Blackboard exam 1, Mathematics Mathematics 4701, Section TY3 Starts: 4:30 pm, Thurs, Mar 4; ends: 5:20 pm (late submission loses points). Instructor: Attila Máté
1.a) Find the Lagrange interpolation polynomial $f(x)$ such that $f(1)=11, f(3)=5, f(4)=3$.

Solution. Write $x_{1}=1, x_{2}=3, x_{3}=4$. We have

$$
\begin{aligned}
& l_{1}(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{(x-3)(x-4)}{(1-3)(1-4)}=\frac{1}{6}(x-3)(x-4) \\
& l_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}=\frac{(x-1)(x-4)}{(3-1)(3-4)}=-\frac{1}{2}(x-1)(x-4) \\
& l_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}=\frac{(x-1)(x-3)}{(4-1)(4-3)}=\frac{1}{3}(x-1)(x-3)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
P(x) & =f(1) l_{1}(x)+f(3) l_{2}(x)+f(4) l_{3}(x)=11 \cdot \frac{1}{6}(x-3)(x-4)+5 \cdot\left(-\frac{1}{2}\right)(x-1)(x-4) \\
& +3 \cdot \frac{1}{3}(x-1)(x-3)=\frac{11}{6}(x-3)(x-4)-\frac{5}{2}(x-1)(x-4)+(x-1)(x-3)
\end{aligned}
$$

b) Estimate the error of Lagrange interpolation when interpolating $f(x)=\ln x$ at $x=5$, using the interpolation points $x_{1}=2, x_{2}=3$, and $x_{3}=6$.

Solution. Noting that the third derivative of $\ln x$ equals $2 / x^{3}$, with $f(x)=\ln x$ and with some $\xi$ between 2 and 6 , for the error at $x=5$ we have

$$
E(x)=f^{\prime \prime \prime}(\xi) \frac{(x-2)(x-3)(x-6)}{3!}=\frac{2}{\xi^{3}} \frac{(5-2)(5-3)(5-6)}{6}=-\frac{2}{\xi^{3}}
$$

according to the error formula of the Lagrange interpolation, where $\xi$ is some number in the interval spanned by $x, x_{1}, x_{2}$, and $x_{3}$, i.e., in the interval $(2,6)$. Clearly, the right-hand side is smallest for $\xi=2$ and largest for $x=6$. Thus we have

$$
-\frac{1}{4}<E(5)<-\frac{1}{108}
$$

We have strict inequalities, since the values $\xi=2$ and $\xi=6$ are not allowed.
2. Find the Newton-Hermite interpolation polynomial for $f(x)$ with $f(3)=5, f^{\prime}(3)=6, f^{\prime \prime}(3)=-14$, $f(5)=13, f^{\prime}(5)=-2$.
a) First, write the divided difference table, using the points 3,5 in natural order.

Solution. We have $f[x]=f(x)$; hence $f[3]=4$ and $f[5]=13$. Further, $f[x, x]=f^{\prime}(x)$; hence $f[3,3]=6$ and $f[5,5]=-2$. Finally, $f[x, x, x]=(1 / 2) f^{\prime \prime}(x)$; so $f[3,3,3]=-7$. Next

$$
\begin{gathered}
f[3,5]=\frac{f[5]-f[3]}{5-3}=\frac{13-5}{2}=4, \\
f[3,3,5]=\frac{f[3,5]-f[3,3]}{5-3}=\frac{4-6}{2}=-1,
\end{gathered}
$$

and

$$
f[3,5,5]=\frac{f[5,5]-f[3,5]}{5-3}=\frac{-2-4}{2}=-3
$$

Therefore,

$$
f[3,3,3,5]=\frac{f[3,3,5]-f[3,3,3]}{5-3}=\frac{-1-(-7)}{2}=3
$$

$$
f[3,3,5,5]=\frac{f[3,5,5]-f[3,3,5]}{5-3}=\frac{-3-(-1)}{2}=-1
$$

and

$$
f[3,3,3,5,5]=\frac{f[3,3,5,5]-f[3,3,3,5]}{5-3}=\frac{-1-3}{2}=-2 .
$$

Summarizing this in a divided difference table, we have

| $x$ | $f[]$. | $f[.,]$. | $f[., .,]$. | $f[x ., ., .,]$. | $f[., ., ., .,]$. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 |  |  |  |  |
| 3 | 5 | 6 | -7 |  |  |
| 3 | 5 | 6 | -1 | 3 | -2 |
| 5 | 13 | 4 | -3 |  |  |
| 5 | 13 | -2 |  |  |  |

b) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the order of points $3,3,3,5,5$.

Solution. We have

$$
\begin{aligned}
P(x) & =f[3]+f[3,3](x-3)+f[3,3,3](x-3)(x-3)+f[3,3,3,5](x-3)(x-3)(x-3) \\
& +f[3,3,3,5,5](x-3)(x-3)(x-3)(x-5) \\
& =5+6(x-3)-7(x-3)^{2}+3(x-3)^{3}-2(x-3)^{3}(x-5) .
\end{aligned}
$$

c) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the order of points $5,3,3,5,3$.

Solution. We have

$$
\begin{aligned}
P(x) & =f[5]+f[5,3](x-5)+f[5,3,3](x-5)(x-3)+f[5,3,3,5](x-5)(x-3)(x-3) \\
& +f[5,3,3,5,3](x-5)(x-3)(x-3)(x-5) \\
& =13+4(x-5)-(x-5)(x-3)-(x-5)(x-3)^{2}-2(x-5)^{2}(x-3)^{2} .
\end{aligned}
$$

