fk(Xk−1 − X̂k−1|k−1) + ek

according to (24.1). Since E(ek) = 0, it follows that if X̂k−1|k−1 is an unbiased estimator of Xk−1,

then X̂k|k−1 is an unbiased estimator of Xk. We will consider the covariance matrices P of the errors
of these estimators. That is,

Pk|k = Cov(Xk − X̂k|k) = E
(

(Xk − X̂k|k)(Xk − X̂k|k)
T
)

,(24.5)

Pk|k−1 = Cov(Xk − X̂k|k−1) = E
(

(Xk − X̂k|k−1)(Xk − X̂k|k−1)
T
)

;(24.6)

24.1In symbols, one can write that ek ∼ N (0n,1, Qk) and ǫk ∼ N (0p,1, Rk), where, given positive integers l and m,
0l,m ∈ Rl,m denotes an l×m matrix with all zero entries. We will also write Qk = Cov(ek) and Rk = Cov(ǫk). This
notation for the covariance matrix was introduced in Subsection 2.3.
24.2The model we are describing is a linear model. The extended Kalman filter is a nonlinear model, in which these
matrices are Jacobian matrices of the variables at places of the variables X and Z known or estimated at time k. See
[34, p. 8].
24.3This will be asymptotically true if the filter converges. When the filter is started, the value of X0|0 will be a
guess.
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The second equation on each line assumes that these estimators are unbiased. Using equations (24.4)
and (2.5), and noting that E(ek) = 0 and Cov(ek) = Qk, we obtain

(24.7)

Pk|k−1 = E
(

(

Fk(Xk−1 − X̂k−1|k−1) + ek
)(

(Xk−1 − X̂k−1|k−1)
TFT

k + eTk
)

)

= Fk E
(

(Xk−1 − X̂k−1|k−1)(Xk−1 − X̂k−1|k−1)
T
)

FT
k + E(eke

T
k )

= FkPk−1|k−1F
T
k +Qk;

the second equation here holds because the error vector ek is independent of earlier variables. The
third equation uses (24.5) and the equation Qk = Cov(ek).

The measurement residual is given by

(24.8) Ỹk
def
= Zk −HkX̂k|k−1.

According to equation (24.2), we would have Ỹk = 0 if X̂k|k−1 were accurate. That is, Ỹk is a
measure of the accuracy of the prediction. Note that

E(Ỹk) = E(Zk)−Hk E(X̂k|k−1) = Hk E(Xk)−Hk E(X̂k|k−1) = 0,

where the second equation holds in view of (24.2); for the third equation, see (24.4), where we
remarked that X̂k|k−1 is an unbiased estimator of Xk. Hence, using equation (24.2) once more, for

the covariance matrix of Ỹk we have

(24.9)

Sk
def
= Cov(Ỹk) = E(ỸkỸ

T
k ) = E

(

(

Hk(Xk − X̂k|k−1) + ǫk
)(

(Xk − X̂k|k−1)
THT

k + ǫTk
)

)

= Hk E
(

(Xk − X̂k|k−1)((Xk − X̂k|k−1)
T
)

HT
k + E(ǫkǫ

T
k )

= HkPk|k−1H
T
k +Rk ;

the second equation here holds because ǫk is independent of Xk and X̂k|k−1, and E(ǫk) = 0; finally,
the third equation holds in view of (24.6) and since Rk = Cov(ǫk).

Before continuing, some reflection can be helpful. While the quantitiesXk, Zk, and Ỹk, and the estimators

X̂k|k−1, Xk, and X̂k|k are random variables, these quantities are functions of the sample space. On the other

hand, the matrices Pk|k, Pk|k−1, Sk, and others are not. They are not functions on the sample space,

they are functions only of the expectations of various expressions of the random variables involved. On the

other hand, in an implementation of the Kalman filter, these expectations may be approximated by random

variables.

24.4 The Kalman filter: the correction

The residual Ỹk carries the information about the accuracy of the estimate X̂k|k−1. We define the
corrected estimate

(24.10) X̂k|k = X̂k|k−1 +KkỸk,

where the matrix Kk is so chosen that the mean square error

(24.11) E(‖Xk − X̂k|k‖2)
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is the least possible. Noting that

E(Xk − X̂k|k) = E(Xk − X̂k|k−1)−Kk E(Ỹk) = 0,

we have

(24.12) Pk|k
def
= Cov(Xk − X̂k|k) = E

(

(Xk − X̂k|k)(Xk − X̂k|k)
T
)

;

this equation is in fact a restatement of equation (24.5), first stated in anticipation of the definition
of X̂k|k. The trace24.4 of this matrix is E(‖Xk − X̂k‖2). That is Kk is to be determined so as to
minimize the trace of Pk|k. Using equations (24.10), (24.9), and (24.6), we have

(24.13)

Pk|k = E
(

(

(Xk − X̂k|k−1)−KkỸk
)(

(Xk − X̂k|k−1)
T − Ỹ T

k K
T
k

)

)

= E
(

Xk − X̂k|k−1))(Xk − X̂k|k−1)
T
)

+Kk E(ỸkỸ
T
k )KT

k

− E
(

(Xk − X̂k|k−1)Ỹ
T
k

)

KT
k −Kk E

(

Ỹk(Xk − X̂k|k−1)
T
)

= Pk|k−1 +KkSkK
T
k − E

(

(Xk − X̂k|k−1)Ỹ
T
k

)

KT
k −Kk E

(

Ỹk(Xk − X̂k|k−1)
T
)

.

We need to simplify the last two terms. We first deal with the last term. Using equations (24.8)
and (24.2), we obtain

E
(

Ỹk(Xk − X̂k|k−1)
T
)

= E
(

(Zk −HkX̂k|k−1)(Xk − X̂k|k−1)
T
)

= E
(

(HkXk + ǫk −HkX̂k|k−1)(Xk − X̂k|k−1)
T
)

= Hk E
(

(Xk − X̂k|k−1)(Xk − X̂k|k−1)
T
)

= HkPk|k−1 ;

here, the penultimate24.5 equation follows since ǫk is independent of Xk and X̂k|k−1, and E(ǫk) = 0;
finally, the the last equation holds in view of (24.6). Observing that the second term on the right of
(24.13) is just the transpose of the third term, using this (24.13) becomes

(24.14) Pk|k = Pk|k−1 +KkSkK
T
k − Pk|k−1H

T
k K

T
k −KkHkPk|k−1 ;

for the last term note that Pk|k−1, being a covariance matrix, is symmetric, so PT
k|k−1 = Pk|k−1.

24.5 Optimization of the Kalman gain

In equation (24.14) all the matrices are known at this point except for the matrix Kk. To determine
the optimal gain, we need to choose the matrix such that the trace of Pk|k is the smallest possible.
This problem is always solvable, since the trace of this matrix is a positive semi-definite quadratic
form, with the entries of Kk being the variables. Indeed, this trace is the expression given in (24.11).
This problem can be solved as a simple problem of optimization in multivariate calculus; however,
to avoid technical complications, we need the right mathematical symbolism. There are several
mathematical approaches that could be used: we could write out the trace in question with sums of
products involving scalar variables and then take partial derivatives; to simplify the calculations, we
could use matrix differential calculus (see [38]), or we could use tensor calculus. We wish to avoid
these complications, since the same goal can be accomplished making an informal use of infinitesimal
matrices.

24.4The trace of a square matrix is the sum of its diagonal elements.
24.5The one before the last.

97



The term infinitesimal was introduced by Leibniz, and they formed the basis of Leibniz’s development of
calculus. They denote numbers very close to zero; sometimes in a contradictory way a positive infinitesimal
is described as a positive number that is smaller than every “usual” positive real numbers. There are various
orders of infinitesimals: if x and y are both infinitesimal and x/y is also an infinitesimal, then x is said to be
an infinitesimal of higher order than y. Leibniz’s idea was very fruitful, and they led to a fast development
of calculus. In the 19th century, infinitesimals were exiled from mathematics, and replaced by “precise”
mathematical tools.

We put “precise” in quotes, since there are different levels of precision acknowledged by mathematical

logic. In fact, Kurt Gödel in the 20th century showed the limitations of formal approaches to mathemat-

ics; meanwhile, Gödel’s ideas via Alan Turing and John von Neumann led the way to modern computer

architecture (see [26]) The ideas of Skolem and Gödel led to models satisfying the axioms of arithmetic that

different from the usual (standard) set of integers. Considerations of such models inspired Abraham Robin-

son to invent nonstandard analysis, and which put infinitesimals on a rigorous mathematical foundation; his

book [29] is still the best source the learn the subject from. He and Allen R. Bernstein did nonstandard

analysis to good use, and in 1966 solved a problem involving invariant subspaces of Hilbert spaces. Per-

haps to the misfortune of nonstandard analysis,24.6 but very much to the fortune of mathematics, in 1973,

V. I. Lomonosov of the Soviet Union, who later emigrated to the USA, gave a striking generalization of the

Bernstein–Robinson result – see [37]. The Wikipedia article [40] is a good overview of the subject. If you

happen to look also at the article Criticism of non-standard analysis also on Wikipedia [39], the criticism

is somewhat misguided. Its main role is not to establish a philosophical basis for infinitesimals; it is a

mathematical tool to simplify a number of argument, somewhat similar in the way general topology is such

a tool.

In finding the optimal choice of Kk in equation (24.14), we replace Kk with Kk + hM , where
h is an infinitesimal scalar, and M is an arbitrary matrix, and we write the resulting matrix on
the left-hand side as Pk|k +∆Pk|k; that is, ∆Pk|k represents the change in the matrix Pk|k by this
replacement:

Pk|k +∆Pk|k

= Pk|k−1 + (Kk + hM)Sk(K
T
k + hMT )− Pk|k−1H

T
k (K

T
k + hMT )− (hM +Kk)HkPk|k−1

= Pk|k−1 +KkSkK
T
k − Pk|k−1H

T
k K

T
k −KkHkPk|k−1

+ h(MSkK
T
k +KkSkM

T − Pk|k−1H
T
k M

T −MHkPk|k−1) + h2MSkM
T

= Pk|k + h(MSkK
T
k +KkSkM

T − Pk|k−1H
T
k M

T −MHkPk|k−1) + h2MSkM
T ,

where the last equation holds in view of (24.14). That is,

∆Pk|k = h(MSkK
T
k +KkSkM

T − Pk|k−1H
T
k M

T −MHkPk|k−1) + h2MSkM
T .

Denoting by δPk|k what remains of ∆Pk|k after omitting the higher order infinitesimals, i.e., term
multiplied by h2, we have δPk|k = hD,24.7 where

D =MSkK
T
k +KkSkM

T − Pk|k−1H
T
k M

T −MHkPk|k−1 .

We are only interested in the trace of this matrix, since we want to minimize the trace of Pk|k.
Denote by Tr(A) of a matrix A, and note that Tr(A) = Tr(AT ), since taking transpose does not
change the diagonal elements of a matrix. Observing that in the expression on the right-hand side

24.6Not really. Nonstandard analysis is well and alive.
24.7At the price of some minor additional circumlocution, the matrixD could be described as the directional derivative
of Pk|k with respect to Kk in the direction of M .
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of the equation for D the second term is the transpose of the first, and the third is the transpose of
the fourth, we can write that

Tr(D) = 2Tr(MSkK
T
k −MHkPk|k−1) = 2Tr

(

M(SkK
T
k −HkPk|k−1)

)

.

We want to make Tr(D) = 0, for all M . To this end it is sufficient to to make sure that

SkK
T
k −HkPk|k−1 = 0.

In fact, this condition is also necessary, but we will not make use of this.24.8 Taking transpose, this
means that

(24.15) KkSk − Pk|k−1H
T
k = 0 ;

note that Pk|k−1 = PT
k|k−1 and Sk = ST

k , since they are covariance matrices (cf. (24.6) and (24.9)),
and covariance matrices are symmetric. So, if Sk is invertible, we take

(24.16) Kk = Pk|k−1H
T
k S

−1
k .

If Sk is singular, then equation (24.15) is not be solvable or it has multiple solutions, and one needs
to make alternative arrangements. Perhaps one would take Kk = 0, or else take a subspace, such
as that formed by the maximum number of linearly independent columns of Sk, and ensure that
equation (24.15) restricted to this subspace is satisfied. Probably the former choice is simpler, since
in the next update step it is unlikely that the matrix Sk+1 is again singular.

24.6 Summary of the Kalman filter steps

We summarize here how these equations are used to operate the Kalman Filter. We start with initial
values X̂0|0 and P0|0. At the k step, we do the updating in two stages. The prediction stage performs
those calculations that can be performed before the measurement Zk comes in. The calculations in
the correction stage rely on the measurement Zk.

The equations for the prediction stage rely on equations (24.3), (24.7), (24.9), (24.16), and (24.14)
in turn. They are

X̂k|k−1 = FkX̂k−1|k−1 +Bkuk,

Pk|k−1 = FkPk−1|k−1F
T
k +Qk,

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S

−1
k ,

Pk|k = Pk|k−1 +KkSkK
T
k − Pk|k−1H

T
k K

T
k −KkHkPk|k−1.

24.8The necessity of this condition can be seen as follows. If for a matrix M , the matrix MA has a nonzero element,
then pick one of the nonzero elements of MA, and change all elements of M to zero except those that are in the same
row as the element picked. This will make MA have a nonzero element only in the row with the element picked.
Then, for a permutation matrix P , i.e., a matrix that has exactly one 1 in each row and each column, and all other
entries are 0, the rows of PMA are a permutation of the rows of MA. By taking an appropriate permutation matrix,
a nonzero element of MA can be moved to the main diagonal. This matrix will have exactly one nonzero element in
its main diagonal, so its trace will not be zero.

Hence, if the trace of MA is zero for every matrix M (of the appropriate size), then A has to be the zero matrix.
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The equations for the correction stage rely on equations (24.8) and (24.10), respectively. They are

Ỹk = Zk −HkX̂k|k−1,

X̂k|k = X̂k|k−1 +KkỸk.

The matrices Fk, Bk, Qk, and Rk in these equations are assumed to be known in advance, and are
not part of the update process.

In a practical installation of the filter, Qk and Rk can be estimated by the filter itself. Starting
with initial estimates Q0 and R0 that may be little more than a guess, one estimates ek from
equation (24.1), replacing Xk−1 and Xk with X̂k−1|k−1 and X̂k|k. There is no better choice, since
the values of Xk−1 and Xk cannot be known. Similarly, ǫk is estimated from equation (24.2),
replacing Xk with X̂k|k. The estimates for the covariance matrix Qk and Rk are then updated,
using the estimates for these error sequences. This process is called the tuning (the parameters of)
the Kalman filter. This tuning of the Kalman filter may itself involve sophisticated algorithms.

25 The extended Kalman filter

25.1 Fréchet derivative

Definition 25.1. Let V be a normed vector space over R. A subset B of V is called an open ball
if B = {x ∈ V : ‖x− c‖ < ρ} for some c ∈ V and for some ρ > 0; c is called the center of B and ρ,
its radius. A set S ⊂ V is called open if for every x ∈ S there is an open ball B with center x such
that B ⊂ S.

Definition 25.2. Let V and W be vector spaces over R, and Λ : V →W be a mapping. Λ is called
a linear operator (or a linear transformation) if Λ(αx + y) = αΛ(x) + Λ(y) for every x, y ∈ V and
every α ∈ R.

For a linear operator Λ and a vector x, one often writes Λx instead of Λ(x).

Definition 25.3. Let V and W be vector spaces over R, and and let Λ : V → W be a linear
operator. Λ is called bounded if there is an α ∈ R such that ‖Λx‖W ≤ α‖x‖V for all x ∈ V , where
‖ · ‖V and ‖ · ‖W indicate the norms of the respective spaces. The least such α is called the norm of
Λ, or, more precisely, its norm induced by the vector norms in V and W .

It is easy to see that if an Λ is bounded then there exists a least such α, and, in fact,

‖Λ‖ = sup{‖Λx‖W : x ∈ V and ‖x‖V = 1}.

Next, we will describe what is meant by the limit of a function.

Definition 25.4. Let V and W be normed vector spaces over R, let S be a subset of V , let
f : S →W be a function. let x ∈ V , let y run over elements of V , and let w ∈W . We say that

lim
y→x, y∈S

f(y) = w

if for every ǫ > 0 there is a δ > 0 such that we have ‖f(y) − w‖W < ǫ whenever 0 < ‖y − x‖V < δ
and y ∈ S; here ‖ · ‖V and ‖ · ‖W indicate the norms of the respective spaces.
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In the definition, saying that 0 < ‖y−x‖ is just another way of saying that y 6= x, but it is more
concise to the inequality 0 < ‖y − x‖V < δ instead of saying that ‖y − x‖V < δ and y 6= x. In case
S is an open set and x ∈ S, we usually write limy→x f(y) instead of limy→x, y∈S f(y), since in this
case ‖y − x‖V < δ implies y ∈ S for small enough δ. The above is the Cauchy definition of limit.
which is well known to be equivalent to the Heine definition, according to which

lim
y→x, y∈S

f(y) = w

if for any sequence {yn} of elements of S such that

lim
n→∞

‖yn − x‖ = 0

we have
lim
n→∞

‖f(yn)− w‖ = 0.

Definition 25.5. Let V andW be normed vector spaces over R, let S be a subset of V , let f : S →W
be a function. let x ∈ S. We say that f is continuous at x in S if limy→x, y∈S f(y) = f(x). If there
is an open ball B ⊂ S with center x, then we simply say that f is continuous at x.

Definition 25.6. Let V and W be normed vector spaces over R, let S ⊂ V be open, let f : S →W
be a function. let x ∈ S, and let Λ : V → W be a bounded linear operator. Λ is called the Fréchet
derivative of f at x ∈ V if, with y running over elements of V , we have

lim
y→x

‖f(y)− f(x)− Λ(y − x)‖W
‖y − x‖V

= 0.

25.2 The Jacobian matrix

Let V be an n-dimensional real euclidean space. That is, V = Rn,1 is the space of n × 1 column
vectors with real entries, and for x = (ξ1, ξ2, . . . , ξn)

T ∈ V , the norm of V is defined as

‖x‖V =
√
xTx =

(

n
∑

k=1

ξ2k

)1/2

.

If y = (η1, η2, . . . ηn)
T is another element of V , then the euclidean inner product is defined as

〈x, y〉V = xT y =

n
∑

k=1

ξkηk.

Since the ‖·‖V is the norm induced by the inner product 〈·, ·〉V , it follows that ‖·‖V is indeed a norm;
in particular, it satisfies Minkowski’s inequality; see Clause (c) in Definition 17.2 and Problem 17.2.

Given an m-dimensional real euclidean space W , a function f : V → W can be described by m
functions of n variables: if f(x) = w for x = (ξ1, ξ2, . . . , ξn)

T ∈ V , and w = (ω1, ω2, . . . , ωm)T ∈W ,
writing ωl = fl(ξ1, ξ2, . . . , ξn) for l with 1 ≤ l ≤ m, these functions describe the function f . In a
shortened notation, we may write that ωl = fl(x).

The matrix described in the next definition is called the Jacobian matrix, named after the German
mathematician Carl Gustav Jacob Jacobi.
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Definition 25.7. If V , W , f , fl, x, and w are as described, the m× n matrix

(25.1)
∂w

∂x
=
∂f(x)

∂x
=
∂(ω1, ω2, . . . , ωm)

∂(ξ1, ξ2, . . . , ξn)

def
=

(

∂fl(ξ1, ξ2, . . . , ξn)

∂ξk

)

1≤l≤m, 1≤k≤n

is called the Jacobian matrix of f at x = (ξ1, ξ2, . . . , ξn)
T , assuming that the partial derivatives

exist.

There is a problem with the notation used for partial derivatives in describing the Jacobian in
equation (25.1). To introduce a better notation, we will write ∂k for the the partial derivative with
respect to the kth variable. With this notation, we will write

∂fl(x)

∂ξk
= ∂kfl(x) (1 ≤ l ≤ m)

The problem with the notation used on the left-hand side is that it is associated with the point
x = (ξ1, ξ2, . . . , ξn)

T ∈ V . For the point t = (τ1, τ2, . . . , τn)
T ∈ V , we would have to write ∂kfl(t) =

∂fl(t)/∂τk. Along the same line, for the Jacobian we can write ∂f . That is

∂f(x)
def
=

∂f(x)

∂x
.

Lemma 25.1. Let V , W , f , fl, x, and w be as described. Assume that the partial derivatives
∂fl(x)/∂ξk are continuous at x. Then the Jacobian J = ∂f(x)/∂x, interpreted as the linear operator
J : V → W with J(x) = Jx (the right-hand side indicating matrix multiplication) is the Fréchet
derivative of f at x.

Proof. For the partial derivatives of f to be continuous at x there must be an open ball with center x
in which these partial derivatives exist; let B be such an open ball, and let y = (η1, η2, . . . , ηn)

T ∈ B
be different from x. Let δk = ηk − ξk for k with 1 ≤ k ≤ n, and let hk ∈ V be the vector all whose
components are 0 except that its kth component is δk. Let xk = x+

∑k
j=1 hj for k with 0 ≤ k ≤ n.

Then we have x = x0 and y = xn. Furthermore, for any k and l with 1 ≤ k ≤ n and 1 ≤ l ≤ m, we
have

(25.2) fl(xk)− fl(xk−1) = δk∂kfl(xk−1 + θklhk)

for some θk with 0 < θkl < 1 by the Mean-Value Theorem of Differentiation, as we will explain.
First note that, given that y ∈ B, we have xk−1, xk ∈ B, and so fl(xk−1 + θhk) as a function of θ is
differentiable in the interval [0, 1]; indeed,

dfl(xk−1 + θhk)

dθ
= δk∂kfl(xk−1 + θhk).

so we can use the Mean-Value Theorem.25.1 Noting that ∂kfl is continuous at x, equation (25.2),
can be written as

fl(xk)− fl(xk−1) = δk

(

∂kfl(x) + ǫkl(y)
)

,

25.1The Mean-Value Theorem says that if φ is continuous in the interval [a, b] where a < b and is differentiable in
(a, b), then there is a ξ ∈ (a, b) such that

φ(b)− φ(a) = φ′(ξ)(b− a).

The Mean-Value Theorem is used in case hk 6= 0; the equation is obviously true also in case hk = 0 (note that hk = 0
is allowed, even though hk = 0 cannot be true for every k, since y 6= x).
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with some ǫkl(y) such that

(25.3) lim
y→x

ǫkl(y) = 0,

where the dependence of ǫkl(y) on x is not indicated, since x is fixed throughout this argument; note
that on the left-hand side of equation (25.2), xk−1 and xk are determined by y (and x). Hence, we
have

fl(y)− fl(x) =

n
∑

k=1

(

fl(xk)− fl(xk−1)
)

=

n
∑

k=1

δk
(

∂kfl(x) + ǫkl(y)
)

=

n
∑

k=1

δk∂kfl(x) +

n
∑

k=1

δkǫkl(y) =
(

J(y − x)
)

l
+

n
∑

k=1

δkǫkl(y),

where
(

J(y − x)
)

l
denotes the lth component of the vector J(y − x); the last equation follows from

the definition of the Jacobian J and by noting that y−x = (δ1, δ2, . . . δn)
T . That is, writing el ∈W

for the vector all whose components are 0 except that its lth component is 1, we have

f(y)− f(x) = J(y − x) +

m
∑

l=1

n
∑

k=1

δkǫkl(y) el.

Noting that

‖y − x‖V =
(

n
∑

k=1

δ2k)
1/2,

we have |δk| ≤ ‖y − x‖V . Hence

‖f(y)− f(x)− J(y − x)‖W ≤
m
∑

l=1

n
∑

k=1

‖y − x‖V |ǫkl(y)| ‖el‖W

= m

n
∑

k=1

‖y − x‖V |ǫkl(y)|;

the last equation follows since ‖el‖W = 1. Therefore, (25.3) implies that

lim
y→x

‖f(y)− f(x)− J(y − x)‖W
‖y − x‖V

= 0,

so J is indeed the Fréchet derivative of f at x.

In case m = n = 1, the Jacobian is just the ordinary derivative of f , and the linear approximation to f

implied by the Fréchet derivative described by the Jacobian is just the tangent line to the graph of f . In case

m = 1 and n = 2, the Jacobian describes the total differential of f , and the linear approximation implied by

the Fréchet derivative is the tangent plane to the surface given by f . The cases m = 2 and n = 2 or m = 3

and n = 3 are occasionally discussed in introductory college courses in the context of changing variables in

multiple integrals; such an application was discussed in Subsection 2.4 on account of determining the density

function of a nondegenerate multivariate normal distribution.
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25.3 The extended Kalman filter

In the model for the extended Kalman filter, the linear equations (24.1) and (24.2) are replaced by
nonlinear equations

Xk = f(Xk−1, uk, ek),(25.4)

Zk = h(Xk, ǫk).(25.5)

for given vector-valued functions f and g. This can be handled by a modification of equations (24.1)
and (24.2) of the linear Kalman filter:

Xk = FkXk−1 +Bkuk + Ekek,

Zk = HkXk +Gkǫk.

In these equations, the coefficient matrices Ek and Gk are new as compared to equations (24.1) and
(24.2). The coefficient matrices Fk, Bk, Ek, Hk, and Gk are taken to be the Jacobian matrices25.2

with respect to the variables associated with these coefficient matrices of f and g, at the place
(X̂k−1, uk, 0) for f , and at (X̂k, 0) for g, where X̂k−1 and X̂k are the estimates for Xk−1 and Xk,
and the actual value of the vector uk. The best estimate for ek and ǫk is 0, that is why 0 is taken
for the arguments representing these errors.

25.4 Applications of the Kalman-filter

The paper [17] describes the example of a train moving on a straight track, illustrating were the
matrices Fk, Bk, and Hk can be obtained from equations of physics describing the system. The
Kalman filter was used in aiding landing and return of the lunar module of the Apollo 11 mission,
the first human landing on the moon. Today, there are several Kalman filters running on a common
cell phone. There is a good description, listing several applications, in the Wikipedia article [36].
The paper [8] lists many more applications; it also contains very interesting details of of these
applications.

26 The GARCH model

In an ARMA or ARIMA model

(26.1) Yt =

p
∑

k=1

φkYt−k + et −
q
∑

l=1

θkel−k,

one often assumes that the errors (or residuals, or innovations) et are identically distributed, in
particular, they have the same standard deviation. This is often not appropriate for financial time
series, which often go through periods of volatility. In these cases, one may prefer to model the
errors in the form

(26.2) et = σtZt,

where the random variables Zt are identically distributed independent variables, usually standard
normal variables, and the time series {σt} one models in various ways, most frequently as an AR

25.2In other words, we take linear linear approximations to the functions f and g at the places indicated.
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or ARMA or ARIMA process; one assumes that Zt is independent of σt.
26.1 Such models are

called autoregressive conditional heteroskedastic, or ARCH, models, or GARCH (generalized ARCH)
models.26.2 Such models were introduced by Robert F. Engle in 1982 in the paper [16]; this paper
earned him the Nobel Memorial Prize in Economic Sciences in 2003. Since then, many such models
have beed described; a glossary to such models is given by Tim Bellerslev in the paper [3].

To build a GARCH model, on first builds an ARMA or ARIMA model as in formula (26.1), then
one estimates the errors et in the model; this can be done in the way described in Subsections 9.5
or 10.1. Then one models the variances σt of these errors by a linear model:

(26.3) σ2
t = ω +

q′
∑

k=1

αke
2
t−k +

p′

∑

l=1

βlσ
2
t−l

Note that this is not an ARMA model for the time series of σt, since the residuals et come from
the original time series modeled in equation (26.1) rather than from the sequence of variances σ2

t .
The coefficients ω, αk, and βk can be estimated by least square methods or by maximum likelihood
methods (the latter give better results according to Engle [16, p. 998]).

26.1 Maximum likelihood for estimate for the coefficients in a GARCH

model

We will outline how the maximum likelihood method can be used to determine the model parameters
in equation (26.3). Given a time series {Yt}. write ψt for the information available at time t. This
includes all the values of Yt′ for t′ ≤ t, and given the model described by formula (26.1), also the
values of et′ for t

′ ≤ t. At time t before observing Yt, the information available is ψt−1. We have

E(Yt|ψt−1) =

p
∑

k=1

φkYt−k −
q
∑

k=1

θket−k,

since
E(et|ψt−1) = E(σtZt|ψt−1) = E(σt|ψt−1) E(Zt|ψt−1) = E(σt|ψt−1) E(Zt) = 0;

the second equation holds here since Zt is independent of σt, and the third equation holds since Zt

is also independent of ψt−1.
In the GARCH model, et = σtZt is assumed to be a normal variable with mean 0 and variance

σ2
t ; this variance depends on the information ψt−1. The variance of Yt conditional on ψt−1 is the

same:
Var(Yt|ψt−1) = Var(et|ψt−1) = σ2

t .

Thus, the density function of et conditional on ψt−1 is

fet|φt−1
(x) =

1√
2π σt

exp

(

− x2

2σ2
t

)

.

This is also the conditional likelihood function:

Lt(σt, êt) =
1√
2π σt

exp

(

− ê2t
2σ2

t

)

,

26.1If one wants to interpret these specifications mathematically, σt must also be a random variable. In the model, σt
will be a function of random variables that assumed numerical values before time t, whereas Zt is a random variable
that assumes a value only at time t.
26.2The word skedastic or scedastic means “related to the variance of statistical errors.” Hence homoskedastic means
having the same finite variance, and heteroskedastic means not having the same variance (of errors of a time series).
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where we wrote the observed value of êt of the error in place of x. The likelihood function is the
product of all conditional likelihood functions for the series of observations of Yn. The values of ên
are not directly observable; they are calculated from the values of Yn and the model parameters φk
and θl in equation (26.1); the values of σn are expressed in terms of the model parameters αk and βl
in equation equation (26.3). The likelihood function is considered as a function of the parameters ω,
and αk and βl occurring in equation (26.3); these are the parameters to be determined. The model
parameters φk and θl in equation (26.1) are assumed to be known at these points. Assuming that
observations Yn were made for times n for 1 ≤ n ≤ t, we have

L(ω,α,β;Y) =

t
∏

n=1

1√
2π σn

exp

(

− ê2n
2σ2

n

)

.

In this equation, α = 〈α1, α2, . . . , αq′〉, β = 〈β1, β2, . . . , βp′〉, and Y = 〈Y1, Y2, . . . , Yt〉, the values
for σn should be expressed in terms of ω, α, and and β using equation (26.3), where, at this point,
the values of the parameters ω, α, and and β are yet to be determined. After this, the values of
these parameters can be estimating by maximizing the likelihood functions. In doing to, one first
takes the logarithm of the likelihood function.

27 The generalized least squares method

For a complex random column vector Y, define the variance of Y = (Y1, Y2, . . . , Yn)
T as

Var(Y)
def
= E

(

(

Y − E(Y)
)∗(

Y − E(Y)
)

)

=

n
∑

k=1

E
(

∣

∣Yk − E(Yk|
)2
)

.

This is a scalar; compare this with the definition of the covariance matrix of Y, which is an n × n
matrix:

Cov(Y)
def
= E

(

(

Y − E(Y)
)(

Y − E(Y)
)∗
)

In fact, the variance of Y is the trace of its covariance matrix, where the trace of a square matrix is
defined as the sum of its diagonal elements.

27.1 Ordinary least squares

The ordinary least squares method was discussed above, on account of the innovations algorithm
in Section 7, especially in the proof of Lemma 7.1. In this subsection we give a description from a
different point of view.

Let m and n be a positive integer, A and m × n matrix with known entries entries and let
x = (x1, x2, . . . , xn)

T be a column vector with unkown real entries. We want to determine the
unknown entries of x by measuring the entries of the column vector Ax, but these measurements
have errors. A mathematical formulation of the problem is the following:

Let ǫ = (ǫ1, ǫ2, . . . , ǫm)T and Y = (Y1, Y2, . . . , Ym)T be a column vectors of random variables.
Assume that E(ǫk) = 0 and E(ǫkǫl) = δklσ

2 for all k and l with 1 ≤ k, l ≤ m for some finite σ > 0.
Assume we have the the system of equations

(27.1) Ax+ ǫ = Y.

Here we have m equations to determine n unknowns; since the right-hand side of the equations
are measured quantities (the measured values of the random variables Yk), it is likely that these
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equations are contradictory. So what we need to do is to find the best estimate for the solutions
that the errors ǫ is these equations is in some sense the least possible. As for the solvability of these
equations, the matrix A has to have at least m linearly independent rows, since otherwise we do not
have enough equations to find x. In other words, the matrix must have rank n.

The row rank of a matrix is its maximum number of linearly independent rows, and its column rank is

equal to the number of linearly independent colums. By a standard theorem of linear algebra, the row rank

of a matrix is equal to its column rank, and it is called the rank of the matrix. That is, the rank of A is

≤ min(m,n), since the rank cannot exceed the total number or rows or the total number of columns. So

our requerement that the number is linearly independent rows of A be at least n is satisfiable only if m ≥ n,

i.e., if we have at least as many equations as we have unknowns. In a practical situation, we usually have

m > n, since m is the number of measurements of the random variables Yi, and we usually want to make

more measurements to get a better estimate. The errors ǫ arise from the errors of the measurements.

In handling equation (27.1), we want to find the best estimate x̂ of the column vector x. A linear
estimator for x is a random column vector x̂ = (x̂1, x̂2, . . . , x̂n)

T = BY, where B is an n×m matrix
of reals; the entries of the matrix may depend on the entries of the known matrix A, but they must
not depend on the components of the unknown vector x or on the components of the random vector
Y. Such an estimator is unbiased if E(x̂) = x.

We have
E(x̂) = E(BY) = E

(

B(Ax+ ǫ)
)

= BAx;

the last equation holds since since E(ǫ) = 0. So, the condition for the estimate x̂ = BY to be
unbiased is that

(27.2) BAx = x.

Writing ǫ̂ = Y −Ax̂, the method of ordinary least squares seeks to minimize the quantity

(27.3) ǫ̂
T
ǫ̂ = (−ǫ̂

T )(−ǫ̂) = (Ax̂−Y)T (Ax̂−Y).

If the matrix ATA is invertible, then the choice x̂ = (ATA)−1ATY minimizes this expres-
sion. First note that this is an unbiased linear estimate with B = (ATA)−1AT . Indeed BAx =
(ATA)−1ATAx = x, so (27.2) is satisfied.

If A and B are matrices such that the number of columns of A is the same as the number of rows of B,
so that the product AB can be formed, then the rows of AB are linear combinations of the rows of B, and
its columns are linear combinations of the columns of A. Hence the rank of AB is at most the column rank
of A and the row rank of B.

Note that ATA is an n × n matrix. For it to be invertible, it has to have rank n. On the other hand,

A is an m× n matrix, and so its rank is ≤ min(m,n). Hence the rank of ATA is also ≤ min(m,n). Hence,

the matrix ATA can be nonsingular27.1 only in case m ≥ n, i.e., if the number of scalar equations given

by (27.1) is at least the number of unknown.27.2

Next we show that it minimizes ǫ̂T ǫ̂:

27.1iNonsingular for a matrix means the same as invertible.
27.2The exact condition for the matrix ATA is that the rank of A be n; this is clear from the discussion above. This
means that the system of scalar equations given by (27.1) should contain n independent equations (which equations
are then uniquely solvable for x without errors, i.e., such that ǫ = 0). The solution of these n equations may contradict
other equations present in the system, so, usually the whole system of equations are not solvable without errors.

107



Proof of minimization. Writing D = (ATA)−1, assume that x̂ = (DAT + C)Y for some n × m
matrix C. Then, with I being the m×m identity matrix, we have

ǫ̂
T
ǫ̂ = (−ǫ̂

T )(−ǫ̂) = (Ax̂−Y)T (Ax̂−Y)

= YT
(

A(DAT + C)− I
)T (

A(DAT + C)− I
)

Y

= YT
(

(ADAT − I) +AC
)T (

(ADAT − I) +AC
)

Y

= YT (ADAT − I)T (ADAT − I)Y

+YT (CTATADAT − CTAT +ADATAC −AC + CTATAC)Y;

in the last equation, we made use of the fact that DT = D; this is because D = (ATA)−1 and

so DT =
(

(ATA)T
)−1

= (ATA)−1 = D. Making use of the fact that D = (ATA)−1, there are
cancelations in the second term on the right-hand side, and we obtain that this right-hand side is
equal to

YT (ADAT − I)T (ADAT − I)Y +YTCTATACY

= YT ((ADAT − I)T (ADAT − I)Y + (ACY)TACY;

As (ACY)TACY ≥ 0 if follows that the right-hand side is the minimum when C = 0. It is not
guaranteed that this is the only minimum, since it is possible that CY = 0 even if C 6= 0 (on the
other hand, ACY = 0 only if CY = 0, since if ACY = 0 then ATACY = 0, and the matrix ATA
is nonsingular).

The least squares method is attributed to Gauss; he used it to determine the orbit of the dwarf
planet Ceres; the method he used is described at the website. The method was first published by
Legendre.

Given a vector random variable Z = (Z1, Z2, . . . , Zn)
T , we define its variance as

Var(Z)
def
=

n
∑

k=1

Var(Zk).

It is easy to see that Var(Z) is the trace of the matrix Cov(Z)
def
= E

(

(

Z − E(Z)
)

(
(

Z − E(Z)
)T
)

.

The linear estimator x̂ is called the best linear unbiased estimator if in addition to being unbiased,
x̂ = BY is such that for any other n ×m matrix B′ such that B′Y is an unbiased estimate of x,
i.e., such that

(27.4) B′Ax = x

in analogy with equation (27.2), we have Var(BY) ≤ Var(B′Y). We have

Theorem 27.1 (Gauss–Markov theorem). Assume that in equation (27.1) we have E(ǫk) = 0 and
E(ǫkǫl) = δklσ

2 for all k and l with 1 ≤ k, l ≤ m for some finite σ > 0.27.3 If the matrix ATA is
nonsingular, then the best linear unbiased estimator for x is x̂ = (ATA)−1ATY.

Proof. Let B′ be any n×m matrix. By equation (27.1) we have

E(B′Y) = E
(

B′(Ax+ ǫ)
)

= B′Ax.

27.3These are the same assumptions we made above, just before equation (27.1).
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Furthermore,

Cov(B′Y) = E
(

(B′ǫ)(B′ǫ)T
)

= E
(

B′ǫ(ǫ)TB′T
)

= B′ E
(

ǫ(ǫ)T
)

B′T = B′σ2IB′T = σ2B′B′T ,
(27.5)

where I is the m×m identity matrix. Writing D = (ATA)−1 as before, assume B′ = DAT +C for
some m× n matrix C. In order for the estimate B′Y to be unbiased, according to equation (27.4)
we need to have CAx = 0, since we have DATAx = (ATA)−1ATAx = x. Since the entries C
cannot depend on x, this means that we must have CAx = 0 for any x, that is CA = 0. Using
equation (27.5), and noting that DT = D as we pointed out before, we have

1

σ2
Cov(B′Y) = B′B′T = (DAT + C)(DAT + C)T = (DAT + C)(AD + CT )

= DATAD +DATCT + CAD + CCT = (DAT )(DAT )T + CCT ;

the last equation holds since CA = 0, and so also ATCT = (CA)T = 0. Incidentally, DATAD = D
since D = (ATA)−1, but we did not need to use this. The matrix CCT is positive semidefinite, and
so its trace is nonnegative. Hence, writing Tr(G) for the trace of a square matrix G, we have

Var(B′Y) = Tr
(

Cov(B′Y)
)

= σ2 Tr
(

DAT (DAT )T + CCT
)

= σ2 Tr
(

DAT (DAT )T
)

+Tr
(

CCT
)

≥ σ2 Tr
(

DAT (DAT )T
)

= Var(DATY),

showing that DATY is indeed a best linear unbiased estimate for x.

The form (ATA)−1ATx of the solution given ty the least squares method is of theoretical interest,
and it is not useful for practical calculations. For practical calculations, a factorization of the matrix
A into the product of an orthogonal matrix and an upper triangular matrix is used; for details,
see [23], in the section on overdetermined systems of linear equations (currently Section 38, pp. 174–
184).

27.2 The generalized least squares method

In the generalized least squares method, one wants to find the best estimate x̂ for x in equation (27.1),
where now one drops the assumption that the components of the error vector ǫ are uncorrelated
and have the same variance; instead one assumes that the covariance matrix Σ = Cov(ǫ) is known
and is positive definite, i.e., that cTΣc > 0 for any m × 1 nonzero column vector c.27.4 It is still
assumed that the m × n matrix A has rank n. The generalized least squares method was invented
by Alexander Aitken.

The generalized least squares problem can be reduced to the ordinary least squares problem.
To see how this can be done, first note that the matrix Cov(ǫ) = Σ being positive definite and
symmetric, there is a lower triangular matrix L such that LLT = Σ. The factorization LLT is
called the Cholesky decomposition or Cholesky factorization of the matrix Σ; for a discussion of the
Cholesky decomposition, see [23], the section on positive definite matrices (p. 163 in Section 35).

27.4We assume that ǫ is real, so we do not need to use complex conjugation. We have seen above that the covariance
matrix is always positive semidefinite, i.e., that cTΣc ≥ 0 (see Problem 2.1). The assumption that it is positive
definite amounts to the same as assuming that it is also nonsingular.
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Since Σ is positive definite, it is invertible, and so the matrices L and LT are also invertible.27.5

Multiply equation (27.1) by L−1 on the left to obtain

(27.6) L−1Ax+ L−1ǫ = L−1Y.

Noting that (L−1)T = (LT )−1, we have

Cov(L−1ǫ) = E
(

L−1ǫǫT (LT )−1
)

= L−1 E(ǫǫT )(LT )−1 = L−1Σ(LT )−1 = L−1LLT (LT )−1 = I.

Thus, equation (27.6) represents an ordinary least squares problem, showing how to reduce the
generalized least squares problem to an ordinary least squares problem.

27.3 Linear regression models and generalized least squares

A linear regression model of a time series {Yt} is an equation of the form

Yt = α0 +

m
∑

k=1

αkuk,t + Zt,

where αi for k with 0 ≤ k ≤ m are parameters of the model, uk,t are explanatory variables measured
at time t, and {Zt} is the residual time series that is not predicted by the model. When fitting a
linear regression model to a time series, the residuals will usually be correlated. In this situation,
a better model can be obtained by using the generalized least squares method to fit the model
parameters instead of using ordinary least squares. This is discussed in [11, §5.4, p. 98] and in [4,
§9.4.2, p. 363].

28 Long memory processes

In order to discuss the convergence of a certain series below, we need a convergence criterion not
routinely treated in calculus courses.

28.1 The Dirichlet convergence criterion

Theorem 28.1 (Dirichlet convergence criterion). Let ak and bk for k ≥ 1 be complex numbers such
that

(28.1) lim
k→∞

bk = 0

and

(28.2)

∞
∑

k=1

|bk − bk+1| <∞.

Assume that there is a real number B such that

(28.3)

∣

∣

∣

∣

∣

N
∑

k=1

ak

∣

∣

∣

∣

∣

< B

27.5Indeed, if for two n × n matrices A and B the matrix AB is invertible, then both A and B must also be
invertible. This is because rank(AB) ≤ min(rankA, rankB), as we pointed out in the second small letter passage in
Subsection 27.1.
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for all N ≥ 1. Then the series

(28.4)
∞
∑

k=1

akbk

converges.

This result is the Generalized Dirichlet Convergence Test. In the original version of the Dirichlet
Test, instead of (28.2) one assumes that bk is real and bk ≥ bk+1 > 0 for all k ≥ 1. The Alternating
Series Test is a consequence of the original version of the Dirichlet Test. Indeed, one obtains the
Alternating Series Test if one takes ak = (−1)k+1. We will comment on the role of the Generalized
Dirichlet Test in number theory below.

Proof. To show the above result, write

cn =

n
∑

k=1

ak (n ≥ 0).

Then an = cn − cn−1, so, given integers M and N with 0 ≤M < N we have

N
∑

n=M+1

anbn =

N
∑

n=M+1

(cn − cn−1)bn

= cNbN+1 − cMbM+1 +

N
∑

n=M+1

cn(bn − bn+1);

the last equation can be easily checked by noting that each term in the middle member is matched
by exactly one member on the right-hand side. An equation of this type is called partial summation,
or Abel rearrangement, named after the Norwegian mathematician Niels Henrik Abel.28.1

Therefore

∣

∣

∣

N
∑

n=M+1

anbn

∣

∣

∣
≤ |cNbN+1|+ |cMbM+1|+

N
∑

n=M+1

|cn||bn − bn+1|

≤ B
(

|bN+1|+ |bM+1|+
N
∑

n=M+1

|bn − bn+1|
)

(0 ≤M < N);

(28.5)

the second inequality follows in view of (28.3). Making M → ∞, the limit of the right-hand side
is 0 in view of (28.1) and (28.2). This shows that the series in (28.4) indeed converges.

A Dirichlet series is a sum

(28.6)
∞
∑

n=1

ann
−s,

where the coefficients an for n ≥ 1 are given complex numbers. Johann Peter Gustav Lejeune Dirichlet used
these eponymous28.2 series to establish his famous result that if an arithmetic progression with integer terms
contains two relatively prime integers then it contains infinitely many prime numbers. Dirichlet considered
these series only for real s; somewhat later, Georg Friedrich Bernhard Riemann used them with complex s
in his study of prime numbers. The basic convergence result for Dirichlet series is the following:

28.1Abel rearrangement was also discussed above in Theorem 15.2, on account of integration by parts for Stieltjes
integrals.
28.2I.e., series named after him (later, by others), that is, Dirichlet series.
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Theorem 28.2 (Region of convergence of Dirichlet series). If (28.6) converges for s = s0 with some complex
s0, then it also converges for all complex s with ℜs > ℜs0.

This is a direct convergence of the Generalized Dirichlet Test. Indeed, assume that

∞
∑

n=1

ann
−s0

converges. Then
∞
∑

n=1

ann
−s =

∞
∑

n=1

ann
−s0 n−(s−s0).

Assuming ℜ(s− s0) > 0, we have

|n−(s−s0) − (n+ 1)−(s−s0)| =

∣

∣

∣

∣

∫ n+1

n

(s− s0)t
−(s−s0)−1 dt

∣

∣

∣

∣

≤
∣

∣(s− s0)n
−(s−s0)−1

∣

∣ = |s− s0|n
−ℜ(s−s0)−1.

Since the series
∞
∑

n=1

n−ℜ(s−s0)−1

is convergent (e.g., by the Integral Test), the Generalized Dirichlet Test implies that the series in (28.6) is

also convergent. If we assume that s and s0 are real, the same conclusion follows also from the original

Dirichlet Test.

28.2 The spectrum revisited

Let yt be observations of the a time for 0 ≤ t < N , and, as in equation (16.1), we describe the series
of observations with a trigonometric polynomial:

(28.7) yt =

N−1
∑

k=0

cke
2iktπ/N (0 ≤ t < N).

To simplify the considerations, we will define yt for all integers t by putting yt+kN = yt for all k ∈ Z;
then equation (28.7) will be valid for all integers t. As in equation (16.2), we have

(28.8) ck =
1

N

N−1
∑

t=0

yte
−2iktπ/N .

This equation is needed only for 0 ≤ k < N , but we will take it to be valid for all integers k, since
instead of the range of summation 0 ≤ k < N , we can take any range of N consecutive integers in
equation (28.7); cf. equations (14.7) and (14.9).

The spectrum of this time series will be defined analogously to the periodogram defined in
equation (16.3) except that we take frequencies in the range (−∞,∞), and do not identify frequencies
f and 1− f :

(28.9) S

(

k

N

)

= N |ck|2.
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28.3 Differencing and the spectrum

If we write zt = yt − yt−1 for the differenced series, we have

zt = yt − yt−1 =

N−1
∑

k=0

ck(e
2iktπ/N − e2ik(t−1)π/N ) =

N−1
∑

k=0

ck(1− e−2ikπ/N ) e2iktπ/N ;

note that the first equation for k = 0 makes use of our stipulation above according to which
y−1 = yN−1; without this stipulation, y−1 would make no sense. Writing ck(z) = ck(∇y) for

the interpolation coefficients in this equation, and also writing ck(y)
def
= ck, this equation shows that

ck(∇y) = (1− e−2ikπ/N )ck(y).

Noting that

|1− e−2ikπ/N |2 = (1− e−2ikπ/N )(1− e2ikπ/N ) = 1− e−2ikπ/N − e2ikπ/N + 1

= 2

(

1− cos
2kπ

N

)

,

we obtain for the spectrums with frequency ν = k/N that that

(28.10) S(ν, {∇yt}) = 2(1− cos 2πν)S(ν, {yt}).

Observe that for ν approaching zero, 1− cos 2πν has order of magnitude ν2;28.3 On the other hand,
on the basis of equation (16.7), one does not even expect that S(ν) → 0 when ν → 0.28.4 The
expectation is that S(ν) → c with some c 6= 0. If S(ν) → ∞, then equation (28.10) suggests that
one would need to difference the time series to remedy this situation.

In trying to estimate the amount of differencing needed in a time series, one can try to estimate
the order of magnitude of S(ν) as ν → 0; call this order ν−2d, meaning that the size of S(ν) is some
bounded multiple of ν−2d. In this case the time series needs to be differenced d times. The case
0 < d < 1 is especially interesting, and it leads to fractional differencing.28.5

28.4 Fractional differencing

The binomial coefficient
(

d
n

)

is defined for any real d and for every integer n ≥ 0 by the equation

(

d

n

)

def
=

n−1
∏

k=0

d− k

n− k
(n ≥ 0).

Here, for n = 0 we have the empty product, which is interpreted as 1. If d is a positive integer and
n ≤ d, then this is the usual binomial coefficient; if d is a positive integer and n > 0, then

(

d
n

)

= 0,

28.3Indeed,

lim
x→0

1− cosx

x2
=

1

2
.

28.4For an observed time series, the frequency ν = k/N can assume only discrete values, so, strictly speaking, ν → 0
does not make sense. In a practical sense, however, saying that S(ν) approaches 0 when ν approaches 0 make sense,
since N is expected to be a large integer.
28.5Calculating the spectrum of an observed time series is fairly inexpensive with the fast Fourier transform discussed
in Section 29.
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since then the factor d−k for n = k is 0. For any real d and for any complex z with |z| < 1, we have

(1 + z)d =

∞
∑

n=0

(

d

n

)

zn.

The radius of convergence of this series is 1. Differencing d times for noninteger d can be interpreted
as replacing the observed time series {yt} with

(I −B)dyt =
∞
∑

n=0

(

d

n

)

(−1)nBnyt =
∞
∑

n=0

(

d

n

)

(−1)nyt−n;

of course, in practice, one cannot take an infinite series here, so one needs to truncate this series at
some point, perhaps at n = 40.

28.5 Slow decay of autocorrelation

In most stationary processes the autocorrelation decays exponentially; that is one expects that that
|γn| = O (e−αn) for some positive α.28.6 A slower decay, such as γn ∼ cn−λ for λ with 0 < λ < 1
and c > 0 implies that the spectrum is singular (i.e., tends to infinity at frequency 0). In fact,
taking c = 1 for the sake of simplicity, the spectrum of a stationary time series with autocorrelation
coefficients γ(n) = n−λ for all n ≥ 0 and λ with 0 < λ < 1 can be written as

(28.11) S(ν) = 1 + 2
∞
∑

n=1

n−λ cos(2nνπ)

according to equation (16.7), First note that the series on the right-hand side is convergent unless ν
is an integer. Indeed, given any positive integer K, we have

K
∑

n=1

cos(2nνπ) =
1

2

(

DK(2νπ)− 1
)

=
1

2

(

sin(2K + 1)νπ

sin νπ
− 1

)

according to (13.7), showing that the absolute values of these sums stay under a bound independent
of K. Hence the Dirichlet convergence criterion (Theorem 28.1) implies that the series on the
right-hand side of equation (28.11) converges unless ν is an integer.

We will see that

(28.12) lim
νց0

ν1−λS(ν) = 2

∫ ∞

0

x−λ cos(2πx) dx.

Indeed, let A be a large positive integer, and consider this integral on the interval [0, A]. It is
important to recall the definition of the Riemann integral for this. The Riemann integral

∫ b

a

f(x) dx

is defined exactly as the Stieltjes integral

∫ b

a

f(x) dg(x)

28.6See footnote 21.3 on p. 82 for the definition of the O(·) notation.
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for g(x) = x. This definition was given in detail in Section 15, so we will not restate the definition
here.

Note that the integral

(28.13)

∫ A

0

x−λ cos(2πx) dx

is a convergent improper integral with a singularity at x = 0, so it not Riemann integrable. It is
Riemann integrable on the interval [ǫ, A] for any ǫ > 0. Yet it will be convenient to approximate it
with Riemann sums. Noting that the integrand is decreasing on [0, 1], the Riemann sums will still
converge to the integral if for ǫ with 0 < ǫ < 1 we take the tags ξn at the right endpoints of the
partition intervals that intersect [0, ǫ].28.7 This can be justified as follows.

On the interval [0, ǫ], the Riemann sum with tags at the right end points of the partition intervals
will be less than the integral. The part of the Riemann sum on the interval [ǫ, A] will approximate
the integral on this part, since the Riemann integral exists there. Making ǫ ց 0 we can see that
the part of the Riemann sum on [0, ǫ] will tend to zero, and so Riemann sum on the whole interval
[0, A] will approximate the integral.

Let ν be a positive real. Writing N = ⌊A/ν⌋ + 1, divide the interval [0, A] into intervals N
intervals of length ν, except that the last interval may be shorter, so that xn = nν for n with
0 ≤ n < N , and xN = A. Pick the tags ξn ∈ [xn−1, xn] for n with 1 ≤ n ≤ N such that ξn = xn.
The norm of the partition

P : 0 = x0 < x1 < x2 < . . . xN = A

is ν. The Riemann sum

N
∑

n=1

ξ−λ
n cos(2πξn) (xn − xn−1)

=

N−1
∑

n=1

N(nν)−λ cos(2πnν) ν +A−λ cos(2πA) (A− xN−1)

= ν1−λ
N−1
∑

n=1

n−λ cos(2πnν) +A−λ cos(2πA)(A− xN−1)

(28.14)

converges to the integral in (28.13) as ν ց 0 Since the 0 ≤ A−xN−1 < ν, the term after the sum on
the right-hand side tends to 0. Making A → ∞, one is tempted to conclude that equation (28.12)
follows.

This argument is, however, not correct. Heuristically, one might be tempted to make this con-
clusion, but a rigorous proof is somewhat delicate. Cauchy might have been forgiven for accepting
such an argument as correct,28.8 We will present a rigorous proof next.

28.6 A rigorous proof of convergence

The conclusion that can be reached by the argument at the end of the last subsection is that

lim
A→∞

lim
νց0

ν1−λ

⌊A/ν⌋
∑

n=1

n−λ cos(2πnν) = 2

∫ ∞

0

x−λ cos(2πx) dx,

28.7All but the last of these partition intervals will entirely be included in [0, ǫ].
28.8Cauchy struggled with understanding the limits of continuous functions. While he played a key role in putting
analysis on solid foundations, he published three articles “proving” that the limit of continuous functions is continuous
– a statement that turns out to be incorrect. See the posting for a discussion.

115

http://fredrickey.info/hm/CalcNotes/CauchyWrgPr.pdf


whereas what we need to show in order to establish (28.12)

(28.15) lim
νց0

lim
A→∞

ν1−λ

⌊A/ν⌋
∑

n=1

n−λ cos(2πnν) = 2

∫ ∞

0

x−λ cos(2πx) dx.

In order to establish the second version, some kind of uniform convergence is needed; it is certainly
not true that the convergence in (28.11) is uniform in ν. What is in fact true is that the inside
limit in (28.15) is uniform. This can be shown by following through the proof of the Dirichlet
convergence criterion (Theorem 28.1), so as to obtain a uniform bound in inequality (28.5). The
fact that we already know by the Dirichlet test that the series (28.11) converges somewhat simplifies
the argument. Using the Dirichlet kernel defined in formula (13.7), we have

(28.16) Dn(2νπ) = 1 + 2
n
∑

k=1

cos 2kνπ =
sin(2n+ 1)νπ

sin νπ
,

where the second equation holds if ν is not an integer (so that the denominator is not zero). Hence,
for any M ≥ 1 we obtain

∞
∑

n=M

n−λ cos(2nνπ) =
1

2

∞
∑

n=M

n−λ
(

Dn(2νπ)−Dn−1(2νπ)
)

= −M
−λ

2
DM−1(2νπ) +

1

2

∞
∑

n=M

(

n−λ − (n+ 1)−λ
)

Dn(2νπ).

Noting that |Dn(2νπ)| ≤ |1/ sin νπ| for any ν (with ν not an integer), it follows that
∣

∣

∣

∣

∣

∞
∑

n=M

n−λ cos(2nνπ)

∣

∣

∣

∣

∣

≤ 1

2 sin νπ

(

M−λ +
∞
∑

n=M

(

n−λ − (n+ 1)−λ
)

)

.

=
M−λ

sin νπ
(0 < ν < 1)

Hence
∣

∣

∣

∣

∣

∣

ν1−λ
∞
∑

n=⌊A/ν⌋+1

n−λ cos(2nνπ)

∣

∣

∣

∣

∣

∣

≤ ν1−λ

(

⌊A/ν⌋+ 1
)−λ

sin νπ

≤ ν1−λ (A/ν)
−λ

sin νπ
≤ A−λ (0 < ν < 1/2);

the third inequality uses the fact that sinx/x ≥ 2/π for x with 0 ≤ x ≤ π/2 (the minimum is reached
for x = π/2, and so ν/ sin νπ ≤ 1/2 for ν with 0 ≤ ν < 1/2. This is sufficient to establish (28.12).

Indeed, to finish the proof of this, let ǫ > 0 be arbitrary, and let A0 be such that for A ≥ A0 and
for ν with 0 < ν < 1/2 we have

∣

∣

∣

∣

∣

∣

ν1−λ
∞
∑

n=⌊A/ν⌋+1

n−λ cos(2nνπ)

∣

∣

∣

∣

∣

∣

≤ ǫ

3
.

Let A1 ≥ A0 be such that
∣

∣

∣

∣

∣

∫ ∞

0

x−λ cos(2πx) dx−
∫ A1

0

x−λ cos(2πx) dx

∣

∣

∣

∣

∣

≤ ǫ

3
,
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where A1 may of course depend on λ; and, given A1, let ν0 > 0 be such that for ν with 0 < ν < ν0,
for the Riemann sums in (28.14) (note that N = ⌊A/ν⌋+ 1 in these sums) we have

∣

∣

∣

∣

∣

∣

∫ A1

0

x−λ cos(2πx) dx− ν1−λ

⌊A1/ν⌋
∑

n=1

n−λ cos(2πnν)

∣

∣

∣

∣

∣

∣

<
ǫ

3
.

Putting all these together, for ν with 0 < ν ≤ ν0 we have
∣

∣

∣

∣

∣

∫ ∞

0

x−λ cos(2πx) dx− ν1−λ
∞
∑

n=1

n−λ cos(2πnν)

∣

∣

∣

∣

∣

<

≤
∣

∣

∣

∣

∣

∫ ∞

0

x−λ cos(2πx) dx−
∫ A1

0

x−λ cos(2πx) dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫ A1

0

x−λ cos(2πx) dx− ν1−λ

⌊A1/ν⌋
∑

n=1

n−λ cos(2πnν)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

ν1−λ

⌊A1/ν⌋
∑

n=1

n−λ cos(2nνπ)− ν1−λ
∞
∑

n=1

n−λ cos(2nνπ)

∣

∣

∣

∣

∣

∣

<
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Since ǫ > 0 was arbitrary, equation (28.12) follows.

28.7 Positivity of the limiting integral

Finally, we will show that the integral on the right-hand side of equation (28.12) is positive. We
have

∫ ∞

0

x−λ cos(2πx) dx =

∞
∑

n=0

∫ n+1

n

x−λ cos(2πx) dx.

=

∞
∑

n=0

∫ 1

0

(x+ n)−λ cos(2πx) dx.

We will show that each of the integrals after the sum is positive; hence the sum is positive. Writing
f(x) = (x+ n)−λ for a fixed n, the function f(x)− f(x+ 1/2) is decreasing, since its derivative

−λ
(

(x+ n)−λ−1 − (x+ n+ 1/2)−λ−1
)

is negative. Hence
(

f(x)− f(1/2 + x)
)

−
(

f(1/2− x)− f(1− x)
)

> 0 (0 < x < 1/4).

Noting that for any x we have

cos 2πx = − cos 2π(1/2 + x) = − cos 2π(1/2− x) = cos 2π(1− x),

we have
∫ 1

0

(x+ n)−λ cos(2πx) dx =

∫ 1

0

f(x) cos(2πx) dx

=

∫ 1/4

0

(

(

f(x)− f(1/2 + x)
)

−
(

f(1/2− x)− f(1− x)
)

)

cos(2πx) dx > 0,
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since both factors in the integrand on the right-hand side are positive, except for being zero at
finitely many points. This shows that the integral in (28.12) is indeed positive.

To conclude, the above considerations show that the time series described at the beginning of
Section 28.5 needs to be differenced fractionally at (1− λ)/2 times.

28.8 Absolute integrability

When approximating the integral on the right-hand side of equation (28.12) we had to deal with
the singularities at 0 and +∞, but we dealt with them in very different ways. When using Riemann
sums to approximate the integrals, we could almost totally ignore the singularity at 0 in that the
only thing we needed to do is to take the tag at the minimum of the function in the partition
interval. On the other hand, we had to exclude the singularity at +∞ by cutting off a neighborhood
of infinity from the interval of integration. The reason for this is the very different nature of the
singularities. At zero, the absolute value of the integrand is integrable (in fact, the integrand near
0 is positive, so it is its own absolute value), while near infinity, the absolute value of the integrand
is not integrable. This makes a big difference in how the integral can be handled; the situation is
similar to the difference between absolutely and conditionally convergent series: it is much easier to
work with an absolutely convergent series than with a conditionally convergent series. For example,
an absolutely convergent series can be rearranged and still have the same sum, while a conditionally
convergent series of reals can be made to diverge to +∞ and to −∞, or given any real number c, it
can be rearranged so as to converge to r (this is a theorem of Dirichlet).

As we discussed above, the Riemann integral have certain disadvantages, and these disadvantages
have been remedied by the Lebesgue integral, discussed above on p. 46 in Subsection 13.4. Lebesgue
integrable functions are such that their absolute values are also integrable in the Lebesgue sense.
Lebesgue integration extends Riemann integration in a way that simplifies the way one works with
integrals, but such a simplification does not seem possible for conditionally convergent integrals such
as the one on the right hand side of equation (28.12).

29 The fast Fourier transform

29.1 The discrete Fourier transform

Given a positive integer N , and a sequence 〈yn : 0 ≤ n < N〉 of complex number, we define its
discrete Fourier transform as the sequence 〈ŷl : 0 ≤ l < N〉, where

(29.1) ŷl =
N−1
∑

n=0

yne
−2ilnπ/N .

According to the discussion in Subsection 14.3, we then have

(29.2) yn =
1

N

N−1
∑

l=0

ŷle
2ilnπ/N ;

see formulas (14.2) and (14.5) especially. The latter formula is also called the inverse discrete
Fourier transform. It is often convenient to extend these sequences to all integers integers by putting
yn+kN = yn and ŷn+kN = ŷn for all n, k ∈ Z; with this extension, the above formulas remain true
for all l and n. These formulas are in complete analogy with the continuous Fourier transform and
its inverse described in equations (20.1) and (20.2).
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29.2 The fast Fourier transform

The fast Fourier transform is a group of algorithms that speeds up the calculation on the discrete
Fourier transform by rearranging the order of operations in equation (29.1). As described by this
equation, the number of multiplications is about N2, since ŷl needs to be computed for all values of l
with 0 ≤ l < N ; in the rearranged version, the number of multiplications is of the order of magnitude
N logN .29.1 This makes the calculation of the discrete Fourier transform fairly inexpensive in most
situations.

In the old days, the time needed to perform a computer algorithms was estimated by the number of
multiplications needed to perform the algorithm, since at the time multiplications were fairly time consuming,
whereas additions were much faster. Perhaps this is still a reasonable way to estimate the time needed for
performing an algorithms, but many things changed in computer technology since then that make this way of
estimating computer time fairly inaccurate: pipelining (the different parts of the processor performing several
multiplications at the same time, each part of the processor working on different stages of the multiplication;
other complex operations can similarly be pipelined), caching (storing frequently used data in a fast and
relatively expensive memory before transferring it to the main memory, and parallel processing (several
different processors – or cores as they are often called) working on different parts of the problem. Often, the
assessment of an algorithm involves suitability for efficient processing using the methods described. For this
reason, it is quite a complicated task to write an efficient linear algebra program; they are packages that can
adapt to different processors; see e.g. BLAS (Basic Linear Algebra Subprograms).

In its simplest incarnation of the fast Fourier transform, the Cooley–Tukey fast Fourier transform
algorithm described by James Cooley and John Tukey in 1965,29.2 assumes that N is a power of 2
and splits up the calculation in equation (29.1) into two parts according as the subscript n is even
or odd:

ŷl =

N/2−1
∑

n=0

y2ne
−2il(2n)π/N + e−2ilπ/N

N/2−1
∑

n=0

y2n+1e
−2il(2n)π/N

= ŷl,even + e−2ilπ/N ŷl,odd.

(29.3)

The calculation uses recursion, calculating ŷl by first calculating ŷl,even and ŷl,odd in a similar way.
Note that these need to be calculated only for l with 0 ≤ l < N/2 since

ŷl,even = ŷl+N/2,even and ŷl,odd = ŷl+N/2,odd.

If N is not a power of 2, one can use 0-padding, i.e., extending the sequence 〈ŷl : 0 ≤ l < N〉
by adding 0s at the end so as to make its length a power of 2. There are variants of the algorithm
that work of sequences for any composite N , and other versions that work when N is prime. In
most cases, the algorithm runs in time cN logN for some positive constant c, but if one completely
wants to avoid 0-padding, there are some exceptional prime values of N , unlikely to be encountered
in practice, for which the algorithm requires N2 multiplications. In most applications, 0-padding
causes no harm.

The inverse discrete Fourier transform described by formula (29.2) can be speeded up the same
way by a slight modificationof the fast Fourier transform; only a sign change (from − to + in the
exponents) is involved.

29.1As always in these notes, log indicates natural logarithm, though it makes no difference in the present context
except that the base of logarithm needs to be greater than 1. This is because of the base conversion formula for
logarithms: we have loga x = logb x/ logb a (a, b > 0, a, b 6= 1, and x > 0).
29.2The algorithm was also described by Gauss in an unpublished manuscript dating back to around 1805.
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29.3 The number of multiplications needed

Assuming N is a power of 2, we will show that the number of multiplications needed to perform the
fast Fourier transform on a sequence of length N so as to calculate all values of ŷl (0 ≤ l < N) is
N log2N . Using induction, assume this is true for every M < N replacing N , where M is a power
of 2. On the right-hand side of (29.3) there is one new multiplication for each value of l (0 ≤ l < N)
amounting to N multiplications. at most (N/2) log2(N/2) multiplications to calculate all values
ŷl,even and at most (N/2) log2(N/2) multiplications to calculate all values of ŷl,odd. Thus, the total
number of multiplications needed is

N + 2(N/2) log2(N/2) = N + 2(N/2)(log2N − 1)

= N +N(log2N − 1) = N log2N.

For N = 1 no multiplications are needed since in that case the only value of y is y0, and we have
ŷ0 = y0.

30 Representation of band-limited functions

Let f be a square integrable function continuous function such that its Fourier transform f̂ is zero
outside a the interval (−π, π).30.1 In the discussion below, we will omit a rigorous discussion of
convergence issues.

In electronic technology, such functions whose Fourier transforms are restricted to a finite interval
are called band-limited. They are very important in signal processing, since, as we will see, they can
be reproduced exactly by sampling at regular time intervals. Band-limited signals can be produced
by analog electronic filters before digital processing (when they can be further filtered). By the
Fourier inversion formula (20.2)

(30.1) f(x) =
1√
2π

∫ π

−π

f̂(y)eixy dy.

Note that f̂ is also square integrable, since the Fourier transform is an isometry according to Sub-
section 20.2. Represent f̂ as a Fourier series on (−π, π) as

(30.2) f̂(x) =

∞
∑

n=−∞

cne
inx,

where

(30.3) cn =
1

2π

∫ π

−π

f̂(x)e−inx dx =
1√
2π
f(−n) (−∞ < n <∞),

where the last equation follows from (30.1). Substituting this into equation (30.2), and then into
equation (30.1) we obtain

f(x) =
1√
2π

∫ π

−π

∞
∑

n=−∞

1√
2π
f(−n) einy eixy dy

=
1

2π

∞
∑

n=−∞

f(−n)
∫ π

−π

ei(x+n)y dy.

(30.4)

30.1We could take any other finite interval want to consider only the simplest case.
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By making the substitution t = i(x+ k)y, where t and y are the variables and x is a parameter, we
have

∫ π

−π

ei(x+n)y dy =
1

i(x+ n)

∫ πi(x+n)

−πi(x+n)

et dt

=
eiπ(x+n) − e−iπ(x+n)

i(x+ n)
=

2 sinπ(x+ n)

x+ n
,

(30.5)

where the last equation follows from the Euler formula (13.10); for x = 0, we take sinx/x = 1 (this
makes the right-hand side 2π in case x + n = 0; in this case, the integrand on the left-hand side is
1, so this indeed gives the correct result). Substituting this into the above formula, we arrive at

f(x) =
1

π

∞
∑

n=−∞

f(−n) sinπ(x+ n)

x+ n
.

Replacing n by −n, one may also write

(30.6) f(x) =
1

π

∞
∑

n=−∞

f(n)
sinπ(x− n)

x− n
.

This formula is called the Whittaker–Shannon interpolation formula30.2

30.1 The Nyquist–Shannon sampling theorem

We can interpret formula (30.6) as follows. In the formula

f̂(x) =
1√
2π

∫ ∞

−∞

f(y)e−ixy dy,

the bandwidth limit ±π corresponds to the value x = ±π, then the exponential eiπy or e−iπy as a
function of y has has a period of 2. Thinking of y as time, this corresponds to the frequency 1/2
per unit time. Then formula formula (30.6) says that if the maximum frequency is 1/2, then the
function f can be perfectly reconstructed by sampling it once at integer times. This explains the
Nyquist frequency described in Subsection 16.2 from a mathematical point of view.

30.2 The Poisson summation formula

Assume |f | is integrable on (−∞,∞), and let

(30.7) g(x) =

∞
∑

k=−∞

f(x+ 2kπ)

The Fourier series of g is

g(x) =
∞
∑

n=−∞

cne
inx,

30.2The formula occurs in the works of Whittaker in 1915, in those of Claude Shannon in 1949, but it occurs even
earlier in the works of E. Borel in 1898 G. H. Hardy also discovered the formula in 1911.
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where

cn =
1

2π

∫ π

−π

g(t)e−int dt (−∞ < n <∞)

according to equations (13.11) and (13.15). For x = 0 these give

g(0) =

∞
∑

n=−∞

cn =
1

2π

∞
∑

n=−∞

∫ π

−π

g(t)e−int dt

=
1

2π

∞
∑

n=−∞

∫ π

−π

∞
∑

k=−∞

f(t+ 2kπ)e−int dt

=
1

2π

∞
∑

n=−∞

∞
∑

k=−∞

∫ π

−π

f(t+ 2kπ)e−in(t+2kπ) dt;

in the last step, we interchanged the integration and the sum, and used the equation e−int =
e−inte2kπ = e−in(t+2kπ) (because e2kπi = 1). In the last integral we can substitute x = t+ 2kπ:

g(0) =
1

2π

∞
∑

n=−∞

∞
∑

k=−∞

∫ (2k+1)π

(2k−1)π

f(x)e−inx dx

=
1

2π

∞
∑

n=−∞

∫ ∞

−∞

f(x)e−inx dx =
1√
2π

∞
∑

n=−∞

f̂(n).

Taking equation (30.7) into account, this gives

(30.8)

∞
∑

n=−∞

f(2πn) =
1√
2π

∞
∑

n=−∞

f̂(n).

This is called the Poisson summation formula. The formula is widely used in number theory, and it
has several important modern generalizations.

30.3 Simple properties of the Fourier transform

In order to extend the Poisson summation formula to more general situations, we need the following
simple properties of the Fourier transform:

Lemma 30.1. Let f be a complex-valued integrable function on R, and let α be a real number. If
g(x) = f(x)eiαx, then ĝ(x) = f̂(x − α), and if h(x) = f(x + α) then ĥ(x) = f̂(x)eiαx. Further, if

k(x) = f(x/λ) with some λ > 0, then k̂(x) = λf̂(λx).

Proof. The proof of these statements consists in simple substitutions in formula (20.1). We have

ĝ(x) =
1√
2π

∫ ∞

−∞

g(y)e−ixy dy =
1√
2π

∫ ∞

−∞

f(y)eiαye−ixy dy

=
1√
2π

∫ ∞

−∞

f(y)e−i(x−α)y dy = f̂(x− α),

and

ĥ(x) =
1√
2π

∫ ∞

−∞

h(y)e−ixy dy =
1√
2π

∫ ∞

−∞

f(y + α)e−ixy dy

=
1√
2π

∫ ∞

−∞

f(t)e−ix(t−α) dt = eiαx
1√
2π

∫ ∞

−∞

f(t)e−ixt dt = eiαxf̂(x);
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here, for the third equation, we used the substitution t = y + α. Finally

k̂(x) =
1√
2π

∫ ∞

−∞

f(y/λ)e−ixy dy =
1√
2π

∫ ∞

−∞

f(t)e−ixλtλ dt = λf̂(λx),

where the second equation was obtained by making the substitution t = y/λ.

Using this Lemma with t replacing α, we can restate the Poisson summation formula (30.8) as

∞
∑

n=−∞

f(2πn)e2iπnt =
1√
2π

∞
∑

n=−∞

f̂(n− t),

and as
∞
∑

n=−∞

f(2πn+ t) =
1√
2π

∞
∑

n=−∞

f̂(n)eint

for any real t. Using the part of the lemma for the Fourier transform of k(x), we can also make
a scale change in these formulas; for example, with λ = 2π, the former of these formulas can be
rewritten as

∞
∑

n=−∞

f(n)e2πint =
√
2π

∞
∑

n=−∞

f̂(2π(n− t)).

Restating this with x = −2πt, we obtain

(30.9)
∞
∑

n=−∞

f(n)e−inx =
√
2π

∞
∑

n=−∞

f̂(2πn+ x).

30.4 Aliasing

Equation (30.9) can also be written as

(30.10)
∞
∑

n=−∞

f̂(x+ 2πn) =
1√
2π

∞
∑

n=−∞

f(n)e−inx =
∞
∑

n=−∞

1√
2π
f(−n)einx

If we assume that f̂(x) = 0 for |x| ≥ π, then this equation becomes identical to what is expressed by
equations (30.2) and (30.3) together.30.3 Recall that in those equations this assumption was indeed
make. Our aim here is to study how f can be reconstructed from its sampled values at integer
arguments, i.e., from the values f(n) for n ∈ Z.

From this point on, we can mimic the derivation of formula (30.6), but the result we obtain will
be different. Write

(30.11) G(x) =

∞
∑

n=−∞

f̂(x+ 2πn)

and write

(30.12) F (x) =
1√
2π

∫ π

−π

G(y)eixy dy.

30.3In the former of these two equations, we assumed that x is in the interval (−π, π). It is unnecessary to make this
assumption here, since both sides of equation (30.10) are periodic with period 2π.
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Note that if f̂(x) = 0 for |x| ≥ π then F (x) = f(x) according to equation (30.1). Observing that

G(y) =

∞
∑

n=−∞

1√
2π
f(−n)einy

in view of equation (30.10), and poceeding similarly as in equation (30.4), we obtain

F (x) =
1√
2π

∫ π

−π

G(y)eixy dy. =
1√
2π

∫ π

−π

∞
∑

n=−∞

1√
2π
f(−n) einy eixy dy

=
1

2π

∞
∑

n=−∞

f(−n)
∫ π

−π

ei(x+n)y dy =
1

π

∞
∑

n=−∞

f(−n) sinπ(x+ n)

x+ n
,

where the last equation used formula (30.5). Replacing n by −n in the summation on the right-hand
side, we obtain an equation similar to (30.6):

F (x) =
1

π

∞
∑

n=−∞

f(n)
sinπ(x− n)

x− n
.

The problem is that F (x) is usually different from f(x).
Indeed, according to formulas (30.11) and (30.12) we have

F (x) =
1√
2π

∫ π

−π

∞
∑

n=−∞

f̂(y + 2πn)eixy dy =
1√
2π

∞
∑

n=−∞

∫ π

−π

f̂(y + 2πn)eixy dy.

According to the Fourier inversion formula (20.2) we have

f(x) =
1√
2π

∫ ∞

−∞

f̂(t)eixt dt =
1√
2π

∞
∑

n=−∞

∫ π+2nπ

−π+2nπ

f̂(t)eixt dt

=
1√
2π

∞
∑

n=−∞

∫ π

−π

f̂(y + 2πn)eix(y+2πn) dy

=
1√
2π

∞
∑

n=−∞

e2iπxn
∫ π

−π

f̂(y + 2πn)eix(y+2πn) dy;

to obtain the third equation, we made the substitution y = t− 2nπ. Hence

F (x)− f(x) =
1√
2π

∞
∑

n=−∞

(1− e2iπxn)

∫ π

−π

f̂(y + 2πn)eixy dy.

Here the term for n = 0 is 0, but the other terms are not, and they represent the distortions added
to the original signal

30.5 Anti-aliasing filter

Aliasing is a real issue for engineering both in image and in audio processing. Anti-aliasing filters are
used to eliminate frequencies exceeding the Nyquist frequency. In audio processing, an analog filter
may be applied to the incoming audio signal before analog-to-digital conversion; another filter may
be used to prevent the distortions in the out-of-band frequencies to enter the analog signal. Digital
cameras also use anti-aliasing filters. These can use various techniques, such as birefringent30.4

30.4As in by-refringent, i.e., doubly refracting materials. These are materials that have refractive index depending on
the polarization and the direction of the incoming light.
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materials that spread out the image of a single point to several (usually four) nearby points, thereby
cutting down on high spacial frequencies. Other techniques involve vibrating the optical sensor so as
to blur features of the image exceeding the Nyquist frequency (image processing is similar to audio
processing, but the image is represented in two spacial directions).

31 Solutions to problems

Solution of Problem 2.1. Let X = (X1, X2, . . . Xn)
T a random column vector; without loss of

generality, we may assume that E(Xk) = 0 for each k with 1 ≤ k ≤ n. Writing A = (aij) for its
covariance matrix, we have

aij = E(XiXj).

Now let x = (x1, x2, . . . , xn)
T be an arbitrary n-dimensional column vector. We have

xTAx =

n
∑

i=1

n
∑

j=1

xiaijxj =

n
∑

i=1

n
∑

j=1

xi E(XiXj)xj = E
(

n
∑

i=1

n
∑

j=1

xiXi xjXj

)

= E

(

(

n
∑

i=1

xiXi

)2
)

≥ 0.

This shows that A is indeed positive semidefinite.

Note. One can formulate this argument also in matrix form. Assuming, as before, that E(X) =
0, the covariance matrix of X is A = E(XXT ). Hence, given an arbitrary n-dimensional column
vector x, we have

xTAx = xT E(XXT )x = E(xTXXTx) = E
(

(xTX)(XTx)
)

= E
(

(XTx)T (XTx)
)

.

Note that XTx is the product of a 1× n matrix and an n× 1 matrix, so it is a 1× 1 matrix, i.e., it
is a scalar. Hence it is its own transpose; that is (XTx)T = XTx. Thus,

xTAx = E
(

(XTx)T (XTx)
)

= E
(

(XTx)(XTx)
)

= E
(

(XTx)2
)

≥ 0,

as we wanted to show.

Solution of Problem 4.1. The characteristic equation of the recurrence equation yt = yt−1+yt−2

is 1 = ζ + ζ2, i.e., is ζ2 + ζ − 1 = 0. The solutions of this equation are

ζ1 =
−1 +

√
5

2
=

(

1 +
√
5

2

)−1

and ζ2 =
−1−

√
5

2
=

(

1−
√
5

2

)−1

;

the easiest way to see these equations is by noting that ζ1ζ2 = −1. Thus, the general solution of the
above recurrence equation is

yt = C1

(

1 +
√
5

2

)t

+ C2

(

1−
√
5

2

)t

.

The initial conditions y0 = 0 and y1 = 1 lead to the equations

C1 + C2 = 0

125



and

C1
1 +

√
5

2
+ C2

1−
√
5

2
= 1.

It is easy to solve these equations. Multiplying the first equation by 1/2 and subtracting it from the
second equation, we obtain √

5

2
(C1 − C2) = 1,

that is

C1 − C2 =
2√
5
,

Adding the first equation to this, we obtain 2C1 = 2/
√
5, or else C1 = 1/

√
5. Substituting this into

the first equation, we obtain C2 = −1/
√
5. With these values for C1 and C2, the formula for yt gives

yt =
1√
5

(

1 +
√
5

2

)t

− 1√
5

(

1−
√
5

2

)t

.

Solution of Problem 4.2. The difference operator

(B − 3)3

will lower the degree of the polynomial in the first term to 0 (i.e., it will change the term into c · 3−t

with a nonzero c), while it will not change the degrees of the other polynomials. The difference
operator

(B − 2)5

will annihilate the second term, while it will not change the degrees of the polynomials in the other
terms. Finally, the difference operator

(B − 5)3

will annihilate the third term, while it will not change the degrees of the polynomials Hence the
product of these differential operators,

(B − 3)3(B − 2)5(B − 5)3

will change the first term into c · 3−t with a nonzero c, while it will annihilate the second and the
third terms.

This argument can be used to show that if

c1t
3 · 3−t + c2t

4 · 2−t + c3t
2 · 5−t ≡ 0,

then we must have c1 = 0. Similar arguments can be used to show that we must also have c2 = 0
and c3 = 0; hence the terms t3 · 3−t, t4 · 2−t, and t2 · 5−t are linearly independent.

Solution of Problem 5.1. Let A be the event A = (X 6= 0); further, let A1 = (X ≥ 1), and for
n > 1 let An =

(

1/(n− 1) > X ≥ 1/n
)

. We have

A =

∞
⋃

n=1

An.
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As the events Am ∩An = 0 if m 6= n, this implies that

P(A) =

∞
∑

n=1

P(An).

As P(A) > 0, there is an n ≥ 1 such that P(An) > 0. With this n we have

E(X) ≥ P(An) ·
1

n
> 0.

Solution of Problem 5.2. We may assume that P(X 6= 0) > 0, since otherwise E(XY ) = 0, so
the inequality to be proved clearly holds. Then, according to Problem 5.1, E(X2) > 0. Let λ be an
arbitrary real number. Then, again by Problem 5.1, the equation

E
(

(λX + Y )2
)

= 0

can hold only if λX + Y = 0 almost surely. As X 6= 0 with positive probability, this equation can
only hold for a single value of λ.

Now,
E
(

(λX + Y )2
)

= λ2 E(X2) + 2λE(XY ) + E(Y 2).

Considering
λ2 E(X2) + 2λE(XY ) + E(Y 2) = 0

as a quadratic equation for λ with the various expectation as coefficients,31.1 this equation has at
most one real solution, Hence its discriminant cannot be positive. That is,

(

2E(XY )
)2 − 4E(X2) E(Y 2) ≤ 0.

Rearranging this, we obtain the inequality to be proved.

Solution of Problem 5.3. We have

Corr(X,Y ) =
E
(

(

X − E(X)
)(

Y − E(Y )
)

)

√

E
(

(

X − E(X)
)2
)

E
(

(

Y − E(Y )
)2
)

.

This is between −1 and 1 in view of Schwarz’s inquality (cf. Problem 5.2).

Solution of Problem 7.1. These equations, properly arranged, give us a way to evaluate the
coefficients ψn,t and the moments E(e2t ). Let t ≥ 0 and n with 0 ≤ n ≤ t be integers, and assume
ψn′,t′ have been calculated for all pairs (n′, t′) such that 0 ≤ t′ < t and 0 ≤ n′ ≤ t′ or t′ = t and
n < n′ ≤ t; also assume that E(e2k) has been calculated for all k with 0 ≤ k < t.

We can start out this calculation in case t = 0 by noting that

E(e20) = E(Y 2
0 )

according to equation (7.10) with t = 0. If t > 0 then ψt,t can be calculated from equation (7.11)
with n = t, since the only term on the right-hand side involves l = 0, and φn−l,n = φ0,0 = 1 in this
case according to equation (7.7). That is,

ψt,t = E(YtY0)/E(e
2
0).

31.1This equation is a genuine quadratic equation, since E(X2) 6= 0, that is, the coefficient of λ2 is not zero, according
to what we said above.
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If 0 < n < t then ψn,t can be calculated from the same equation (7.11), since for all the coefficients
all the quantities on the right-hand side are known except for the ψn,t, which occurs for l = t−n as
part of the term

ψ0,t−nψn,t E(e
2
t−n) = ψn,t E(e

2
t−n);

the equation here holds in view of equation (7.7).31.2 That is,

ψn,t =
(

E(e2t−n)
)−1
(

E(YtYt−n)−
t−n−1
∑

l=0

ψt−n−l,t−nψt−l,t E(e
2
l ).
)

Finally, for n = 0 we have ψn,t = 1 according to equation (7.7).
As the final step, we can use equation (7.10) to evaluate E(e2t ):

E(e2t ) = E(Y 2
t )−

t−1
∑

l=0

ψ2
t−l,t E(e

2
l ).

Solution of Problem 13.1. We have

Dn(t) sin
1

2
t = sin

1

2
t+

n
∑

k=1

2 cos kt sin
1

2
t

= sin
1

2
t+

n
∑

k=1

(

sin

(

k +
1

2

)

t− sin

(

k − 1

2

)

t

)

= sin

(

n+
1

2

)

t ;

the second equation uses the fourth equation in (13.3), and the third equation results by cancela-
tions.31.3

Solution of Problem 13.2. According to equations (13.4) we have

(31.1) an =
1

π

∫ π

−π

x cosnx dx = 0

for n ≥ 0. The equation here holds since the integrand is an odd function31.4 so the integral on
[−π, 0] cancels the integral on [0, π]. Further, by integration by parts we obtain

(31.2)

bn =
1

π

∫ π

−π

x sinnx dx = − 1

π
x
cosnx

n

∣

∣

∣

x=π

x=−π
+

1

π

∫ π

−π

cosnx

n
dx

= − 1

π
x
cosnx

n

∣

∣

∣

x=π

x=−π
+

1

π

sinnx

n2

∣

∣

∣

x=π

x=−π
= −2(−1)n

n
;

31.2For calculating ψn,t we need to assume that E(e2t−n) 6= 0. However, in the case of E(et−n) = 0 we do not need
to do any calculations, since in this case et−n = 0 almost surely according to Problem 5.1, and so ψn,t occurs with
coefficient 0 or almost surely 0 in the above equations, and so we can take ψn,t to be anything (the best is to take
ψn,t = 0 in this case.
31.3That is, the sum telescopes, or collapses. A telescoping or collapsing sum is a sum of the type

n
∑

k=1

(ak+1 − ak) = (a2 − a1) + (a3 − a2) + (a4 − a3) + . . .+ (an+1 − an) = an+1 − a1.

31.4The function f is odd if f(−x) = −f(x).
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the last equation holds because cosnπ = (−1)n and sinnπ = 0 for integer n. Hence the Fourier
series of f(x) is

−
∞
∑

n=1

2(−1)n

n
sinnx.

Solution of Problem 13.3. With f(x) as in Problem 13.2, we have

1

π

∫ π

−π

(

f(x)
)2
dx =

1

π

∫ π

−π

x2 dx =
1

π

2π3

3
=

2π2

3
.

Further, in Problem 13.2 an and bn are given by equations (31.1) and (31.2); using these equations,
we have

|a0|2 +
∞
∑

n=1

(

|an|2 + |bn|2
)

=

∞
∑

n=1

4

n2
.

According to equation (13.17), the right-hand sides of the last two displayed equations are equal,
establishing equation (13.18).

Solution of Problem 14.1. Assume the polynomials P1(z) and P2(z) are different. Then

P (z)
def
= P2(z)− P1(z)

is a nonzero polynomial of degree less than N such that P (zk) = 0 for all k with 1 ≤ k ≤ N . Since
the numbers zk are distinct, this is a contradiction, since a nonzero polynomial of degree less than N
cannot have N zeros.

Solution of Problem 15.1. Let

P : −1 = x0 < x1 < x2 < . . . < xn = 1

be a partition and let ξi ∈ [xi−1, xi] be a tag for each i with 1 ≤ i ≤ n. Let k = k(P ) with 1 ≤ k ≤ n
be such that xi < 0 for i < k and xi ≥ 0 for i ≥ k; clearly, k depends on the partition P . Then

g(xi)− g(xi−1) =

{

1 if i = k,

0 if i 6= k.
(1 ≤ i ≤ n).

Hence

S(P ) =

n
∑

i=1

f(ξi)
(

g(xi)− g(xi−1)
)

= f(ξk) = f(ξk(P ));

S(P ) depends on also on the tags, not just on P , but this dependence is not indicated. Making
‖P‖ → 0, we have ξk(P ) → 0. Since f is continuous at 0, we have

∫ 1

−1

f(x) dg(x) = lim
‖P‖→0

S(P ) = lim
‖P‖→0

f(ξk(P )) = f(0).

Solution of Problem 15.2. Formula (15.3) can be written with a sum instead of a Stieltjes
integral as

(31.3) f̃(x) =
1

N

N−1
∑

k=0

f(xk)DM (x− xk).
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Solution of Problem 15.3. Instead of substituting the coefficients an and bn from equations
(13.4) into equation (13.5), we now substitute equations (14.13) into (14.14), the calculations given
in formula (13.8) can be repeated with only minor changes:

(31.4)

f(xn) =
1

2π

∫ π

−π

f(y) dωN (y) +
1

π

M
∑

k=1

∫ π

−π

f(y)(cos ky cos kxn + sin ky sin kxn) dωN (y)

=
1

2π

∫ π

−π

f(y)
(

1 + 2

M
∑

k=1

cos k(y − xn)
)

dωN (y) =
1

2π

∫ π

−π

f(y)DM (y − xn) dωN (y).

It is probably best to stop at this point, and not pursue the rest of the calculations in formula (13.8)
since the next step is a change of variable in the integral, and to do this, we would need to use
Theorem 15.3, and the expression we obtain that way would result in some complications. Since
D(x) = D(−x) for all x, the above equation can also be written as

f(xn) =
1

2π

∫ π

−π

f(y)DM (xn − y) dωN (y).

This establishes equation (15.4).

Solution of Problem 15.4. Let N = 2M , and define bM in analogy with the second equation
in (14.13) as

bM
def
=

2

N

N−1
∑

n=0

f(xn) sinM(xn − x0)

According to equation (14.1), we have M(xn − x0) = nπ, and so equation (14.9) implies

bM =
2

N

N−1
∑

n=0

f(xn) sinnπ = 0

since sinnπ = 0 for all integers n, we can rewrite formula (14.18) as

f(xn) =
a0
2

+

M−1
∑

k=1

(ak cos kxn + bk sin kxn)

+
1

2

(

aM cos
(

M(xn − x0)
)

+ bM sin
(

M(xn − x0)
)

)

(0 ≤ n < N).

Then, similarly as in equation (31.4) we have

f(xn) =
1

2π

∫ π

−π

f(y) dωN (y) +
1

π

M−1
∑

k=1

∫ π

−π

f(y)(cos ky cos kxn + sin ky sin kxn) dωN (y)

+
1

2π

∫ π

−π

f(y)
(

cos
(

M(y − x0)
)

cosM(xn − x0)

+ sinM(y − x0) sin
(

M(xn − x0)
)

)

dωN (y)

=
1

2π

∫ π

−π

f(y)
(

1 + 2
M−1
∑

k=1

cos k(y − xn) + cosM(y − xn)
)

dωN (y)
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This formula can be written as

f(xn) =
1

2π

∫ π

−π

f(y)Dmod
M (y − xn) dωN (y),

where

Dmod
M (t)

def
= 1 + 2

M−1
∑

k=1

cos kt+ cosMt = DM−1(t) + cosMt

is the modified Dirichlet kernel.31.5

Solution of Problem 17.1. We will only consider the case when V is an inner product space
over C, since the proof for that case also works when V is an inner product space over R, except
that in this latter case complex conjugation has no effect. The proof is similar to the one given
in the solution of Problem 5.2, except that taking complex inner products causes minor additional
complications.

We may assume that 〈x, y〉 6= 0, since otherwise the inequality to be proved clearly holds; then
we also have x 6= 0. Let λ be a complex number. Then, by Clause (a) of Definition 17.1 of inner
product, we have

〈λx+ y, λx+ y〉 ≥ 0,

and equation here holds only if λx + y = 0. Since we assumed that x 6= 0, this equation can only
hold for a single value of λ if at all. Hence

(31.5)

0 ≤ 〈λx+ y, λx+ y〉 = 〈λx, λx〉+ 〈λx, y〉+ 〈y, λx〉+ 〈y, y〉
= λ∗λ〈x, x〉+ λ∗〈x, y〉+ λ〈y, x〉+ 〈y, y〉
= |λ|2〈x, x〉+ 2ℜ

(

λ〈x, y〉∗
)

+ 〈y, y〉;

the third equation holds since λ∗λ = |λ|2, and, with z = λ〈y, x〉 = λ〈x, y〉∗, we have z∗ = λ∗〈x, y〉
according to Clause (b) of Definition 17.1, and z∗ + z = 2ℜz, where the ℜz denotes the real part
of z. Let

λ0 =
|〈x, y〉|
〈x, y〉∗ ,

and put λ = ρλ0, where ρ is an arbitrary real (recall that we assumed that 〈x, y〉 6= 0). Then |λ0| = 1
and so |λ|2 = ρ2. Further, the expression

λ〈x, y〉∗ = ρλ0〈x, y〉∗ = ρ|〈x, y〉|

is real, and so ℜ
(

λ〈x, y〉∗
)

= ρ|〈x, y〉|. Thus, inequality (31.5) becomes

(31.6) ρ2〈x, x〉+ 2ρ|〈x, y〉|+ 〈y, y〉 ≥ 0.

According to what we said about the former inequality, we have equality here for at most one real
value of ρ.31.6 Hence the equation

ρ2〈x, x〉+ 2ρ|〈x, y〉|+ 〈y, y〉 = 0.

31.5The modified Dirichlet kernel is often denoted as D∗
M (t); we avoided this notation, since we use the asterisk to

denote complex conjugate.
31.6Saying that ρ is real is important here, since this inequality does not even have to hold if ρ is not real. This
inequality is a consequence of inequality (31.5) only for real ρ. This is because the equation ℜλ〈x, y〉∗ = ρ|〈x, y〉|
holds only for real ρ.
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is a quadratic equation for ρ with real coefficients (recall that 〈x, x〉 6= 0 by Clause (a) of Definition
17.1 of inner product, since x 6= 0). that has at most one real solution. Hence its discriminant
cannot be positive. That is,

(

2〈x, y〉
)2 − 4〈x, x〉〈y, y〉 ≤ 0.

Rearranging this, we obtain the inequality to be proved.

This solution can be greatly shortened by taking

λ = −
|〈x, y〉|2

〈x, x〉〈x, y〉∗
= −

〈x, y〉〈x, y〉∗

〈x, x〉〈x, y〉∗
= −

〈x, y〉

〈x, x〉

in inequality (31.5). Indeed, this choice corresponds to the choice

ρ = −
|〈x, y〉|

〈x, x〉
,

which is the value of ρ for which the left-hand side of inequality (31.6) assumes its minimum. Such a

shortening is, however, no real simplification, since it is achieved by skipping the explanation why this

choice of λ is taken.

Solution of Problem 17.2. As in the solution of Problem 17.1, we assume that V is an inner
product space over C. We have

(‖x‖+ ‖y‖)2 = ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 ≥ 〈x, x〉+ 2|〈x, y〉|+ 〈y, y〉
≥ 〈x, x〉+ 2ℜ(〈x, y〉) + 〈y, y〉 = 〈x, x〉+ 〈x, y〉+ 〈x, y〉∗ + 〈y, y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = 〈x+ y, x+ y〉 = ‖x+ y‖2;

here the first inequality follows from Schwarz’s inequality, established in the solution of Problem 17.1.

Solution of Problem 17.3. We have

lim
n→∞

∣

∣〈g, fn − f〉
∣

∣ ≤ lim
n→∞

(‖g‖ ‖fn − f‖)1/2

according to Schwarz’s inequality. The limit on the right is 0 in view of our assumptions. This
establishes the assertion to be proved.

Solution of Problem 17.4. We need to show that 〈·, ·〉 satisfies Clause (b) in Definition 17.1,
and that it satisfies Clause (c) also for complex α in the same definition. We can see the former as
follows:

〈g, f〉 = 〈g, f〉R + i〈ig, f〉R = 〈f, g〉R + i〈f, ig〉R
= 〈f, g〉R + i〈if, i2g〉R = 〈f, g〉R + i〈if,−g〉R
= 〈f, g〉R − i〈if, g〉R =

(

〈f, g〉R + i〈if, g〉R
)∗

= 〈f, g〉∗,

where the third equation holds according to equation (17.12). To see the latter, it is enough to show
that

〈f, ig〉 = i〈f, g〉.
Indeed, we have

〈f, ig〉 = 〈f, ig〉R + i〈if, ig〉R = 〈if, i2g〉R + i〈i2f, i2g〉R
= 〈if,−g〉R + i〈−f,−g〉R = −〈if, g〉R + i〈f, g〉R
= i
(

i〈if, g〉R + 〈f, g〉R
)

= i〈f, g〉,
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where the second equation holds according to equation (17.12).

Solution of Problem 17.5. According to Minkowski’s inequality (Clause (c) of Definition 17.2)
we have

‖f‖ = ‖(f − g) + g‖ ≤ ‖f − g‖+ ‖g‖,
and so

‖f‖ − ‖g‖ ≤ ‖f − g‖.
Similarly,

‖g‖ − ‖f‖ ≤ ‖g − f‖ = ‖f − g‖.
Putting the last two inequalities together, inequality (17.14) follows.

Solution of Problem 17.6. According to equation (17.14), we have

|‖fn‖ − ‖f‖| ≤ ‖fn − f‖ → 0,

which is what we wanted to show.

Solution of Problem 20.1. We have

(31.7)

|f + g|2 − |f − g|2 = (f + g)∗(f + g)− (f − g)∗(f − g)

= (f∗ + g∗)(f + g)− (f∗ − g∗)(f − g)

= (f∗f + f∗g + g∗f + g∗g)− (f∗f − f∗g − g∗f + g∗g) = 2f∗g + 2g∗f.

Using this with if replacing f we obtain

|if + g|2 − |if − g|2 = −2if∗g + 2g∗if.

Multiplying the second equation by i and adding the resulting equations, we obtain equation (20.9).

Solution of Problem 20.2. Similarly to equation (31.7), we have

‖f + g‖2 − ‖f − g‖2 = 〈f + g, f + g〉 − 〈f − g, f − g〉
=
(

〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉
)

−
(

〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉
)

= 2〈f, g〉+ 2〈g, f〉.

Using this with if replacing f , we obtain

‖if + g‖2 − ‖if − g‖2 = 2〈if, g〉+ 2〈g, if〉 = −2i〈f, g〉+ 2i〈g, f〉.

Multiplying the second equation by i and adding the resulting equations, we obtain equation (20.12).

Solution of Problem 20.3. The necessity of equation (20.13) for the norm ‖ · ‖ to be a norm
induced by a real- or complex-valued inner product on a vector space V over R or C can be easily
established. Indeed, assuming that

‖f‖2 = 〈f, f〉 for all f ∈ V

for a real- or complex-valued inner product, for all f, g ∈ V we have

‖f + g‖2 + ‖f − g‖2 = 〈f + g, g + f〉 − 〈f − g, g − f〉
=
(

〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉
)

+
(

〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉
)

= 2〈f, f〉+ 2〈g, g〉 = 2‖f‖2 + 2‖g‖2.
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To show that equation (20.13) is sufficient for ‖.‖ to be induced by an inner product in case V
is a normed vector space over R, define a putative inner product as

(31.8) 〈f, g〉 def
=

1

4

(

‖f + g‖2 − ‖f − g‖2
)

for all f, g ∈ V.

It is easy to see that we then have 〈f, f〉 = ‖f‖2, so if 〈·, ·〉 is an inner product, then it induces the
norm ‖ · ‖. We need to show that 〈·, ·〉 is indeed an inner product, i.e., that it satisfies the clauses
in Definition 17.1. This is clear for Clauses (a) and (b), the latter since 〈·, ·〉 is real valued and
symmetric. Next, we will establish Clause (d).

To this end, we will first show that

(31.9) 〈f, g〉+ 〈f, h〉 = 1

2
〈2f, g + h〉.

We have

〈f, g〉+ 〈f, h〉 = 1

4

(

‖f + g‖2 − ‖f − g‖2
)

+
1

4

(

‖f + h‖2 − ‖f − h‖2
)

=
1

4

(

‖f + g‖2 + ‖f + h‖2
)

− 1

4

(

‖f − g‖2 + ‖f − h‖2
)

Using equation (20.13), the right-hand side becomes

1

8

(

‖(f + g) + (f + h)‖2 + ‖(f + g)− (f + h)‖2
)

− 1

8

(

‖(f − g) + (f − h)‖2 + ‖(f − g)− (f − h)‖2
)

=
1

8

(

‖2f + g + h‖2 + ‖g − h‖2
)

− 1

8

(

‖2f − g − h‖2 + ‖ − (g − h)‖2
)

=
1

8

(

‖2f + (g + h)‖2 − ‖2f − (g − h)‖2
)

=
1

2
〈2f, g + h〉,

where the last equation follows from equation (31.8). This verifies equation (31.9).
Now, it is easy to see from equation (31.8) that 〈f, 0〉 = 0. Hence

〈f, g〉 = 〈f, g〉+ 〈f, 0〉 = 1

2
〈2f, g〉,

where the last equality holds by equation (31.9). Putting this together with equation (31.9), we
obtain

(31.10) 〈f, g〉+ 〈f, h〉 = 〈f, g + h〉,

which establishes Clause (d) in Definition 17.1.
By repeated addition, equation (31.10) implies that

(31.11) 〈f, αg〉 = α〈f, g〉.

for every positive integer α. As

〈f, g〉+ 〈f,−g〉 = 〈f, 0〉 = 0,
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this equation also follows for all negative integers n. Hence we can conclude that

〈f, g〉 = 1

α

〈

f,
1

α
g

〉

for all nonzero integers α by replacing g with (1/α)g in equation (31.11). Therefore, we can conclude
equation (31.11) for all rational α.

To verify equation (31.11) for a given irrational α, let αn be a sequence of rationals such that
αn → α. Then we have

lim
n→∞

‖(αn − α)g‖ = lim
n→∞

|αn − α| ‖g‖ = 0.

Hence, using equation (31.11) for rational αn replacing α, we have

α〈f, g〉 = lim
n→∞

αn〈f, g〉 = lim
n→∞

〈f, αng〉 = lim
n→∞

1

4

(

‖f + αng‖2 − ‖f − αng‖2
)

=
1

4

(

‖f + αg‖2 − ‖f − αg‖2
)

= 〈f, αg〉;

here the third and fifth equations hold according to equation (31.8), and the fourth equation holds
according to equation (17.15). Thus equation (31.11) follows also for irrational α. This establishes
Clause (c) of Definition 17.1, completing the proof that 〈·, ·〉 is a real-valued inner product on V
over R.

Solution of Problem 20.4. The necessity of equation (20.13) was already established in the
solution of Problem 20.3. Assuming that this equation is satisfied and considering V as a normed
vector space over R, it also follows from (the solution of) Problem 20.3. that there is an inner
product 〈·, ·〉R satisfying equation (31.8). That is,

〈f, g〉R =
1

4

(

‖f + g‖2 − ‖f − g‖2
)

for all f, g ∈ V.

As ‖if‖ = |i|‖f‖ = ‖f‖ for all f ∈ V , this equation implies that

〈f, g〉R = 〈if, ig〉R for all f, g ∈ V.

Hence 〈·, ·〉R can be extended to a complex-valued inner product according to Problem 17.4.

Solution of Problem 20.5 Using equation (20.1), we have

f̂(x) =
1√
2π

∫ ∞

−∞

f(y)e−ixy dy,=
1√
2π

∫ ∞

−∞

e−α2y2

e−ixy dy

=
1√
2π

∫ ∞

−∞

e−α2y2−ixy dy =
1√
2π

∫ ∞

−∞

e−
(

αy−ix/(2α)
)2

−x2/(2α)2 dy

= e−x2/(2α)2 1√
2π

∫ ∞

−∞

e−
(

αy−ix/(2α)
)2

dy =
1

α
e−x2/(2α)2 1√

2π

∫ ∞

−∞

e−t2 dt;

one can think of the last step here as using the substitution t = αy− ix/(2α) where y and t are the
variables and x and α are parameters, but for a rigorous justification one needs to use line integrals
in the complex plane. The integral on the right-hand side is

√
π according to equation (2.3); hence

f̂(x) =
1

α
√
2
e−x2/(2α)2 .
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