Blackboard exam 3, Mathematics Mathematics 4701, Section TY3 Starts: 4:30 pm, Thurs, Apr 8; ends: 5:20 pm (late submission loses points). Instructor: Attila Máté

1. Given a certain function f, we are using the formula

$$
\bar{f}(x, h)=\frac{f(x+h)-f(x-h)}{2 h}
$$

to approximate its derivative. We have

$$
\bar{f}(2,1 / 8) \approx 2.842,533 \quad \text { and } \quad \bar{f}(2,1 / 16) \approx 2.871,272
$$

Using Richardson extrapolation, find a better approximation for $f^{\prime}(2)$.
Solution. We have

$$
\begin{aligned}
f^{\prime}(x) & =\bar{f}(x, h)+c_{1} h^{2}+c_{2} h^{4} \ldots \\
f^{\prime}(x) & =\bar{f}(x, 2 h)+c_{1}(2 h)^{2}+c_{2}(2 h)^{4} \ldots
\end{aligned}
$$

with some c_{1}, c_{2}, \ldots Multiplying the first equation by 4 and subtracting the second one, we obtain

$$
3 f^{\prime}(x)=4 \bar{f}(x, 2 h)-f(x, h)+12 c_{2} h^{4}+\ldots
$$

That is, with $x=2$ and $h=1 / 16$ we have

$$
f^{\prime}(x) \approx \frac{4 \bar{f}(x, h)-\bar{f}(x, 2 h)}{3} \approx \frac{4 \cdot 2.871,272-2.842,533}{3}=2.880,852
$$

The function in the example is $f(x)=-\sin \frac{12}{x}$, and $f^{\prime}(2) \approx 2.880,511$.
2. Describe how to deal with the singularity in the integral

$$
\int_{0}^{1} x^{-1 / 2} e^{-x^{2}} d x
$$

if one wants to evaluate this integral using Simpson's rule.
Solution. One can subtract the singularity by taking an initial segment of the Taylor series at $x=0$ of $e^{-x^{2}}$. We have

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

this Taylor series is convergent on the whole real line. Therefore, we have

$$
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2}+O\left(x^{6}\right)
$$

where the symbol $O(\cdot)$ is meant as $x \rightarrow 0$. Hence

$$
x^{-1 / 2}\left(e^{-x^{2}}-1+x^{2}-\frac{x^{4}}{2}\right)=O\left(x^{6-1 / 2}\right)=O\left(x^{11 / 2}\right)
$$

The fourth derivative of this near $x=0$ is $O\left(x^{3 / 2}\right)$; that is, the fourth derivative tends to zero when $x \searrow 0$. So the fourth derivative is bounded on $(0,1)$, the interval of integration; therefore, Simpson's rule can be used to calculate the integral. To sum up, we have

$$
\int_{0}^{1} x^{-1 / 2} e^{-x^{2}} d x=\int_{0}^{1} x^{-1 / 2}\left(e^{-x^{2}}-1+x^{2}-\frac{x^{4}}{2}\right) d x+\int_{0}^{1}\left(x^{-1 / 2}-x^{3 / 2}+\frac{x^{7 / 2}}{2}\right) d x
$$

The first integral on the right-hand side can be calculated by Simpson's rule (at $x=0$ take the integrand to be 0), and the second integral can be evaluated directly, by calculating the integral explicitly.

The value of the integral turns out to be approximately $1.689,677,189,514$.
Second Solution. The problem can also be solved by making the substitution $t=x^{2}$. With this substitution, we have $d t=2 x d x$, and so the integral becomes

$$
\int_{0}^{1} x^{-1 / 2} e^{-x^{2}} d x=\int_{0}^{1} t^{-1} e^{-t^{4}} 2 t d t=2 \int_{0}^{1} e^{-t^{4}} d t
$$

and the integral on the right-hand side has no singularity.
In fact, this method is quite general, and can be used instead of the subtraction of singularity method. If the singularity at 0 is of the order $x^{-\alpha}$ for α with $0<\alpha<1$, then the substitution $t=x^{1 /(1-\alpha)}$ removes the singularity (if $\alpha \leq 0$ then there is no singularity, and if $\alpha \geq 1$ then the integral is divergent).
3. Write a third order Taylor approximation for the solution $y(x)$ at $x=1+h$ of the differential equation $y^{\prime}=x+y^{2}$ with initial condition $y(1)=2$ (i.e., the error term in expressing $y(1+h)$ should be $O\left(h^{4}\right)$).
Solution. We have $y(1)=2, y^{\prime}(1)=x+y^{2}=5$; the right-hand side was obtained by substituting $x=1$ and $y=2$. Differentiating, then using the equation $y^{\prime}=x+y^{2}$, and again substituting $x=1$ and $y=2$, we obtain

$$
y^{\prime \prime}(x)=\left(x+y^{2}\right)^{\prime}=1+2 y y^{\prime}=1+2 y\left(x+y^{2}\right)=1+2 x y+2 y^{3}=21 .
$$

Differentiating, then using the equation $y^{\prime}=x+y^{2}$, and again substituting $x=1$ and $y=2$, we obtain

$$
\begin{aligned}
& y^{\prime \prime \prime}(x)=\left(1+2 x y+2 y^{3}\right)^{\prime}=2 y+2 x y^{\prime}+6 y^{2} y^{\prime}=2 y+2\left(x+3 y^{2}\right) y^{\prime}=2 y+2\left(x+3 y^{2}\right)\left(x+y^{2}\right)=134 . \\
& y(1+h)=y(1)+y^{\prime}(1) h+y^{\prime \prime}(1) \frac{h^{2}}{2}+y^{\prime \prime \prime}(1) \frac{h^{3}}{6}+O\left(h^{4}\right)=2+5 h+21 \frac{h^{2}}{2}+134 \frac{h^{3}}{6}+O\left(h^{4}\right) \\
& \\
& =2+5 h+\frac{21}{2} h^{2}+\frac{67}{3} h^{3}+O\left(h^{4}\right)
\end{aligned}
$$

for h near 0 .

