Blackboard exam 4, Mathematics Mathematics 4701, Section TY3 Starts: 4:30 pm, Thurs, Apr 22; ends: 5:20 pm (late submission loses points). Instructor: Attila Máté

1. Assume that

$$
c_{1} n^{5} \cdot 8^{n}+c_{2} n \cdot 4^{n}+c_{3} n^{3} \cdot 9^{n}=0
$$

for all $n>0$. Show that then $c_{1}=0$.
Solution. Assume $c_{1} \neq 0$. We will write a difference operator that annihilates all but the first term in the above expression, while it reduces the first term to $c \cdot 8^{n}$, where c is a nonzero constant.

The difference operator

$$
(E-8)^{5}
$$

will lower the degree of the polynomial in the first term to 0 (i.e., it will change the term into $c \cdot 8^{n}$ with a nonzero c), while it will not change the degrees of the other polynomials. The difference operator

$$
(E-4)^{2}
$$

will annihilate the second term, while it will not change the degrees of the polynomials in the other terms. Finally, the difference operator

$$
(E-9)^{4}
$$

will annihilate the third term, while it will not change the degrees of the polynomials in the other terms. Hence the product of these differential operators,

$$
(E-9)^{5}(E-4)^{2}(E-5)^{4}
$$

will change the first term into $c \cdot 8^{n}$ with a nonzero c, and it will annihilate the second and the third terms.
Thus we obtain the equation

$$
c \cdot 8^{n}=0
$$

for all $n>0$, which can only hold if $c=0$. Since $c \neq 0$ if $c_{1} \neq 0$, this shows that we must have $c_{1}=0$
A similar argument can be used to show that we also have $c_{2}=c_{3}=0$. Thus the terms $n^{5} \cdot 8^{n}, n \cdot 4^{n}$, and $n^{3} \cdot 9^{n}$ are linearly independent.
2. Given

$$
A=L U=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
4 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 8 & 4 \\
0 & 3 & 6 \\
0 & 0 & 7
\end{array}\right)
$$

write A as $L^{\prime} U^{\prime}$ such that L^{\prime} is a lower triangular matrix and U^{\prime} is an upper triangular matrix such that the elements in the main diagonal of U^{\prime} are all 1 's.
Solution. Write D for the diagonal matrix whose diagonal elements are the same as those of U. That is,

$$
D=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 7
\end{array}\right)
$$

We have $A=L U=(L D)\left(D^{-1} U\right)$. Note that the inverse of a diagonal matrix is a diagonal matrix formed by the reciprocal of the elements in the diagonal:

$$
D^{-1}=\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 7
\end{array}\right)
$$

Now, we have

$$
L D=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
4 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 7
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 0 \\
6 & 3 & 0 \\
8 & 6 & 7
\end{array}\right) .
$$

Furthermore,

$$
D^{-1} U=\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 7
\end{array}\right)\left(\begin{array}{ccc}
2 & 8 & 4 \\
0 & 3 & 6 \\
0 & 0 & 7
\end{array}\right)=\left(\begin{array}{lll}
1 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) .
$$

Thus,

$$
A=\left(\begin{array}{lll}
2 & 0 & 0 \\
6 & 3 & 0 \\
8 & 6 & 7
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) .
$$

3. Consider the differential equation $y^{\prime}=f(x, y)$ with initial condition $y\left(x_{0}\right)=y_{0}$. Show that with $x_{1}=x_{0}+h(h>0)$, the solution at x_{1} can be obtained within an error of $O\left(h^{3}\right)$ by the formula

$$
y_{1}=y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)+\frac{h}{2} f\left(x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right)
$$

Solution. Writing f, f_{x}, and f_{y} for f and its partial derivatives at $\left(x_{0}, y_{0}\right)$, we have

$$
f\left(x_{0}+h, y_{0}+h f\right)=f+h f_{x}+h f f_{y}+O\left(h^{2}\right)
$$

Substituting this into the formula for y_{1}, we obtain

$$
y_{1}=y_{0}+\frac{h}{2} f+\frac{h}{2}\left(f+h f_{x}+h f f_{y}\right)+O\left(h^{3}\right)=y_{0}+h f+\frac{h^{2}}{2}\left(f_{x}+f f_{y}\right)+O\left(h^{3}\right)
$$

This agrees with a Taylor approximation of y_{1} within an error of $O\left(h^{3}\right)$, which we wanted to show.
In other words, the above formula describes a Runge-Kutta method of order 2. This is the classical Runge-Kutta method of order 2.

