
TOTALLY BOUNDED SPACES1

Our goal here is to give a characterization of compact metric spaces. To this end we introduce the following
concept.

Definition. The metric space (E, d) is called totally bounded if for every ǫ > 0 it can be covered by finitely

many closed balls of radius ǫ.

It will be convenient, but not essential, that we said closed balls above, since, clearly, if E can be covered
by finitely many closed balls of radius ǫ/2, then the open balls with the same center and radius ǫ will also
cover E. One can also observe that if (E, d) is totally bounded and S ⊂ E, then the subspace (S, d) is also
totally bounded. This is almost obvious, but there is the minor hitch: if we cover E by finitely many closed
balls of radius ǫ, then we may not be able use these same closed balls to cover S, since the centers of these
closed balls may not all be in S, and so they will not be closed balls in (S, d). Cover instead E by finitely
many closed balls of radius ǫ/2, then take only those balls B for which B ∩ S 6= ∅, take p ∈ B ∩ S, and
replace B with a closed ball B′ in S with center p and radius ǫ. As B ∩ S ⊂ B′, it is clear that these new
closed balls will cover S.

A space metric space is called bounded if it can be included in a single open ball. It is clear that a totally
bounded space is also bounded, since finitely many closed balls can always be covered by a single open ball; the
converse is, however, not true. For any integer n ≥ 1 let Rn be the set {(x1, . . . , xn) : xi ∈ R for 1 ≤ i ≤ n};

for x = (x1, . . . , xn) and x = (x1, . . . , xn) write d(x,y) =
(
∑n

i=1
(xi − yi)

2
)1/2

. Then one can show that
(Rn, d) is a metric space (see Rosenlicht [1, pp. 34–36]); this space is called the n-dimensional Euclidean

space. It is easy to show that any bounded subspace of the n-dimensional Euclidean space is totally bounded
(see [1, p. 57]). Since this space is also complete (this is easy to conclude from the completeness of R; cf.
[1, p. 53]), it follows from the Theorem below that any closed and bounded subspace of the n-dimensional
Euclidean space is compact.

The space l2 is defined as the pair (E, d) where E = {(x1, x2, . . . ) : xi ∈ R for i ≥ 1 and
∑

∞

i=1
x2

i <

+∞} and the distance function d is defined as d(x,y) =
(
∑

∞

i=1
(xi − yi)

2
)1/2

for x = (x1, x2, . . . ) and

y = (y1, y2, . . . ) in E. It can be shown that l2 is a complete metric space, and that no closed ball of positive
radius in l2 is totally bounded.

We will need a few more concepts.

Definition. The metric space is called sequentially compact if every sequence in it has a convergent subse-

quence.

Definition. Let (E, d) be a metric space and let p ∈ E and S ⊂ E. We say that p is a cluster point of S if

every open ball with center p in E contains infinitely many elements of S.

Observe that we can equivalently say that p is a cluster point of S if every open ball with center p contains
at least one element of S different from p. Indeed, if the open ball with center p were to contain only finitely
many elements of S, all these points, except p, would be excluded from an open ball with center p and an
appropriately smaller radius. The following result is simple.

Lemma. Let (E, d) be a metric space, and let S and T be sets such that T ⊂ S ⊂ E, S is compact, and T
is infinite. Then T has a cluster point in S.

Proof. Assume, on the contrary, that no point p ∈ S is a cluster point of T . For each p ∈ S we can then
take an open ball Bp with center p such that Bp ∩ T is finite. We have

S ⊂
⋃

p∈S

Bp.
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Typeset by AMS-TEX

1



That is, these open balls cover S. By the compactness of S, there are finitely many among these open balls
that also cover S. In other words, there is a finite set S′ ⊂ S such that

S ⊂
⋃

p∈S′

Bp.

We then have

T ⊂ S ∩ T ⊂
(

⋃

p∈S′

Bp

)

∩ T ⊂
⋃

p∈S′

(Bp ∩ T ).

The sets Bp ∩ T for p ∈ S′ are finite; the union of finitely many of these is finite. This is, however, a
contradiction, since T was assumed to be infinite, completing a proof.

Theorem. Let (E, d) be a metric space. The following are equivalent:

(i) (E, d) is compact;

(ii) (E, d) is sequentially compact;

(iii) (E, d) is complete and totally bounded.

Proof. We will prove this result by showing the implications (i) → (ii), (ii) → (iii), and (iii) → (i).
Proof of (i) → (ii). Assume (E, d) is compact. Let {pn}

∞

n=1
be a sequence of points pn ∈ E. If the set

{pn : n ∈ N} is finite, then there is a p ∈ E such that p = pn for infinitely many n’s. Then we can take a
subsequence {pnk

}∞k=1
of {pn}

∞

n=1
such that pnk

= p for all k ∈ N. This subsequence converges to p.
If the set {pn : n ∈ N} is infinite, then it has a cluster point p by the above Lemma. For each k ∈ N

the open ball U(p, 1/k) contains infinitely elements of the set {pn : n ∈ N}. Let nk ∈ N be such that
pnk

∈ U(p, 1/k) and, in case k > 1, we also have nk > nk−1. Then the subsequence {pnk
}∞k=1

converges to p.
Proof of (ii) → (iii). Assume (E, d) is sequentially compact. We will first show that (E, d) is complete.

Let {pn}
∞

n=1
be a Cauchy sequence; then this sequence has a convergent subsequence. A Cauchy sequence

that has a convergent subsequence is itself convergent; so {pn}
∞

n=1
itself is convergent, showing that (E, d)

is complete.
Next we show that (E, d) is totally bounded. Assume, on the contrary that it is not totally bounded; let

ǫ > 0 be such that (E, d) cannot be covered by finitely many closed balls of radius ǫ. Select a sequence pn
of points pn ∈ E such that, writing Ū(p, ǫ) for the closed ball of center p and radius ǫ, when selecting pn we
have

pn /∈
n−1
⋃

k=1

Ū(pk, ǫ);

since the closed balls on the right-hand side do not cover E according to our assumptions, it is possible to
select pn in such a way. Then d(pn, pm) > ǫ for every two distinct n,m ∈ N, showing that the sequence
{pn}

∞

n=1
is not Cauchy sequence, and so it does not converge. This contradicts the assumption that (E, d)

is sequentially compact, showing that (E, d) is totally bounded.
(iii) → (i). Assume (E, d) is complete and totally bounded, and assume, on the contrary, that E is not

compact. Let U be a collection of open sets such that E ⊂
⋃

U (in this case we actually have E =
⋃

U ,
since E is the whole space) and there is no finite U ′ ⊂ U for which E ⊂

⋃

U ′, i.e., that E cannot be covered
by finitely many sets in U . We will construct a sequence of closed balls Bn for n ≥ 0 such that B0 = E
(since E is totally bounded, it is also bounded, so E can be regarded as a closed ball), for n ≥ 0 the closed
ball Bn cannot be covered by finitely many elements of U , i.e., for n ≥ 0 there is no finite set U ′ ⊂ U with
Bn ⊂

⋃

U ′, and such that, for each n ≥ 1, the radius of Bn is 1/n, and the center pn of Bn is in Bn−1, i.e.,
pn ∈ Bn−1,

Let n ≥ 1 and assume that Bn−1 has already been constructed in such a way that Bn−1 cannot be covered
by finitely many elements of U (this is certainly true if n = 1, since B0 = E). To construct Bn for n ≥ 1,
cover Bn−1 by finitely many closed balls of radius 1/n in such a way that the centers of each of these balls is
in Bn−1; as we pointed out above, this is possible since (Bn−1, d), being the subspace of a totally bounded
space, is totally bounded. There must be among these closed balls one that cannot be covered by finitely
many elements of U ; select one of these balls as Bn. Let pn be the center of Bn.

The sequence {pn}
∞

n=1
is a Cauchy sequence; indeed, for m > n we have pm ∈ Bn = Ū(pn, 1/n), so

d(pn, pm) ≤ 1/n. Let p be the limit of this sequence. As Bn, being a closed ball, is a closed set for each
2



n ∈ N and pm ∈ Bn for all m ≥ n, we have p ∈ Bn for each n ∈ N. That is, d(p, pn) ≤ 1/n for all
n ∈ N. Now, p ∈ U holds for some U ∈ U , since U covers E. As U is open, there is an ǫ > 0 such
that U(p, ǫ) ⊂ U . Then, for n ≥ 3/ǫ we have 3/n ≤ ǫ, so U(p, 3/n) ⊂ U(p, ǫ) ⊂ U . Then we also have
Bn = Ū(pn, 1/n) ⊂ Ū(p, 2/n) ⊂ U(p, 3/n) ⊂ U =

⋃

{U}; the first inclusion here holds since for any q ∈ Bn

we have d(p, q) ≤ d(p, pn)+d(pn, q) ≤ 1/n+1/n = 2/n. That is, Bn can be covered by a one-element subset
of U . This is a contradiction, since we assumed that Bn cannot be covered by finitely many elements of U .
This contradiction shows that the assumption that (E, d) is not compact was wrong, completing the proof.

Topological spaces are generalizations of metric spaces; in topological spaces, there are open and closed
sets, but there is no distance function. There are topological spaces that are sequentially compact but
not compact; so, maintaining the distinction between the notions of compact and sequentially compact is
important.
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